villes_s<-list()
for(i in 1:length(villes)) {
villes_s[[i]]<-villes[[i]][villes[[i]]$saison=="summer",]
villes_s[[i]]$temps <- ave(villes_s[[i]]$time,villes_s[[i]]$annee, FUN = seq_along)
villes_s[[i]]$time<-1:nrow(villes_s[[i]])
}
names(villes_s)<-cities
table of N obs per months to check to have only summer month
for (i in 1:length(villes)){
print(table(villes_s[[i]]$mois))
}
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
trshld975<-c()
for (i in 1:length(villes_s)){
trshld975[i]<-quantile(villes_s[[i]]$tempmax, probs=c(0.95),na.rm=TRUE)
villes_s[[i]]$heat_wave<-0
villes_s[[i]]$heat_wave[which(villes_s[[i]]$tempmax > trshld975[i])]<- 1
}
Â
Number of Heat Wave for each city:
| Heat wave=0 | Heat wave=1 | |
|---|---|---|
| bm | 2087 | 109 |
| bordeaux | 2087 | 109 |
| clermont | 2088 | 108 |
| dijon | 2088 | 108 |
| grenoble | 2086 | 110 |
| lehavre | 2088 | 108 |
| lille | 2087 | 109 |
| lyon | 2087 | 109 |
| marseille | 2093 | 103 |
| montpellier | 2089 | 107 |
| nancy | 2086 | 110 |
| nantes | 2087 | 109 |
| nice | 2088 | 108 |
| paris | 2090 | 106 |
| rennes | 2089 | 107 |
| rouen | 2089 | 107 |
| strasbourg | 2086 | 110 |
| toulouse | 2086 | 110 |
# creation of no2 variable of today and previous day
#function filter {stats}
for (i in 1:length(villes_s)){
villes_s[[i]]<-transform(villes_s[[i]], no2moy = as.vector(filter(no2,sides = 1, filter = rep(1, 2))/2), no2Lag1=Lag(no2,1),no2Lag2=Lag(no2,2))
}
Code:
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following object is masked from 'package:nlme':
##
## collapse
## The following objects are masked from 'package:lubridate':
##
## intersect, setdiff, union
## The following objects are masked from 'package:Hmisc':
##
## src, summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Results:
res<-data.frame(results)
for (i in (2:19)){
res[,i]<-as.numeric(as.character(res[,i]))
}
res[,2:19]<-round(res[,2:19],digits = 4)
kable(res)%>%kable_styling("condensed")%>%
column_spec(1, bold = T, border_right = T)%>%
column_spec(4, border_right = T)%>%
column_spec(7, border_right = T)%>%
column_spec(10, border_right = T)%>%
column_spec(13, border_right = T)%>%
column_spec(16, border_right = T)
| city | CDE | CDE_2.5 | CDE_97.5 | RefInt | RefInt_2.5 | RefInt_97.5 | MedInt | MedInt_2.5 | MedInt_97.5 | PIE | PIE_2.5 | PIE_97.5 | OPM | OPM_2.5 | OPM_97.5 | OPAI | OPAI_2.5 | OPAI_97.5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| bm | 1.4292 | 0.6893 | 2.8660 | 0.7910 | 0.5309 | 1.1696 | 0.8761 | 0.6855 | 1.0967 | 1.0365 | 0.9876 | 1.0885 | 0.4622 | 0.3341 | 0.5322 | 0.4025 | 0.2405 | 0.5674 |
| bordeaux | 0.9654 | 0.4351 | 2.1686 | 1.1395 | 0.6440 | 1.9870 | 1.0526 | 0.8406 | 1.3252 | 1.0192 | 0.9853 | 1.0579 | 0.4938 | 0.3986 | 0.5140 | 0.5249 | 0.3193 | 0.6926 |
| clermont | 1.1457 | 0.4107 | 3.3813 | 0.9935 | 0.4143 | 2.0906 | 0.9981 | 0.7829 | 1.2450 | 1.0130 | 0.9758 | 1.0518 | 0.4788 | 0.3173 | 0.5061 | 0.4802 | 0.2157 | 0.7004 |
| dijon | 0.7722 | 0.2253 | 1.8217 | 1.2224 | 0.6943 | 2.6854 | 1.0858 | 0.8649 | 1.5194 | 1.0391 | 0.9840 | 1.0914 | 0.5069 | 0.4224 | 0.5323 | 0.5598 | 0.3539 | 0.7672 |
| grenoble | 1.2584 | 0.6558 | 2.5022 | 0.8906 | 0.5313 | 1.4602 | 0.9605 | 0.7969 | 1.1323 | 1.0322 | 0.9973 | 1.0704 | 0.4825 | 0.3746 | 0.5139 | 0.4480 | 0.2737 | 0.6057 |
| lehavre | 0.8416 | 0.3551 | 1.7758 | 1.1309 | 0.7000 | 1.9089 | 1.0563 | 0.8483 | 1.3709 | 1.0688 | 1.0066 | 1.1355 | 0.5162 | 0.4350 | 0.5438 | 0.5344 | 0.3532 | 0.6950 |
| lille | 0.9680 | 0.7094 | 1.3365 | 1.0167 | 0.8361 | 1.2637 | 1.0094 | 0.9199 | 1.1212 | 1.0487 | 1.0192 | 1.0819 | 0.5083 | 0.4750 | 0.5280 | 0.5005 | 0.4254 | 0.5742 |
| lyon | 1.3631 | 0.7402 | 2.3888 | 0.8668 | 0.5907 | 1.2855 | 0.9511 | 0.8289 | 1.0957 | 1.0144 | 0.9924 | 1.0373 | 0.4682 | 0.3832 | 0.5097 | 0.4342 | 0.2923 | 0.5764 |
| marseille | 1.0640 | 0.5831 | 1.8837 | 0.9974 | 0.6255 | 1.6086 | 0.9998 | 0.9499 | 1.0613 | 1.0071 | 0.9992 | 1.0173 | 0.4904 | 0.4409 | 0.5057 | 0.4901 | 0.3528 | 0.6269 |
| montpellier | 1.0354 | 0.4232 | 2.0167 | 0.8845 | 0.4352 | 2.0247 | 1.0000 | 0.9851 | 1.0210 | 1.0002 | 0.9972 | 1.0047 | 0.5004 | 0.4223 | 0.5223 | 0.4817 | 0.3227 | 0.6790 |
| nancy | 1.2384 | 0.3521 | 2.4832 | 0.8707 | 0.5302 | 1.9409 | 0.9508 | 0.7974 | 1.2818 | 0.9949 | 0.9589 | 1.0328 | 0.4786 | 0.3739 | 0.5246 | 0.4501 | 0.2768 | 0.7079 |
| nantes | 0.5889 | 0.2645 | 1.2544 | 1.4568 | 0.8979 | 2.4185 | 1.1921 | 0.9487 | 1.5056 | 1.0337 | 0.9938 | 1.0777 | 0.5149 | 0.4690 | 0.5340 | 0.6204 | 0.4445 | 0.7483 |
| nice | 0.7746 | 0.5572 | 1.0663 | 1.2896 | 0.9817 | 1.7780 | 1.0051 | 0.9904 | 1.0282 | 0.9999 | 0.9949 | 1.0051 | 0.4913 | 0.4609 | 0.5055 | 0.5647 | 0.4894 | 0.6405 |
| paris | 1.1891 | 0.9860 | 1.4252 | 0.9357 | 0.8313 | 1.0523 | 0.9729 | 0.9240 | 1.0209 | 1.0364 | 1.0236 | 1.0503 | 0.4861 | 0.4651 | 0.5025 | 0.4618 | 0.4169 | 0.5064 |
| rennes | 1.8132 | 0.5196 | 5.6019 | 0.6877 | 0.3268 | 1.6723 | 0.8390 | 0.5814 | 1.2394 | 1.0445 | 0.9827 | 1.1134 | 0.4287 | 0.2169 | 0.5225 | 0.3478 | 0.1223 | 0.6515 |
| rouen | 1.2115 | 0.7551 | 1.8344 | 0.9388 | 0.7215 | 1.2540 | 0.9605 | 0.8197 | 1.1515 | 1.0586 | 1.0086 | 1.1090 | 0.4846 | 0.4271 | 0.5261 | 0.4559 | 0.3472 | 0.5750 |
| strasbourg | 0.7930 | 0.4633 | 1.2942 | 1.2196 | 0.8946 | 1.6829 | 1.1021 | 0.9454 | 1.2910 | 1.0328 | 0.9968 | 1.0719 | 0.5135 | 0.4733 | 0.5310 | 0.5596 | 0.4418 | 0.6664 |
| toulouse | 0.8803 | 0.3640 | 2.0088 | 1.1385 | 0.5732 | 2.3166 | 1.0338 | 0.8679 | 1.2469 | 1.0296 | 1.0069 | 1.0563 | 0.4970 | 0.4205 | 0.5153 | 0.5333 | 0.3217 | 0.7164 |
Controlled Direct Effect
Pure Indirect Effect
Reference Interaction
Reference Interaction