Reproducible Research:

Assessment 1

========================================================

1. Code for reading in the dataset and/or processing the data

## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## [1] 17568     3
## [1] "steps"    "date"     "interval"
##   steps       date interval
## 1    NA 2012-10-01        0
## 2    NA 2012-10-01        5
## 3    NA 2012-10-01       10
## 4    NA 2012-10-01       15
## 5    NA 2012-10-01       20
## 6    NA 2012-10-01       25
## 'data.frame':    17568 obs. of  3 variables:
##  $ steps   : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ date    : chr  "2012-10-01" "2012-10-01" "2012-10-01" "2012-10-01" ...
##  $ interval: int  0 5 10 15 20 25 30 35 40 45 ...
## [1] 0.1311475

2. Histogram of the total number of steps taken each day

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##      41    8841   10765   10766   13294   21194

3. Mean and median number of steps taken each day

Mean number of steps taken each day is 10766

Median number of steps taken each day is 10765

4. Time series plot of the average number of steps taken

### 5. The 5-minute interval that, on average, contains the maximum number of steps

6. Code to describe and show a strategy for imputing missing data

7. Histogram of the total number of steps taken each day after missing values are imputed

### 8. Panel plot comparing the average number of steps taken per 5-minute interval across weekdays and weekends