villes_s<-list()
for(i in 1:length(villes)) {
villes_s[[i]]<-villes[[i]][villes[[i]]$saison=="summer",]
villes_s[[i]]$temps <- ave(villes_s[[i]]$time,villes_s[[i]]$annee, FUN = seq_along)
villes_s[[i]]$time<-1:nrow(villes_s[[i]])
}
names(villes_s)<-cities
table of N obs per months to check to have only summer month
for (i in 1:length(villes)){
print(table(villes_s[[i]]$mois))
}
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## 0 0 0 0 0 540 558 558 540 0 0 0
trshld975<-c()
for (i in 1:length(villes_s)){
trshld975[i]<-quantile(villes_s[[i]]$tempmax, probs=c(0.975),na.rm=TRUE)
villes_s[[i]]$heat_wave<-0
villes_s[[i]]$heat_wave[which(villes_s[[i]]$tempmax > trshld975[i])]<- 1
}
Â
Number of Heat Wave for each city:
| Heat wave=0 | Heat wave=1 | |
|---|---|---|
| bm | 2143 | 53 |
| bordeaux | 2143 | 53 |
| clermont | 2142 | 54 |
| dijon | 2143 | 53 |
| grenoble | 2141 | 55 |
| lehavre | 2142 | 54 |
| lille | 2143 | 53 |
| lyon | 2142 | 54 |
| marseille | 2142 | 54 |
| montpellier | 2145 | 51 |
| nancy | 2142 | 54 |
| nantes | 2141 | 55 |
| nice | 2142 | 54 |
| paris | 2144 | 52 |
| rennes | 2142 | 54 |
| rouen | 2143 | 53 |
| strasbourg | 2143 | 53 |
| toulouse | 2141 | 55 |
# creation of no2 variable of today and previous day
#function filter {stats}
for (i in 1:length(villes_s)){
villes_s[[i]]<-transform(villes_s[[i]], no2moy = as.vector(filter(no2,sides = 1, filter = rep(1, 2))/2), no2Lag1=Lag(no2,1),no2Lag2=Lag(no2,2))
}
Code:
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following object is masked from 'package:nlme':
##
## collapse
## The following objects are masked from 'package:lubridate':
##
## intersect, setdiff, union
## The following objects are masked from 'package:Hmisc':
##
## src, summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Results:
res<-data.frame(results)
for (i in (2:19)){
res[,i]<-as.numeric(as.character(res[,i]))
}
res[,2:19]<-round(res[,2:19],digits = 4)
kable(res)%>%kable_styling("condensed")%>%
column_spec(1, bold = T, border_right = T)%>%
column_spec(4, border_right = T)%>%
column_spec(7, border_right = T)%>%
column_spec(10, border_right = T)%>%
column_spec(13, border_right = T)%>%
column_spec(16, border_right = T)
| city | CDE | CDE_2.5 | CDE_97.5 | RefInt | RefInt_2.5 | RefInt_97.5 | MedInt | MedInt_2.5 | MedInt_97.5 | PIE | PIE_2.5 | PIE_97.5 | OPM | OPM_2.5 | OPM_97.5 | OPAI | OPAI_2.5 | OPAI_97.5 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| bm | 1.7066 | 0.8737 | 3.4911 | 0.6673 | 0.4250 | 0.9631 | 0.7863 | 0.6051 | 0.9794 | 1.0406 | 0.9936 | 1.0929 | 0.4346 | 0.2955 | 0.5250 | 0.3457 | 0.1839 | 0.5019 |
| bordeaux | 0.7020 | 0.2329 | 3.6876 | 1.4295 | 0.4666 | 3.0934 | 1.1736 | 0.7132 | 1.6529 | 1.0292 | 0.9903 | 1.0720 | 0.4927 | 0.2972 | 0.5181 | 0.6013 | 0.2038 | 0.7915 |
| clermont | 0.9999 | 0.3333 | 3.2144 | 1.1549 | 0.4967 | 2.5903 | 1.0428 | 0.8184 | 1.3128 | 1.0129 | 0.9738 | 1.0511 | 0.4776 | 0.3288 | 0.5049 | 0.5218 | 0.2407 | 0.7459 |
| dijon | 1.1590 | 0.1524 | 7.6069 | 1.0590 | 0.3610 | 3.6946 | 1.0241 | 0.6328 | 1.7479 | 1.0299 | 0.9771 | 1.0858 | 0.4721 | 0.1674 | 0.5214 | 0.4865 | 0.1036 | 0.8231 |
| grenoble | 1.4899 | 0.5997 | 4.6746 | 0.7479 | 0.3343 | 1.4500 | 0.8867 | 0.6395 | 1.1467 | 1.0439 | 1.0040 | 1.0898 | 0.4649 | 0.2515 | 0.5213 | 0.3901 | 0.1466 | 0.6078 |
| lehavre | 1.4009 | 0.6511 | 2.8436 | 0.8537 | 0.5533 | 1.3386 | 0.9295 | 0.7484 | 1.1431 | 1.0722 | 1.0103 | 1.1389 | 0.4694 | 0.3501 | 0.5295 | 0.4192 | 0.2505 | 0.5912 |
| lille | 0.7703 | 0.4854 | 1.1159 | 1.1764 | 0.9195 | 1.6027 | 1.0905 | 0.9552 | 1.2790 | 1.0526 | 1.0237 | 1.0888 | 0.5220 | 0.4944 | 0.5398 | 0.5542 | 0.4626 | 0.6518 |
| lyon | 1.4112 | 0.5519 | 4.7462 | 0.8207 | 0.3580 | 1.5717 | 0.9352 | 0.6927 | 1.1677 | 1.0188 | 0.9981 | 1.0409 | 0.4664 | 0.2524 | 0.5146 | 0.4200 | 0.1556 | 0.6320 |
| marseille | 0.9304 | 0.4152 | 1.7845 | 1.1890 | 0.6599 | 2.3495 | 1.0104 | 0.9661 | 1.0722 | 1.0041 | 0.9995 | 1.0131 | 0.4809 | 0.4182 | 0.4954 | 0.5313 | 0.3682 | 0.7054 |
| montpellier | 0.9516 | 0.1333 | 2.0587 | 1.0096 | 0.4149 | 6.8532 | 1.0013 | 0.9592 | 1.0430 | 0.9997 | 0.9936 | 1.0037 | 0.4865 | 0.2249 | 0.5181 | 0.5067 | 0.3223 | 0.8735 |
| nancy | 1.1360 | 0.1360 | 2.9413 | 0.8902 | 0.4656 | 3.4580 | 0.9632 | 0.7678 | 1.5771 | 0.9954 | 0.9593 | 1.0294 | 0.4699 | 0.3379 | 0.5271 | 0.4674 | 0.2426 | 0.8157 |
| nantes | 0.6946 | 0.0948 | 4.4008 | 1.2994 | 0.4190 | 4.6909 | 1.1309 | 0.6561 | 1.9817 | 1.0404 | 1.0037 | 1.0867 | 0.5070 | 0.2392 | 0.5373 | 0.5825 | 0.1672 | 0.8540 |
| nice | 0.6945 | 0.4804 | 1.0083 | 1.3845 | 0.9471 | 1.9866 | 1.0103 | 0.9906 | 1.0509 | 0.9999 | 0.9928 | 1.0075 | 0.4920 | 0.4494 | 0.5106 | 0.5850 | 0.4923 | 0.6696 |
| paris | 0.9119 | 0.5910 | 1.4433 | 1.0798 | 0.8333 | 1.3961 | 1.0323 | 0.9282 | 1.1383 | 1.0375 | 1.0244 | 1.0538 | 0.5086 | 0.4639 | 0.5262 | 0.5201 | 0.4120 | 0.6075 |
| rennes | 4.7442 | 0.7475 | 34.3725 | 0.3690 | 0.0952 | 1.3063 | 0.6529 | 0.3295 | 1.1265 | 1.0433 | 0.9849 | 1.1096 | 0.2479 | 0.0382 | 0.4888 | 0.1492 | 0.0126 | 0.5682 |
| rouen | 1.0998 | 0.4541 | 2.4215 | 1.0286 | 0.6377 | 1.6645 | 1.0187 | 0.7369 | 1.4089 | 1.0634 | 1.0150 | 1.1141 | 0.4945 | 0.3691 | 0.5384 | 0.4856 | 0.2815 | 0.6707 |
| strasbourg | 0.9112 | 0.4141 | 2.2456 | 1.1519 | 0.6857 | 1.8192 | 1.0708 | 0.8302 | 1.3232 | 1.0395 | 1.0045 | 1.0764 | 0.5041 | 0.3918 | 0.5308 | 0.5327 | 0.3207 | 0.6819 |
| toulouse | 0.7260 | 0.1171 | 2.8268 | 1.3913 | 0.4749 | 5.8316 | 1.0920 | 0.8130 | 1.6643 | 1.0284 | 1.0028 | 1.0578 | 0.4809 | 0.2973 | 0.5103 | 0.5870 | 0.2490 | 0.8683 |
Controlled Direct Effect
Pure Indirect Effect
Reference Interaction
Reference Interaction