In this exercise, you will further analyze the Wage data set considered throughout this chapter.
library(ISLR)
summary(Wage)
## year age maritl race
## Min. :2003 Min. :18.00 1. Never Married: 648 1. White:2480
## 1st Qu.:2004 1st Qu.:33.75 2. Married :2074 2. Black: 293
## Median :2006 Median :42.00 3. Widowed : 19 3. Asian: 190
## Mean :2006 Mean :42.41 4. Divorced : 204 4. Other: 37
## 3rd Qu.:2008 3rd Qu.:51.00 5. Separated : 55
## Max. :2009 Max. :80.00
##
## education region jobclass
## 1. < HS Grad :268 2. Middle Atlantic :3000 1. Industrial :1544
## 2. HS Grad :971 1. New England : 0 2. Information:1456
## 3. Some College :650 3. East North Central: 0
## 4. College Grad :685 4. West North Central: 0
## 5. Advanced Degree:426 5. South Atlantic : 0
## 6. East South Central: 0
## (Other) : 0
## health health_ins logwage wage
## 1. <=Good : 858 1. Yes:2083 Min. :3.000 Min. : 20.09
## 2. >=Very Good:2142 2. No : 917 1st Qu.:4.447 1st Qu.: 85.38
## Median :4.653 Median :104.92
## Mean :4.654 Mean :111.70
## 3rd Qu.:4.857 3rd Qu.:128.68
## Max. :5.763 Max. :318.34
##
str(Wage)
## 'data.frame': 3000 obs. of 11 variables:
## $ year : int 2006 2004 2003 2003 2005 2008 2009 2008 2006 2004 ...
## $ age : int 18 24 45 43 50 54 44 30 41 52 ...
## $ maritl : Factor w/ 5 levels "1. Never Married",..: 1 1 2 2 4 2 2 1 1 2 ...
## $ race : Factor w/ 4 levels "1. White","2. Black",..: 1 1 1 3 1 1 4 3 2 1 ...
## $ education : Factor w/ 5 levels "1. < HS Grad",..: 1 4 3 4 2 4 3 3 3 2 ...
## $ region : Factor w/ 9 levels "1. New England",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ jobclass : Factor w/ 2 levels "1. Industrial",..: 1 2 1 2 2 2 1 2 2 2 ...
## $ health : Factor w/ 2 levels "1. <=Good","2. >=Very Good": 1 2 1 2 1 2 2 1 2 2 ...
## $ health_ins: Factor w/ 2 levels "1. Yes","2. No": 2 2 1 1 1 1 1 1 1 1 ...
## $ logwage : num 4.32 4.26 4.88 5.04 4.32 ...
## $ wage : num 75 70.5 131 154.7 75 ...
Using K-Fold Cross Validation with K = 10 -
library(boot)
set.seed(1010)
cv.error <- rep(0, 5) # Initiate an empty vector to store computed Cross Validation Errors
for (i in 1:5) { # For-Loop to Increment from 1 to 5
wage.fit<-glm(wage~poly(age, i, raw = T), data=Wage) # Fit the Generalized Linear Regression Model
cv.error[i]<-cv.glm(Wage, wage.fit, K=10)$delta[1] # Calculate the Cross Validation Error
}
cv.error # Print Out the Resulting Cross Validation Error
## [1] 1675.708 1599.987 1596.459 1595.367 1595.502
plot(1:5, cv.error, xlab="Degree for Polynomial", ylab = "CV Error", type = "l")
d.min<-which.min(cv.error) # Finds Lowest CV Error
points(d.min, cv.error[d.min], col="red", cex=2, pch=20) # Plots Lowest CV Error
Using K-Fold Cross-Validation, the optimal degree for the Polynomial is 4 with the Cross Validation Error of 1595.367.
ANOVA Hypothesis Testing -
fit.1=lm(wage~age, data = Wage)
fit.2=lm(wage~poly(age,2, raw = T), data = Wage)
fit.3=lm(wage~poly(age,3, raw = T), data = Wage)
fit.4=lm(wage~poly(age,4, raw = T), data = Wage)
fit.5=lm(wage~poly(age,5, raw = T), data = Wage)
anova(fit.1,fit.2,fit.3,fit.4,fit.5)
## Analysis of Variance Table
##
## Model 1: wage ~ age
## Model 2: wage ~ poly(age, 2, raw = T)
## Model 3: wage ~ poly(age, 3, raw = T)
## Model 4: wage ~ poly(age, 4, raw = T)
## Model 5: wage ~ poly(age, 5, raw = T)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.5931 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.8888 0.001679 **
## 4 2995 4771604 1 6070 3.8098 0.051046 .
## 5 2994 4770322 1 1283 0.8050 0.369682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
With the ANOVA Test, the Null Hypothesis (\(H_0\)) explains that a simple model is sufficient to explain the data. Whereas the Alternative Hypothesis (\(H_a\)) explains that a more complex model is required. In this case, the p-value comparing the linear Model 1 to the quadratic Model 2 is essentially zero, indicating that a linear fit is not sufficient. Similarly the p-value comparing the quadratic Model 2 to the cubic Model 3 is very low with a p-value of 0.001679, so this inidicates that the quadratic fit is also insufficient to explain the data. Looking at p-value comparing cubic Model 3 and quartic Model 4 is approximately 5.10% which will not pass this test with a cut-off at p-value = 0.05 - thus the quartic Model 4 is unnecessary. Lastly, with the large p-value comparing quartic Model 4 and quintic Model 5, explains that the higher-degree of 5 is definitely unnecessary. Hence, the cubic Model 3 is sufficient in explaining the data and provides a reasonable fit to the data.
Ploting the Two Polynomials selected by K-Folds Cross-Validation and ANOVA -
plot(wage~age, data=Wage, col="grey80", main="Polynomial Degree of 3 & 4 for Age Against Wage")
agelimit = range(Wage$age)
age.grid = seq(from = agelimit[1], to = agelimit[2])
wage.poly.3 = lm(wage~poly(age,3), data = Wage)
preds=predict(wage.poly.3, newdata = list(age = age.grid))
lines(age.grid, preds, col="royalblue1", lwd=2)
wage.poly.4 = lm(wage~poly(age,4), data = Wage)
preds2 = predict(wage.poly.4, newdata = list(age = age.grid))
lines(age.grid, preds2, col="indianred1", lwd=2)
The two Polynomials where d = 3 and d = 4 show similar movements along the data except when the age = 75 and on.
We will utilize K-Folds Cross-Validation to determine the optimal number of cuts for a step function -
set.seed(1010)
cut.cv.err = rep(NA, 10)
for (i in 2:10) { # For-Loop to Increment from 2 to 10 Cuts
Wage$age.cut=cut(Wage$age, i) # Cutspoints per i
fit.cut=glm(wage~age.cut, data=Wage) # Fit Generalized Linear Model
cut.cv.err[i]=cv.glm(Wage, fit.cut, K=10)$delta[1] # Caclulate the Cross Validation Error
}
cut.cv.err # Print Cross-Validation Error
## [1] NA 1734.170 1682.765 1636.465 1633.622 1624.730 1610.688 1602.017
## [9] 1611.424 1603.890
plot(2:10, cut.cv.err[-1], main= "Selecting # of Cuts for Step Function", xlab = "Cuts", ylab="CV Error", type="l")
d.min=which.min(cut.cv.err)
points(which.min(cut.cv.err), cut.cv.err[which.min(cut.cv.err)], col="red", cex=2, pch=20)
With K-Folds Cross-Validation, the optimal # of Cuts selected is 8.
With Cuts = 8, I will fit the Step Function -
plot(wage~age, data = Wage, col = "grey80", main = "Step Function with 8 Cuts")
step.fit = glm(wage~cut(age,8), data = Wage)
step.preds = predict(step.fit, list(age = age.grid))
lines(age.grid, step.preds, col = "orchid4", lwd=2)
As described in the book, we use the Step Function in order to avoid imposing such a global structure to the data. In the graph above, you will see that the data is separated into 8 different bins to describe the trends with wage in relation to age. This function is typically used for data like this where the you are attempting to understand trends against several age groups.
This question relates to the College data set.
library(ISLR)
summary(College)
## Private Apps Accept Enroll Top10perc
## No :212 Min. : 81 Min. : 72 Min. : 35 Min. : 1.00
## Yes:565 1st Qu.: 776 1st Qu.: 604 1st Qu.: 242 1st Qu.:15.00
## Median : 1558 Median : 1110 Median : 434 Median :23.00
## Mean : 3002 Mean : 2019 Mean : 780 Mean :27.56
## 3rd Qu.: 3624 3rd Qu.: 2424 3rd Qu.: 902 3rd Qu.:35.00
## Max. :48094 Max. :26330 Max. :6392 Max. :96.00
## Top25perc F.Undergrad P.Undergrad Outstate
## Min. : 9.0 Min. : 139 Min. : 1.0 Min. : 2340
## 1st Qu.: 41.0 1st Qu.: 992 1st Qu.: 95.0 1st Qu.: 7320
## Median : 54.0 Median : 1707 Median : 353.0 Median : 9990
## Mean : 55.8 Mean : 3700 Mean : 855.3 Mean :10441
## 3rd Qu.: 69.0 3rd Qu.: 4005 3rd Qu.: 967.0 3rd Qu.:12925
## Max. :100.0 Max. :31643 Max. :21836.0 Max. :21700
## Room.Board Books Personal PhD
## Min. :1780 Min. : 96.0 Min. : 250 Min. : 8.00
## 1st Qu.:3597 1st Qu.: 470.0 1st Qu.: 850 1st Qu.: 62.00
## Median :4200 Median : 500.0 Median :1200 Median : 75.00
## Mean :4358 Mean : 549.4 Mean :1341 Mean : 72.66
## 3rd Qu.:5050 3rd Qu.: 600.0 3rd Qu.:1700 3rd Qu.: 85.00
## Max. :8124 Max. :2340.0 Max. :6800 Max. :103.00
## Terminal S.F.Ratio perc.alumni Expend
## Min. : 24.0 Min. : 2.50 Min. : 0.00 Min. : 3186
## 1st Qu.: 71.0 1st Qu.:11.50 1st Qu.:13.00 1st Qu.: 6751
## Median : 82.0 Median :13.60 Median :21.00 Median : 8377
## Mean : 79.7 Mean :14.09 Mean :22.74 Mean : 9660
## 3rd Qu.: 92.0 3rd Qu.:16.50 3rd Qu.:31.00 3rd Qu.:10830
## Max. :100.0 Max. :39.80 Max. :64.00 Max. :56233
## Grad.Rate
## Min. : 10.00
## 1st Qu.: 53.00
## Median : 65.00
## Mean : 65.46
## 3rd Qu.: 78.00
## Max. :118.00
str(College)
## 'data.frame': 777 obs. of 18 variables:
## $ Private : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ Apps : num 1660 2186 1428 417 193 ...
## $ Accept : num 1232 1924 1097 349 146 ...
## $ Enroll : num 721 512 336 137 55 158 103 489 227 172 ...
## $ Top10perc : num 23 16 22 60 16 38 17 37 30 21 ...
## $ Top25perc : num 52 29 50 89 44 62 45 68 63 44 ...
## $ F.Undergrad: num 2885 2683 1036 510 249 ...
## $ P.Undergrad: num 537 1227 99 63 869 ...
## $ Outstate : num 7440 12280 11250 12960 7560 ...
## $ Room.Board : num 3300 6450 3750 5450 4120 ...
## $ Books : num 450 750 400 450 800 500 500 450 300 660 ...
## $ Personal : num 2200 1500 1165 875 1500 ...
## $ PhD : num 70 29 53 92 76 67 90 89 79 40 ...
## $ Terminal : num 78 30 66 97 72 73 93 100 84 41 ...
## $ S.F.Ratio : num 18.1 12.2 12.9 7.7 11.9 9.4 11.5 13.7 11.3 11.5 ...
## $ perc.alumni: num 12 16 30 37 2 11 26 37 23 15 ...
## $ Expend : num 7041 10527 8735 19016 10922 ...
## $ Grad.Rate : num 60 56 54 59 15 55 63 73 80 52 ...
attach(College)
Splitting Data into Training and Testing Data -
library(caret)
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
##
## melanoma
## Loading required package: ggplot2
library(leaps)
library(tidyr)
library(modelr)
set.seed(5432)
train.index <- createDataPartition(College$Outstate, p = 0.75, list = FALSE)
College.train <- College[train.index,]
College.test <- College[-train.index,]
Forward Stepwise Selection on Training Data -
dummy.matrix <- model.matrix(Outstate ~., data = College.train)
College.fwd.selection <- regsubsets(x = dummy.matrix, y = College.train$Outstate, nvmax = 17, method = "forward")
## Reordering variables and trying again:
fwd.summary <- summary(College.fwd.selection)
fwd.summary
## Subset selection object
## 18 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## (Intercept) FALSE FALSE
## 1 subsets of each size up to 17
## Selection Algorithm: forward
## (Intercept) PrivateYes Apps Accept Enroll Top10perc Top25perc
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " " " " "
## 6 ( 1 ) " " "*" " " " " " " " " " "
## 7 ( 1 ) " " "*" " " " " " " " " " "
## 8 ( 1 ) " " "*" " " " " " " " " " "
## 9 ( 1 ) " " "*" " " "*" " " " " " "
## 10 ( 1 ) " " "*" " " "*" " " " " " "
## 11 ( 1 ) " " "*" "*" "*" " " " " " "
## 12 ( 1 ) " " "*" "*" "*" " " "*" " "
## 13 ( 1 ) " " "*" "*" "*" " " "*" " "
## 14 ( 1 ) " " "*" "*" "*" " " "*" " "
## 15 ( 1 ) " " "*" "*" "*" "*" "*" " "
## 16 ( 1 ) " " "*" "*" "*" "*" "*" "*"
## 17 ( 1 ) " " "*" "*" "*" "*" "*" "*"
## F.Undergrad P.Undergrad Room.Board Books Personal PhD Terminal
## 1 ( 1 ) " " " " "*" " " " " " " " "
## 2 ( 1 ) " " " " "*" " " " " " " " "
## 3 ( 1 ) " " " " "*" " " " " " " " "
## 4 ( 1 ) " " " " "*" " " " " " " " "
## 5 ( 1 ) " " " " "*" " " " " " " "*"
## 6 ( 1 ) " " " " "*" " " " " " " "*"
## 7 ( 1 ) " " " " "*" " " "*" " " "*"
## 8 ( 1 ) " " " " "*" " " "*" " " "*"
## 9 ( 1 ) " " " " "*" " " "*" " " "*"
## 10 ( 1 ) "*" " " "*" " " "*" " " "*"
## 11 ( 1 ) "*" " " "*" " " "*" " " "*"
## 12 ( 1 ) "*" " " "*" " " "*" " " "*"
## 13 ( 1 ) "*" " " "*" " " "*" "*" "*"
## 14 ( 1 ) "*" "*" "*" " " "*" "*" "*"
## 15 ( 1 ) "*" "*" "*" " " "*" "*" "*"
## 16 ( 1 ) "*" "*" "*" " " "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## S.F.Ratio perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " " " " " " "
## 2 ( 1 ) " " "*" " " " "
## 3 ( 1 ) " " "*" "*" " "
## 4 ( 1 ) " " "*" "*" " "
## 5 ( 1 ) " " "*" "*" " "
## 6 ( 1 ) " " "*" "*" "*"
## 7 ( 1 ) " " "*" "*" "*"
## 8 ( 1 ) "*" "*" "*" "*"
## 9 ( 1 ) "*" "*" "*" "*"
## 10 ( 1 ) "*" "*" "*" "*"
## 11 ( 1 ) "*" "*" "*" "*"
## 12 ( 1 ) "*" "*" "*" "*"
## 13 ( 1 ) "*" "*" "*" "*"
## 14 ( 1 ) "*" "*" "*" "*"
## 15 ( 1 ) "*" "*" "*" "*"
## 16 ( 1 ) "*" "*" "*" "*"
## 17 ( 1 ) "*" "*" "*" "*"
par(mfrow=c(2,2))
plot(fwd.summary$adjr2, pch=19, main="Adjusted R2", xlab="Number of Variables Used", ylab="Adjusted R2 Values")
plot(fwd.summary$bic, pch=19, main="BIC", xlab="Number of Variables Used", ylab="BIC")
RMSE=sqrt(fwd.summary$rss/nrow(College.train))
plot(RMSE, pch=19, main="RMSE", xlab="Number of Variables Used", ylab ="RMSE")
plot(fwd.summary$cp, pch=19, main="CP", xlab="Number of Variables Used", ylab="Cp")
BIC.min = which.min(fwd.summary$bic)
RMSE.min = which.min(RMSE)
AdjR2.max = which.max(fwd.summary$adjr2)
Cp.min = which.min(fwd.summary$cp)
BIC.min
## [1] 12
RMSE.min
## [1] 17
AdjR2.max
## [1] 12
Cp.min
## [1] 12
Most of the measures for Model Fitness shows that 12 Variables should be used based on Forward Selection as 12 variables produces the lowest BIC and Cp but highest AdjR2. The variables to be included in the Forward Stepwise Model are: perc.alumni, Expend, Grad.Rate, Terminal, S.F.Ratio, Personal, F.Undergrad, Room.Board, PrivateYes, Apps, Accept, and Top10perc.
coef(College.fwd.selection, id = 12)
## (Intercept) Apps Accept Enroll Top25perc
## 1.620107e+03 -3.828618e-01 1.140728e+00 -2.170808e+00 1.862147e+01
## P.Undergrad Books PhD S.F.Ratio perc.alumni
## 3.738807e-04 1.081745e-01 2.549982e+01 -9.263174e+01 5.889231e+01
## Expend Grad.Rate (Intercept)
## 2.879859e-01 5.499454e+01 0.000000e+00
For fitting the GAM Model, I want to first find the most appropriate degrees of freedom to allow. To find the appropriate degrees of freedom, I will utilize K-Folds Cross-Validation.
coefs <- names(coef(College.fwd.selection, id = 12))
coefs <- coefs[-grep('Intercept', coefs)]
College.gam <- train(x = College.train[,coefs], y = College.train$Outstate,
method = 'gamSpline',
trControl = trainControl(method = 'cv', number = 10),
tuneGrid = expand.grid(df = 1:10))
plot(College.gam)
The above plot shows that the optimal Degrees of Freedom chosen by K-Folds Cross-Validation where K = 10 is d = 3.
postResample(predict(College.gam, College.train), College.train$Outstate)
## RMSE Rsquared MAE
## 1930.8793643 0.7728723 1519.8242102
The GAM Model with d = 3 achieves a Training R-Squared of 0.7728723 or 77.287% which means that 77.287% of the variance in Outstate can be explained by the subset of 12 predictor variables selected by Cross-Validation. Additionally, this GAM Model achieves a RMSE of 1930.8793.
postResample(predict(College.gam, College.test), College.test$Outstate)
## RMSE Rsquared MAE
## 2043.0852754 0.7308196 1581.7833109
On the Test Data Set, the GAM achieves a slightly lower R-Squared and higher RMSE. This is okay considering that model will always perform best on the training data.
summary(College.gam)
##
## Call: (function (formula, family = gaussian, data, weights, subset,
## na.action, start = NULL, etastart, mustart, control = gam.control(...),
## model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, ...)
## {
## call <- match.call()
## if (is.character(family))
## family <- get(family, mode = "function", envir = parent.frame())
## if (is.function(family))
## family <- family()
## if (is.null(family$family)) {
## print(family)
## stop("`family' not recognized")
## }
## if (missing(data))
## data <- environment(formula)
## mf <- match.call(expand.dots = FALSE)
## m <- match(c("formula", "data", "subset", "weights", "etastart",
## "mustart", "offset"), names(mf), 0L)
## mf <- mf[c(1L, m)]
## mf$na.action = quote(na.pass)
## mf$drop.unused.levels <- TRUE
## mf[[1L]] <- quote(stats::model.frame)
## gam.slist <- gam.smoothers()$slist
## mt <- if (missing(data))
## terms(formula, gam.slist)
## else terms(formula, gam.slist, data = data)
## mf$formula <- mt
## mf <- eval(mf, parent.frame())
## if (missing(na.action)) {
## naa = getOption("na.action", "na.fail")
## na.action = get(naa)
## }
## mf = na.action(mf)
## mt = attributes(mf)[["terms"]]
## switch(method, model.frame = return(mf), glm.fit = 1, glm.fit.null = 1,
## stop("invalid `method': ", method))
## Y <- model.response(mf, "any")
## X <- if (!is.empty.model(mt))
## model.matrix(mt, mf, contrasts)
## else matrix(, NROW(Y), 0)
## weights <- model.weights(mf)
## offset <- model.offset(mf)
## if (!is.null(weights) && any(weights < 0))
## stop("Negative wts not allowed")
## if (!is.null(offset) && length(offset) != NROW(Y))
## stop("Number of offsets is ", length(offset), ", should equal ",
## NROW(Y), " (number of observations)")
## mustart <- model.extract(mf, "mustart")
## etastart <- model.extract(mf, "etastart")
## fit <- gam.fit(x = X, y = Y, smooth.frame = mf, weights = weights,
## start = start, etastart = etastart, mustart = mustart,
## offset = offset, family = family, control = control)
## if (length(offset) && attr(mt, "intercept") > 0) {
## fit$null.dev <- glm.fit(x = X[, "(Intercept)", drop = FALSE],
## y = Y, weights = weights, offset = offset, family = family,
## control = control[c("epsilon", "maxit", "trace")],
## intercept = TRUE)$deviance
## }
## if (model)
## fit$model <- mf
## fit$na.action <- attr(mf, "na.action")
## if (x)
## fit$x <- X
## if (!y)
## fit$y <- NULL
## fit <- c(fit, list(call = call, formula = formula, terms = mt,
## data = data, offset = offset, control = control, method = method,
## contrasts = attr(X, "contrasts"), xlevels = .getXlevels(mt,
## mf)))
## class(fit) <- c("Gam", "glm", "lm")
## if (!is.null(fit$df.residual) && !(fit$df.residual > 0))
## warning("Residual degrees of freedom are negative or zero. This occurs when the sum of the parametric and nonparametric degrees of freedom exceeds the number of observations. The model is probably too complex for the amount of data available.")
## fit
## })(formula = .outcome ~ s(perc.alumni, df = 3) + s(PhD, df = 3) +
## s(Grad.Rate, df = 3) + s(Top25perc, df = 3) + s(Books, df = 3) +
## s(S.F.Ratio, df = 3) + s(P.Undergrad, df = 3) + s(Enroll,
## df = 3) + s(Accept, df = 3) + s(Apps, df = 3) + s(Expend,
## df = 3), family = function (link = "identity")
## {
## linktemp <- substitute(link)
## if (!is.character(linktemp))
## linktemp <- deparse(linktemp)
## okLinks <- c("inverse", "log", "identity")
## if (linktemp %in% okLinks)
## stats <- make.link(linktemp)
## else if (is.character(link)) {
## stats <- make.link(link)
## linktemp <- link
## }
## else {
## if (inherits(link, "link-glm")) {
## stats <- link
## if (!is.null(stats$name))
## linktemp <- stats$name
## }
## else {
## stop(gettextf("link \"%s\" not available for gaussian family; available links are %s",
## linktemp, paste(sQuote(okLinks), collapse = ", ")),
## domain = NA)
## }
## }
## structure(list(family = "gaussian", link = linktemp, linkfun = stats$linkfun,
## linkinv = stats$linkinv, variance = function(mu) rep.int(1,
## length(mu)), dev.resids = function(y, mu, wt) wt *
## ((y - mu)^2), aic = function(y, n, mu, wt, dev) {
## nobs <- length(y)
## nobs * (log(dev/nobs * 2 * pi) + 1) + 2 - sum(log(wt))
## }, mu.eta = stats$mu.eta, initialize = expression({
## n <- rep.int(1, nobs)
## if (is.null(etastart) && is.null(start) && is.null(mustart) &&
## ((family$link == "inverse" && any(y == 0)) ||
## (family$link == "log" && any(y <= 0)))) stop("cannot find valid starting values: please specify some")
## mustart <- y
## }), validmu = function(mu) TRUE, valideta = stats$valideta),
## class = "family")
## }, data = structure(list(Apps = c(1660, 2186, 1428, 417, 193,
## 353, 1899, 582, 1732, 2652, 1267, 494, 1420, 4302, 1216, 1130,
## 3540, 713, 619, 12809, 662, 1879, 761, 948, 627, 602, 1690, 261,
## 2496, 990, 6075, 807, 632, 1320, 632, 519, 3466, 878, 202, 1646,
## 805, 500, 6773, 377, 692, 20192, 3356, 9251, 3767, 4186, 367,
## 1436, 392, 7365, 1465, 6548, 2362, 599, 1011, 563, 7811, 4540,
## 1784, 848, 2853, 1747, 100, 8728, 1160, 1096, 1616, 3847, 776,
## 1307, 369, 495, 1283, 4158, 2785, 174, 1013, 959, 342, 81, 880,
## 883, 1196, 1860, 2887, 2174, 689, 1006, 604, 2848, 4856, 1432,
## 4772, 798, 938, 444, 983, 546, 141, 672, 2994, 7117, 2100, 9478,
## 314, 737, 6756, 281, 232, 528, 3035, 440, 2967, 995, 866, 504,
## 585, 2373, 571, 967, 2762, 1994, 3014, 434, 1998, 793, 604, 1011,
## 2153, 700, 13789, 9274, 3330, 2172, 5597, 486, 1422, 2417, 245,
## 3624, 765, 659, 560, 1455, 1339, 1415, 1947, 3306, 291, 1801,
## 553, 804, 5187, 895, 346, 2161, 2464, 1110, 668, 727, 11115,
## 7837, 3793, 348, 3596, 633, 674, 440, 548, 5165, 608, 510, 2491,
## 1202, 3140, 1006, 817, 1006, 467, 1721, 2083, 13865, 1377, 817,
## 823, 920, 922, 7428, 602, 699, 1712, 608, 600, 607, 894, 8681,
## 3050, 268, 735, 4892, 8427, 7259, 11223, 472, 605, 2421, 8474,
## 313, 1005, 5880, 589, 2212, 1456, 355, 361, 2929, 4010, 544,
## 979, 497, 831, 1166, 1386, 6397, 979, 244, 477, 2774, 1154, 787,
## 1660, 810, 1561, 3570, 2747, 1641, 2013, 5996, 2397, 4076, 1891,
## 3579, 1549, 1756, 535, 2939, 740, 874, 1004, 2432, 962, 3073,
## 824, 4731, 499, 478, 941, 1464, 549, 1107, 6411, 1002, 578, 420,
## 2286, 1557, 1981, 1584, 1742, 9239, 6011, 610, 905, 1217, 594,
## 4255, 480, 1310, 601, 2707, 572, 263, 2442, 3708, 586, 882, 1800,
## 279, 368, 325, 1321, 657, 1310, 2519, 2225, 513, 947, 1879, 787,
## 13594, 872, 2220, 1563, 4809, 10634, 1127, 2968, 6040, 11901,
## 5891, 10706, 2729, 616, 12289, 1743, 4778, 2324, 792, 2936, 11023,
## 2190, 758, 776, 4522, 1496, 910, 2308, 8256, 1603, 940, 943,
## 944, 3821, 1538, 692, 404, 1133, 809, 875, 1132, 2405, 1082,
## 13218, 5139, 1025, 3712, 5702, 2088, 1771, 696, 1966, 4996, 3586,
## 587, 484, 2227, 935, 560, 3304, 1777, 434, 48094, 3366, 2307,
## 2095, 1046, 920, 833, 3294, 876, 2248, 700, 335, 1680, 9402,
## 4019, 584, 855, 1183, 4576, 5818, 1003, 1016, 437, 2925, 2807,
## 818, 2540, 4301, 1093, 6118, 1047, 213, 1244, 283, 3713, 372,
## 1489, 1368, 2753, 191, 2643, 1340, 1243, 1334, 651, 861, 450,
## 1557, 1768, 4019, 3646, 13528, 14463, 12512, 7294, 5318, 7888,
## 4877, 8399, 5549, 3150, 2119, 2096, 462, 257, 4414, 1769, 232,
## 14474, 4095, 497, 4345, 845, 759, 5042, 3058, 247, 7033, 626,
## 2267, 3495, 1797, 19873, 15698, 6986, 6348, 6855, 9735, 681,
## 14446, 2974, 927, 576, 2096, 12445, 11220, 5081, 3580, 14939,
## 8579, 441, 461, 14292, 14438, 3347, 19152, 4192, 1458, 11054,
## 3844, 6574, 1618, 452, 1351, 1209, 9750, 1757, 14596, 5191, 6071,
## 2777, 1800, 4418, 5530, 7700, 4743, 8631, 12394, 1758, 4044,
## 9643, 5892, 8766, 2306, 285, 848, 7693, 7589, 12229, 2379, 2850,
## 7473, 3281, 14752, 4217, 974, 2459, 1712, 5095, 7663, 15849,
## 12749, 1558, 2593, 910, 4400, 14901, 5244, 2029, 663, 1399, 325,
## 2075, 7791, 7759, 2996, 15712, 1847, 647, 1465, 800, 1416, 5661,
## 1092, 440, 1231, 1305, 3315, 1209, 6540, 7654, 1373, 1190, 280,
## 665, 1480, 4772, 6502, 1164, 1566, 3224, 1205, 9167, 1650, 2702,
## 5548, 3100, 662, 950, 1432, 1738, 903, 1861, 1681, 1121, 2139,
## 1631, 1658, 469, 167, 3325, 2320, 152, 2768, 2197, 1959, 2097,
## 10705, 2989), Accept = c(1232, 1924, 1097, 349, 146, 340, 1720,
## 498, 1425, 1900, 1080, 313, 1093, 992, 908, 704, 2001, 661, 516,
## 10308, 513, 1658, 725, 798, 556, 483, 1366, 192, 1402, 784, 5349,
## 707, 494, 923, 620, 327, 2330, 816, 184, 1150, 588, 336, 3028,
## 358, 514, 13007, 1019, 7333, 3414, 2743, 274, 1228, 351, 5402,
## 810, 3813, 2037, 494, 604, 247, 3817, 3294, 1512, 587, 2193,
## 1382, 90, 5201, 991, 951, 1427, 3433, 607, 1090, 312, 434, 1113,
## 2532, 2011, 146, 888, 771, 254, 72, 520, 766, 697, 767, 2059,
## 1953, 561, 742, 452, 1319, 2492, 888, 3140, 620, 864, 359, 664,
## 447, 118, 596, 1691, 3106, 1883, 6312, 158, 614, 1930, 266, 216,
## 403, 1546, 407, 2836, 789, 619, 482, 508, 956, 461, 945, 2279,
## 1656, 2539, 412, 1376, 709, 562, 829, 1580, 650, 3893, 6362,
## 2730, 1493, 4253, 440, 1109, 1843, 208, 2786, 646, 557, 454,
## 1064, 1107, 714, 1580, 2079, 245, 1655, 452, 632, 4471, 548,
## 274, 1951, 1908, 930, 534, 693, 2881, 4527, 2341, 281, 2466,
## 468, 565, 396, 428, 3887, 494, 387, 1110, 1054, 1783, 825, 644,
## 837, 424, 1068, 1725, 2165, 572, 708, 721, 745, 729, 5860, 498,
## 565, 1483, 520, 197, 558, 787, 6695, 1342, 253, 423, 3530, 7424,
## 5526, 5285, 410, 405, 2109, 3446, 228, 859, 4075, 575, 1538,
## 1053, 300, 321, 1834, 2402, 399, 638, 452, 538, 1009, 1060, 4304,
## 743, 198, 417, 2092, 1050, 562, 1091, 484, 1188, 2215, 1870,
## 1283, 1053, 4993, 2144, 3137, 1698, 2959, 1392, 1500, 502, 1496,
## 558, 758, 802, 1730, 750, 2672, 670, 3171, 441, 327, 772, 888,
## 397, 859, 2140, 555, 411, 293, 1668, 1074, 1541, 1456, 1382,
## 7788, 3075, 461, 834, 1088, 385, 3277, 405, 983, 503, 1881, 544,
## 223, 2164, 1678, 533, 730, 1314, 276, 317, 284, 1159, 537, 1086,
## 1836, 1910, 347, 798, 1216, 601, 7244, 722, 1796, 1005, 3089,
## 7064, 884, 2297, 4577, 8492, 4931, 7219, 2535, 514, 5200, 1625,
## 2767, 1319, 649, 2342, 8298, 1700, 681, 765, 3913, 1205, 773,
## 1336, 3750, 1392, 668, 849, 774, 2037, 1259, 576, 400, 630, 687,
## 744, 847, 2234, 832, 2042, 3346, 707, 2153, 4894, 957, 1325,
## 616, 1436, 4165, 2424, 501, 386, 1790, 858, 392, 2804, 1151,
## 321, 26330, 1752, 1896, 1553, 824, 684, 682, 2855, 802, 1673,
## 595, 284, 1395, 7020, 2779, 413, 632, 1016, 3565, 3281, 782,
## 872, 400, 1598, 2589, 700, 2195, 3455, 1093, 5254, 938, 155,
## 912, 201, 1237, 362, 1313, 1064, 1820, 165, 1611, 695, 1020,
## 1243, 581, 609, 405, 1227, 1249, 1579, 2300, 9198, 6166, 6969,
## 3564, 3515, 3519, 2798, 3609, 3583, 2289, 1264, 1512, 402, 183,
## 1500, 1092, 182, 10519, 3079, 423, 3245, 734, 729, 2312, 1798,
## 189, 5125, 372, 1827, 1712, 1260, 8252, 10775, 2959, 2999, 5553,
## 7187, 588, 10516, 2001, 731, 558, 1626, 8836, 7871, 4040, 2603,
## 11652, 5561, 369, 381, 10315, 12414, 2597, 12940, 3126, 874,
## 6397, 3383, 4637, 1141, 331, 892, 750, 7640, 979, 5985, 4134,
## 3856, 2249, 1253, 2737, 4007, 3700, 3970, 6732, 5232, 1485, 2826,
## 7751, 2718, 5498, 1721, 280, 560, 5815, 4676, 8498, 2133, 2044,
## 5372, 2559, 9572, 3100, 704, 1997, 1557, 4491, 6008, 5384, 7025,
## 1254, 1966, 910, 3719, 10932, 3782, 1516, 452, 1026, 260, 1727,
## 4690, 5588, 2440, 11719, 1610, 518, 1006, 623, 1015, 2392, 890,
## 311, 1074, 1100, 1096, 942, 5839, 5259, 1373, 978, 143, 462,
## 1257, 1973, 3539, 1062, 1400, 2519, 984, 7191, 1471, 1623, 3563,
## 2150, 553, 713, 920, 1373, 755, 998, 1069, 926, 1492, 1431, 1327,
## 435, 130, 2047, 1805, 128, 2314, 1515, 1805, 1915, 2453, 1855
## ), Enroll = c(721, 512, 336, 137, 55, 103, 489, 172, 472, 484,
## 385, 157, 220, 418, 423, 322, 1016, 252, 219, 3761, 257, 497,
## 306, 295, 172, 206, 662, 111, 531, 279, 2367, 308, 129, 284,
## 222, 114, 640, 200, 122, 542, 287, 156, 1025, 181, 209, 3810,
## 418, 3076, 1061, 740, 158, 1202, 155, 4615, 313, 862, 700, 224,
## 213, 247, 1650, 1483, 913, 298, 753, 449, 35, 1191, 352, 464,
## 434, 527, 198, 616, 90, 210, 401, 902, 1007, 88, 288, 351, 126,
## 51, 224, 428, 499, 227, 457, 557, 250, 275, 295, 456, 727, 317,
## 1265, 238, 511, 122, 249, 189, 55, 278, 659, 1217, 553, 2194,
## 132, 242, 871, 139, 106, 186, 438, 149, 876, 398, 157, 185, 153,
## 452, 174, 459, 533, 495, 487, 319, 651, 244, 328, 410, 321, 314,
## 1583, 2435, 1303, 564, 1565, 227, 366, 426, 125, 858, 226, 167,
## 113, 452, 336, 338, 523, 1071, 126, 819, 228, 281, 446, 314,
## 146, 685, 678, 332, 237, 286, 1390, 2276, 1238, 127, 575, 284,
## 282, 221, 167, 1561, 176, 194, 573, 326, 454, 328, 307, 317,
## 350, 806, 430, 1606, 178, 262, 274, 347, 244, 1349, 215, 176,
## 624, 127, 124, 269, 262, 2408, 471, 103, 366, 913, 3441, 1368,
## 2082, 262, 284, 820, 911, 137, 298, 2833, 148, 408, 381, 142,
## 185, 622, 572, 177, 271, 231, 224, 510, 320, 1092, 259, 82, 204,
## 482, 395, 363, 326, 356, 458, 651, 724, 527, 212, 3079, 1525,
## 738, 719, 868, 587, 366, 223, 452, 177, 428, 239, 563, 212, 1547,
## 337, 830, 199, 117, 214, 176, 169, 323, 1078, 119, 187, 93, 564,
## 397, 514, 891, 607, 3290, 960, 189, 319, 496, 307, 1609, 380,
## 316, 204, 478, 320, 103, 1189, 722, 239, 330, 526, 126, 159,
## 95, 328, 113, 458, 462, 1190, 279, 266, 483, 233, 2505, 154,
## 467, 240, 1429, 3176, 308, 1610, 1620, 2517, 1973, 2397, 1257,
## 385, 1902, 626, 678, 370, 186, 669, 3183, 458, 484, 351, 2181,
## 428, 450, 295, 1522, 504, 385, 288, 440, 680, 468, 174, 169,
## 220, 428, 207, 302, 1061, 302, 1153, 973, 297, 806, 1742, 362,
## 306, 169, 327, 936, 730, 211, 141, 437, 345, 270, 679, 382, 141,
## 4520, 232, 509, 514, 284, 225, 217, 956, 367, 745, 278, 132,
## 691, 2151, 888, 131, 139, 411, 1000, 1116, 295, 300, 211, 632,
## 1701, 447, 994, 1166, 642, 3204, 511, 75, 352, 97, 443, 181,
## 375, 354, 505, 63, 465, 285, 414, 568, 243, 215, 194, 489, 380,
## 710, 585, 1843, 1757, 1724, 904, 1025, 1036, 814, 656, 853, 650,
## 390, 465, 146, 109, 335, 437, 99, 6392, 1195, 215, 2604, 254,
## 244, 944, 478, 100, 1223, 145, 611, 528, 938, 3215, 2478, 1918,
## 922, 2408, 2064, 246, 3252, 580, 415, 137, 694, 3623, 3320, 1194,
## 1627, 5705, 3681, 172, 235, 3409, 3816, 1006, 4893, 1656, 588,
## 3524, 1669, 2940, 479, 269, 570, 265, 2529, 394, 3331, 1500,
## 1449, 1652, 560, 2049, 1697, 1906, 2233, 2546, 2464, 419, 688,
## 1968, 756, 1243, 538, 208, 377, 2328, 1876, 2477, 1292, 1046,
## 3013, 1448, 5329, 1686, 290, 582, 696, 2400, 1735, 2678, 3343,
## 472, 1030, 342, 1472, 4631, 1930, 1073, 192, 308, 86, 520, 1499,
## 1477, 704, 4277, 453, 271, 188, 256, 417, 903, 477, 112, 345,
## 334, 425, 214, 2440, 1254, 724, 324, 79, 226, 452, 712, 1372,
## 478, 483, 1057, 278, 2738, 409, 604, 1549, 825, 184, 351, 548,
## 417, 213, 359, 344, 372, 502, 434, 395, 227, 46, 1301, 769, 75,
## 682, 543, 695, 695, 1317, 691), Top25perc = c(52, 29, 50, 89,
## 44, 45, 68, 44, 75, 77, 73, 46, 22, 96, 40, 23, 54, 44, 51, 49,
## 30, 69, 58, 74, 40, 47, 61, 36, 95, 45, 66, 63, 36, 54, 24, 53,
## 60, 41, 42, 30, 88, 55, 55, 30, 50, 80, 100, 45, 58, 77, 41,
## 26, 44, 82, 95, 85, 68, 28, 42, 52, 73, 60, 56, 55, 34, 66, 52,
## 89, 55, 62, 43, 35, 58, 55, 46, 55, 65, 24, 65, 29, 82, 48, 64,
## 71, 42, 37, 47, 93, 61, 68, 30, 60, 47, 84, 75, 58, 55, 41, 62,
## 53, 57, 42, 21, 60, 95, 88, 65, 65, 28, 67, 96, 29, 34, 56, 93,
## 70, 60, 47, 47, 36, 30, 96, 26, 48, 60, 80, 68, 30, 88, 47, 50,
## 33, 84, 66, 98, 44, 36, 50, 38, 48, 65, 70, 46, 39, 60, 74, 56,
## 16, 36, 52, 74, 89, 49, 38, 49, 72, 14, 54, 87, 82, 57, 36, 39,
## 55, 93, 99, 24, 52, 78, 27, 54, 51, 46, 60, 31, 46, 88, 44, 82,
## 73, 40, 65, 40, 75, 49, 100, 100, 52, 87, 66, 66, 63, 58, 64,
## 69, 47, 9, 47, 63, 35, 86, 44, 48, 33, 59, 52, 72, 41, 53, 57,
## 94, 30, 55, 55, 40, 75, 45, 65, 41, 56, 59, 35, 70, 47, 35, 33,
## 56, 84, 46, 33, 54, 64, 31, 55, 41, 33, 72, 41, 47, 39, 61, 57,
## 45, 54, 80, 55, 72, 21, 20, 86, 29, 46, 63, 63, 54, 29, 41, 31,
## 52, 34, 30, 52, 51, 51, 99, 43, 50, 32, 70, 40, 36, 18, 64, 39,
## 60, 52, 61, 69, 57, 57, 46, 35, 57, 34, 72, 24, 37, 66, 36, 13,
## 79, 37, 49, 33, 36, 90, 61, 61, 55, 48, 68, 62, 73, 86, 36, 99,
## 19, 33, 78, 64, 47, 72, 42, 48, 37, 29, 52, 98, 29, 89, 81, 87,
## 62, 54, 65, 59, 44, 57, 57, 73, 46, 70, 68, 48, 71, 34, 96, 42,
## 50, 48, 73, 43, 38, 89, 22, 63, 98, 55, 66, 45, 37, 29, 46, 66,
## 80, 82, 31, 52, 28, 54, 50, 31, 20, 55, 53, 79, 79, 51, 40, 45,
## 42, 33, 67, 35, 73, 35, 69, 76, 70, 73, 51, 83, 82, 36, 53, 53,
## 57, 35, 88, 37, 50, 40, 69, 32, 37, 33, 66, 77, 45, 83, 32, 45,
## 51, 56, 25, 80, 73, 60, 56, 17, 27, 34, 69, 93, 65, 69, 61, 94,
## 66, 34, 29, 40, 48, 53, 40, 51, 33, 59, 68, 41, 60, 80, 29, 85,
## 64, 57, 85, 21, 81, 94, 84, 49, 75, 34, 59, 84, 35, 100, 100,
## 60, 94, 57, 63, 74, 57, 60, 50, 39, 67, 85, 79, 26, 69, 88, 50,
## 45, 40, 53, 39, 37, 92, 45, 86, 55, 47, 62, 54, 54, 78, 54, 62,
## 74, 92, 44, 67, 54, 85, 51, 37, 96, 63, 61, 100, 58, 83, 40,
## 72, 75, 48, 43, 24, 66, 63, 71, 25, 50, 53, 43, 85, 46, 22, 66,
## 68, 53, 51, 95, 81, 57, 32, 53, 38, 80, 37, 46, 35, 77, 47, 81,
## 92, 68, 30, 53, 59, 43, 30, 76, 44, 88, 92, 49, 66, 64, 93, 60,
## 70, 93, 21, 30, 27, 44, 25, 86, 51, 25, 55, 31, 50, 53, 21, 24,
## 71, 20, 43, 72, 84, 55, 49, 77, 63, 70, 64, 36, 80, 39, 50, 45,
## 61, 41, 86, 26, 47, 61, 99, 63), P.Undergrad = c(537, 1227, 99,
## 63, 869, 230, 32, 78, 110, 44, 28, 1235, 287, 5, 281, 326, 1512,
## 23, 767, 7585, 726, 38, 300, 15, 538, 466, 1460, 266, 69, 3144,
## 484, 605, 131, 81, 501, 2, 1533, 62, 101, 82, 207, 27, 946, 129,
## 81, 3113, 8, 1213, 643, 62, 479, 822, 430, 1253, 16, 31, 148,
## 446, 868, 432, 1404, 1254, 136, 184, 434, 960, 331, 291, 737,
## 239, 580, 12, 764, 82, 526, 44, 40, 3881, 898, 33, 7, 209, 232,
## 3, 364, 1749, 13, 1, 296, 53, 422, 205, 222, 35, 25, 493, 1200,
## 1232, 103, 968, 894, 683, 173, 275, 22, 134, 1, 1829, 5346, 237,
## 55, 181, 172, 145, 232, 80, 644, 122, 336, 84, 536, 6, 283, 538,
## 14, 36, 62, 237, 45, 411, 56, 2458, 87, 48, 53, 1687, 2640, 1531,
## 845, 59, 23, 299, 436, 334, 32, 35, 16, 617, 82, 44, 233, 9310,
## 337, 436, 242, 68, 1197, 50, 63, 175, 691, 374, 258, 48, 406,
## 654, 9054, 785, 46, 963, 39, 166, 113, 2619, 314, 53, 35, 299,
## 24, 102, 1, 15, 334, 213, 67, 320, 5, 37, 6, 42, 275, 1350, 74,
## 399, 208, 126, 69, 519, 28, 1823, 23, 1305, 707, 1446, 1715,
## 166, 742, 71, 99, 392, 1569, 67, 43, 2246, 258, 1, 541, 44, 819,
## 1662, 226, 363, 20, 1957, 325, 341, 502, 132, 166, 336, 77, 59,
## 1423, 605, 33, 191, 840, 325, 118, 170, 158, 3757, 1822, 184,
## 761, 3417, 85, 280, 150, 113, 63, 246, 51, 254, 150, 1792, 653,
## 658, 377, 370, 776, 128, 1751, 402, 28, 684, 477, 80, 1260, 433,
## 1084, 911, 53, 807, 1532, 49, 179, 884, 721, 1621, 1014, 175,
## 11, 847, 416, 20, 1075, 153, 228, 12, 40, 435, 542, 88, 79, 466,
## 144, 352, 955, 505, 471, 1646, 411, 2814, 36, 334, 136, 871,
## 5481, 766, 1128, 266, 10221, 2682, 1979, 472, 60, 45, 382, 120,
## 35, 377, 66, 1310, 48, 705, 228, 1658, 936, 61, 942, 4379, 302,
## 139, 35, 529, 625, 1042, 83, 100, 30, 217, 1402, 214, 448, 30,
## 146, 1358, 72, 714, 472, 1938, 27, 56, 61, 16, 1309, 28, 1196,
## 239, 754, 118, 1489, 1052, 269, 3712, 1300, 1889, 94, 451, 222,
## 2196, 1140, 118, 105, 182, 216, 402, 5550, 128, 99, 7, 704, 1530,
## 300, 160, 602, 271, 95, 1103, 651, 2550, 387, 967, 3374, 546,
## 147, 43, 263, 107, 353, 131, 677, 45, 574, 248, 209, 418, 95,
## 34, 815, 388, 81, 11, 765, 926, 1231, 671, 1351, 1363, 2091,
## 346, 298, 1478, 475, 234, 1441, 166, 41, 38, 119, 81, 237, 2798,
## 660, 429, 3101, 351, 51, 902, 244, 639, 1534, 40, 144, 123, 4698,
## 2061, 864, 7152, 39, 2011, 1660, 73, 4522, 554, 2217, 131, 407,
## 3286, 2748, 1415, 2411, 911, 1673, 317, 503, 3991, 1940, 1630,
## 1339, 1254, 154, 21836, 804, 1583, 4552, 301, 331, 159, 1338,
## 1078, 1100, 1847, 1145, 1435, 3588, 5134, 1498, 30, 2582, 1605,
## 531, 174, 138, 2456, 594, 438, 549, 473, 1412, 3661, 10962, 1429,
## 2973, 1387, 3237, 8431, 5189, 5457, 39, 299, 433, 8374, 1674,
## 114, 4582, 2477, 579, 417, 1552, 2200, 7443, 1488, 1160, 17,
## 717, 198, 90, 1292, 338, 604, 67, 387, 20, 5, 117, 172, 497,
## 7, 105, 151, 3, 46, 1344, 1274, 474, 61, 110, 1550, 572, 27,
## 1904, 227, 170, 706, 98, 4278, 1116, 146, 506, 941, 37, 9, 56,
## 30, 305, 46, 30, 160, 2171, 603, 159, 120, 676, 872, 670, 22,
## 86, 2029, 1107, 166, 83, 1726), Books = c(450, 750, 400, 450,
## 800, 500, 450, 660, 500, 400, 400, 650, 450, 660, 550, 900, 500,
## 400, 350, 700, 540, 540, 600, 400, 750, 400, 1000, 500, 600,
## 600, 600, 750, 300, 355, 350, 600, 630, 550, 500, 650, 400, 500,
## 500, 450, 400, 475, 1495, 600, 2000, 410, 500, 500, 600, 860,
## 500, 800, 500, 300, 425, 612, 612, 600, 400, 600, 400, 500, 300,
## 450, 480, 400, 500, 600, 500, 570, 500, 600, 650, 500, 654, 600,
## 600, 600, 700, 400, 600, 525, 500, 500, 500, 700, 600, 500, 400,
## 500, 500, 550, 666, 400, 500, 380, 800, 600, 450, 450, 400, 600,
## 500, 470, 400, 500, 550, 450, 450, 400, 600, 500, 650, 400, 680,
## 450, 500, 600, 400, 500, 500, 550, 595, 600, 500, 400, 450, 450,
## 520, 500, 625, 500, 600, 650, 120, 600, 600, 500, 450, 490, 700,
## 475, 330, 350, 500, 500, 750, 800, 350, 400, 600, 525, 500, 600,
## 630, 600, 500, 500, 500, 550, 670, 795, 720, 500, 500, 531, 400,
## 600, 300, 500, 550, 400, 525, 450, 300, 450, 660, 500, 700, 700,
## 500, 500, 700, 500, 500, 400, 400, 1000, 500, 450, 465, 500,
## 600, 650, 600, 537, 400, 500, 700, 570, 640, 634, 500, 400, 400,
## 600, 500, 500, 450, 600, 500, 750, 400, 600, 600, 450, 600, 750,
## 920, 500, 600, 528, 400, 750, 400, 550, 600, 450, 500, 600, 350,
## 1000, 500, 225, 550, 500, 500, 600, 618, 600, 600, 700, 600,
## 450, 500, 500, 550, 450, 525, 500, 450, 450, 500, 550, 600, 575,
## 500, 500, 425, 600, 725, 500, 400, 600, 400, 425, 375, 540, 475,
## 500, 450, 550, 550, 1000, 600, 480, 600, 400, 400, 530, 550,
## 500, 600, 250, 500, 850, 750, 500, 500, 500, 550, 630, 400, 600,
## 700, 650, 550, 700, 600, 450, 500, 450, 500, 600, 600, 450, 600,
## 400, 600, 620, 470, 250, 450, 759, 500, 575, 558, 600, 600, 550,
## 550, 515, 500, 800, 420, 500, 616, 660, 600, 630, 450, 550, 500,
## 600, 600, 500, 650, 800, 400, 436, 598, 554, 675, 450, 450, 1000,
## 500, 600, 400, 370, 500, 1230, 700, 350, 600, 450, 500, 600,
## 500, 955, 550, 690, 690, 400, 450, 400, 600, 500, 800, 400, 550,
## 500, 500, 569, 612, 630, 500, 600, 600, 650, 450, 500, 550, 500,
## 500, 500, 450, 221, 576, 400, 500, 600, 550, 600, 600, 660, 385,
## 500, 400, 650, 300, 630, 675, 700, 425, 600, 500, 450, 600, 450,
## 711, 480, 700, 700, 600, 500, 550, 630, 620, 550, 600, 500, 1125,
## 400, 500, 400, 1000, 450, 400, 600, 650, 490, 600, 600, 500,
## 700, 500, 500, 350, 450, 600, 450, 750, 636, 790, 700, 500, 556,
## 700, 500, 530, 400, 600, 400, 700, 630, 525, 500, 687, 500, 700,
## 600, 400, 550, 500, 500, 476, 753, 600, 714, 600, 600, 500, 550,
## 300, 900, 650, 600, 550, 600, 500, 450, 600, 450, 540, 600, 765,
## 570, 500, 600, 630, 500, 700, 500, 750, 600, 500, 495, 500, 600,
## 500, 500, 750, 500, 650, 452, 1300, 646, 1200, 858, 500, 500,
## 708, 541, 376, 550, 300, 535, 570, 600, 500, 500, 450, 500, 630,
## 400, 500, 740, 500, 500, 500, 500, 585, 500, 500, 400, 400, 300,
## 680, 500, 800, 768, 540, 500, 650, 500, 850, 1400, 400, 600,
## 450, 110, 500, 500, 498, 500, 639, 500, 600, 490, 530, 700, 600,
## 750, 500, 678, 500, 550, 400, 550, 450, 300, 580, 500, 530, 500,
## 600, 617, 630, 500), PhD = c(70, 29, 53, 92, 76, 90, 89, 40,
## 82, 73, 79, 36, 78, 93, 48, 62, 60, 69, 55, 88, 65, 78, 66, 81,
## 59, 58, 68, 57, 83, 76, 71, 74, 78, 87, 64, 35, 87, 62, 61, 48,
## 74, 76, 66, 61, 76, 80, 93, 81, 75, 90, 71, 62, 39, 76, 100,
## 95, 77, 59, 87, 72, 72, 90, 75, 62, 90, 64, 10, 86, 74, 61, 74,
## 22, 58, 50, 41, 86, 76, 69, 67, 62, 95, 72, 71, 92, 81, 80, 69,
## 99, 94, 95, 67, 73, 64, 83, 95, 56, 73, 46, 70, 68, 66, 40, 53,
## 54, 92, 89, 84, 87, 87, 61, 97, 69, 67, 56, 86, 63, 85, 42, 68,
## 46, 61, 95, 58, 49, 88, 78, 87, 50, 52, 67, 61, 77, 93, 82, 95,
## 74, 73, 71, 62, 46, 82, 65, 71, 70, 79, 76, 62, 75, 53, 52, 90,
## 81, 45, 76, 57, 54, 50, 68, 59, 92, 47, 65, 67, 73, 91, 92, 87,
## 56, 94, 25, 73, 51, 53, 64, 64, 57, 65, 78, 91, 89, 95, 84, 75,
## 71, 75, 97, 100, 57, 82, 80, 75, 81, 78, 82, 72, 63, 31, 81,
## 75, 77, 77, 56, 49, 66, 81, 58, 77, 51, 68, 89, 96, 34, 97, 76,
## 63, 95, 66, 65, 57, 90, 93, 77, 91, 49, 61, 67, 84, 96, 88, 71,
## 58, 97, 36, 67, 71, 65, 89, 47, 74, 61, 64, 83, 66, 86, 77, 94,
## 73, 62, 48, 85, 49, 42, 63, 92, 97, 57, 37, 74, 66, 71, 77, 80,
## 52, 65, 99, 70, 57, 54, 93, 45, 73, 48, 68, 81, 72, 63, 82, 35,
## 77, 77, 49, 35, 91, 70, 71, 42, 76, 71, 48, 53, 79, 45, 44, 32,
## 77, 53, 85, 76, 72, 62, 77, 92, 99, 87, 57, 68, 65, 72, 92, 73,
## 79, 69, 73, 78, 73, 62, 59, 96, 71, 77, 91, 91, 73, 79, 93, 63,
## 58, 84, 62, 63, 56, 90, 78, 48, 76, 77, 95, 48, 58, 48, 100,
## 71, 45, 90, 55, 80, 91, 66, 69, 63, 73, 74, 77, 88, 90, 94, 84,
## 87, 59, 85, 60, 56, 44, 81, 79, 90, 90, 71, 70, 64, 55, 53, 84,
## 68, 82, 62, 68, 74, 87, 88, 51, 95, 83, 81, 80, 74, 66, 73, 85,
## 62, 55, 76, 74, 52, 70, 58, 56, 83, 50, 73, 48, 91, 86, 90, 43,
## 88, 84, 82, 74, 45, 69, 46, 85, 89, 78, 79, 93, 83, 91, 79, 71,
## 82, 82, 85, 80, 71, 80, 83, 91, 55, 56, 60, 59, 89, 81, 54, 65,
## 59, 81, 81, 91, 89, 98, 70, 70, 94, 96, 93, 96, 80, 99, 89, 89,
## 85, 82, 84, 72, 85, 60, 88, 88, 61, 85, 87, 88, 46, 67, 89, 88,
## 74, 90, 79, 74, 88, 81, 87, 71, 59, 72, 72, 89, 77, 88, 75, 82,
## 97, 82, 86, 75, 96, 86, 79, 95, 92, 79, 84, 75, 93, 86, 67, 62,
## 84, 84, 90, 56, 78, 86, 73, 91, 94, 16, 87, 94, 89, 87, 90, 96,
## 83, 78, 75, 90, 93, 79, 91, 69, 82, 39, 87, 93, 89, 61, 85, 51,
## 51, 43, 78, 67, 95, 42, 65, 66, 91, 81, 79, 84, 91, 60, 57, 53,
## 68, 10, 90, 76, 33, 58, 67, 84, 80, 74, 76, 83, 75, 66, 77, 81,
## 92, 66, 80, 84, 80, 88, 78, 91, 39, 67, 53, 71, 48, 92, 60, 73,
## 67, 96, 75), S.F.Ratio = c(18.1, 12.2, 12.9, 7.7, 11.9, 11.5,
## 13.7, 11.5, 11.3, 9.9, 15.3, 11.1, 14.7, 8.4, 12.1, 11.5, 23.1,
## 11.3, 12.7, 18.9, 12.8, 12.7, 10.4, 13, 22.4, 11, 17.6, 9.7,
## 10.3, 12.6, 18.5, 13.1, 13.2, 11.1, 14.1, 10.1, 17.5, 11.6, 8.8,
## 13.8, 14, 14.3, 18, 17.8, 13.3, 11.9, 11.2, 21.1, 14.4, 9.8,
## 13.7, 12.6, 13.1, 20.5, 12.3, 14.2, 10.9, 16.5, 13.9, 12.4, 19.8,
## 21.2, 14.8, 17.7, 14.6, 12.1, 12.1, 9.2, 17.8, 13.6, 15.9, 14.3,
## 11.7, 15.3, 9.5, 11.3, 13.5, 16.7, 18.1, 15.2, 11.4, 12.8, 8.3,
## 9.3, 11.1, 21.2, 16.9, 9.6, 10.5, 15.8, 18.1, 12.7, 12.1, 10.2,
## 10.5, 12.9, 17.2, 11.1, 13.1, 11.4, 14.3, 14, 9.5, 11.6, 11.3,
## 12.1, 11.1, 19.2, 15.3, 14.7, 5.9, 12.8, 12.1, 12.1, 10.7, 10.2,
## 6.5, 13, 14.6, 12.6, 22.2, 12, 12.8, 17.1, 11.6, 11.1, 11.2,
## 16.5, 14.1, 15.1, 12.5, 12.4, 10.2, 13.2, 5, 13.2, 14, 16.9,
## 16.2, 11.4, 12.8, 12.8, 11.3, 18.9, 13.9, 13.5, 10.6, 15.1, 12.5,
## 18.1, 10.6, 13.9, 21.5, 19.1, 14.9, 12.5, 17.6, 16.1, 10.5, 13.5,
## 13.3, 15.2, 20.1, 13.3, 7.2, 19.3, 19, 12.2, 12.1, 27.6, 14.2,
## 9.9, 15.3, 20.6, 13, 14.3, 18.4, 15.6, 9.6, 13, 13.3, 10.6, 13.7,
## 17.7, 12.3, 9.9, 8.2, 13, 13.1, 12, 10.6, 13.9, 11.1, 14.4, 12.5,
## 11.4, 12.9, 11.6, 15.6, 21, 12.9, 11.2, 39.8, 16, 19.2, 11.5,
## 17.9, 17, 13.3, 14.5, 3.3, 10.6, 12.7, 18.5, 12.4, 11.1, 15.6,
## 10.7, 14.2, 15.1, 10.5, 12.5, 10.7, 17.2, 16.1, 17, 12.3, 12.5,
## 12, 27.8, 20.8, 12.3, 14.3, 14.6, 12.6, 24.1, 17.8, 16.1, 18.4,
## 14.2, 10.5, 15.9, 20, 14.7, 11.7, 6.2, 13.8, 12.4, 12.6, 11.9,
## 10.8, 17.6, 11.8, 13.6, 11.3, 19, 8.4, 17.6, 6.8, 10.3, 10.6,
## 11.1, 13.1, 11.8, 10.1, 17.7, 11, 9.8, 9.2, 16.7, 16.8, 28.8,
## 14.1, 17.6, 16.8, 12, 12.7, 16.7, 16.5, 15.9, 15.8, 17.4, 11.6,
## 14.2, 16.4, 11.1, 18.1, 17.8, 13, 18.6, 9, 11.7, 11.3, 13.6,
## 12.8, 11.9, 16.7, 12.8, 20.2, 18.3, 13.6, 13.5, 13.7, 7.8, 11.4,
## 14.2, 14.2, 16.7, 17.5, 16.4, 17, 15.7, 12.9, 21.7, 17.3, 21.7,
## 14.8, 6.8, 13.1, 10.1, 10.5, 13.1, 14.5, 20.4, 12.1, 15.1, 16.2,
## 15.3, 13.9, 13.3, 14.9, 13.8, 11, 12.3, 10.9, 15, 11.6, 12.9,
## 11.6, 13.4, 10.4, 16.1, 14.5, 10.4, 19.4, 13.4, 8.4, 18.4, 16.3,
## 12, 19.6, 17.8, 10.7, 9.2, 11.8, 15.4, 12.3, 9.4, 12.2, 13, 10.7,
## 11.3, 16.4, 13.3, 12.9, 19.5, 18.6, 14.8, 14.5, 19.3, 14.8, 27.2,
## 4.6, 18.8, 10, 12.3, 11.2, 14.7, 19.5, 13.9, 11.8, 8.2, 16.8,
## 14.4, 18.8, 8.9, 15.8, 14.8, 10.3, 15, 19.6, 16.5, 13.5, 15.9,
## 19.9, 16.5, 11.8, 11.3, 10.6, 12.5, 15.4, 17.7, 14.5, 11.5, 14.5,
## 16.1, 11.6, 16.2, 15.1, 14, 16.1, 10.9, 12.5, 19, 19.5, 13, 17.4,
## 18, 10.5, 19, 18.7, 17.8, 16.3, 15.3, 17.9, 15.1, 14.9, 13.9,
## 6.5, 10, 15.5, 14.2, 8.9, 23.1, 14.8, 13.8, 18.2, 19, 12.1, 14.4,
## 10.4, 8.3, 9.1, 21.9, 12.2, 11.5, 6.7, 15.8, 16.1, 22.2, 5.3,
## 10.8, 16, 13.4, 18.3, 15.9, 13.5, 16.5, 15.8, 13.4, 14.7, 10.7,
## 11.8, 17.4, 13.7, 15.1, 15.2, 18.1, 16.7, 15, 11.5, 19, 14.6,
## 12.2, 20.3, 12.7, 13.4, 16.6, 18.9, 11.4, 17.5, 13, 8.9, 15.5,
## 19.1, 15.9, 17.8, 22.6, 21.5, 13.1, 11.5, 19.7, 6.3, 13.2, 15,
## 16.6, 11.7, 5.9, 13.6, 23.6, 14.8, 16.9, 17, 11.4, 22, 18.7,
## 16.5, 21, 19.7, 25.3, 7.5, 11.2, 11.5, 12.8, 9.9, 9.5, 9, 23.4,
## 21, 15.2, 23.1, 11.5, 15.9, 15.1, 17.4, 11.6, 10.5, 14.2, 5.8,
## 13.4, 16, 13.8, 13.7, 10.7, 22.9, 9.9, 13.2, 4.3, 11.3, 11.4,
## 12.4, 12.1, 9.6, 11.2, 16.9, 3.9, 20.3, 16.2, 15.1, 20.6, 15.4,
## 12.1, 15.3, 16.3, 16.4, 14.6, 12.5, 24.7, 15.4, 19.4, 22.7, 15.7,
## 12.5, 14.9, 12.7, 13.2, 14.1, 10.5, 13.6, 16.9, 12.6, 13.3, 13.3,
## 12.9, 8.3, 20.2, 12.8, 8.5, 15.2, 21, 13.3, 14.4, 5.8, 18.1),
## perc.alumni = c(12, 16, 30, 37, 2, 26, 37, 15, 31, 41, 32,
## 26, 19, 63, 14, 18, 5, 35, 25, 5, 31, 40, 30, 33, 11, 21,
## 20, 35, 33, 11, 38, 31, 10, 26, 18, 33, 20, 29, 32, 9, 34,
## 53, 19, 3, 19, 16, 52, 14, 21, 24, 12, 10, 26, 40, 49, 36,
## 29, 36, 25, 17, 13, 8, 41, 13, 26, 27, 24, 31, 25, 16, 22,
## 20, 39, 34, 20, 25, 29, 4, 0, 18, 60, 6, 29, 17, 24, 16,
## 31, 52, 35, 32, 9, 32, 39, 41, 45, 23, 18, 35, 26, 23, 28,
## 7, 19, 33, 55, 31, 43, 10, 2, 34, 21, 18, 9, 13, 40, 31,
## 32, 4, 42, 25, 10, 46, 19, 16, 45, 31, 39, 28, 12, 42, 17,
## 7, 28, 35, 44, 18, 9, 14, 5, 29, 26, 25, 21, 34, 51, 47,
## 31, 10, 9, 9, 7, 20, 24, 8, 8, 37, 16, 13, 14, 28, 18, 12,
## 26, 28, 27, 33, 10, 27, 32, 4, 32, 46, 26, 9, 31, 16, 18,
## 30, 60, 33, 53, 26, 10, 37, 32, 52, 46, 17, 26, 31, 34, 10,
## 48, 34, 40, 9, 4, 29, 30, 16, 34, 33, 15, 14, 22, 25, 29,
## 21, 19, 28, 38, 30, 37, 22, 14, 46, 37, 25, 14, 9, 38, 12,
## 19, 25, 10, 11, 30, 43, 20, 18, 23, 21, 10, 35, 8, 9, 34,
## 14, 23, 24, 11, 11, 13, 27, 14, 15, 38, 24, 15, 37, 33, 16,
## 20, 25, 24, 11, 21, 34, 50, 30, 17, 43, 13, 30, 35, 21, 11,
## 45, 15, 29, 22, 12, 30, 20, 20, 16, 38, 23, 18, 20, 8, 16,
## 43, 15, 31, 4, 19, 10, 32, 34, 51, 38, 30, 43, 36, 19, 35,
## 39, 27, 2, 24, 19, 11, 16, 32, 20, 17, 9, 21, 33, 24, 13,
## 17, 7, 11, 23, 20, 25, 22, 47, 30, 27, 31, 13, 32, 18, 8,
## 14, 30, 10, 25, 10, 23, 12, 22, 5, 13, 15, 19, 14, 11, 19,
## 10, 14, 1, 42, 54, 35, 32, 33, 9, 8, 38, 24, 37, 21, 23,
## 49, 19, 26, 21, 27, 8, 23, 30, 19, 12, 16, 29, 24, 19, 8,
## 19, 19, 31, 31, 46, 17, 7, 19, 23, 41, 20, 15, 13, 33, 36,
## 7, 44, 29, 9, 8, 17, 13, 11, 31, 12, 35, 40, 18, 9, 32, 29,
## 38, 8, 17, 23, 7, 36, 8, 13, 17, 24, 33, 7, 30, 16, 15, 7,
## 14, 12, 17, 10, 8, 16, 17, 8, 37, 48, 15, 7, 32, 16, 29,
## 23, 24, 21, 40, 41, 6, 48, 37, 21, 28, 7, 49, 16, 10, 11,
## 9, 36, 6, 16, 26, 15, 21, 14, 18, 26, 20, 22, 9, 6, 13, 17,
## 4, 11, 12, 15, 20, 26, 11, 16, 37, 14, 15, 15, 4, 8, 13,
## 16, 11, 23, 17, 15, 16, 14, 6, 8, 46, 11, 13, 38, 17, 17,
## 7, 32, 23, 8, 3, 3, 18, 7, 10, 21, 23, 22, 4, 11, 3, 9, 14,
## 10, 9, 10, 22, 10, 12, 17, 15, 16, 20, 8, 13, 19, 40, 15,
## 23, 26, 24, 11, 20, 8, 31, 3, 55, 23, 37, 33, 20, 37, 40,
## 45, 37, 30, 31, 29, 26, 4, 14, 8, 39, 16, 10, 42, 9, 39,
## 11, 15, 4, 10, 20, 20, 17, 40, 41, 27, 51, 29, 20, 19, 24,
## 37, 16, 43, 18, 26, 26, 34, 14, 31, 20, 49, 28), Expend = c(7041,
## 10527, 8735, 19016, 10922, 8861, 11487, 8991, 10932, 11711,
## 9305, 8127, 7355, 21424, 7994, 10908, 4010, 42926, 6584,
## 4602, 7836, 9220, 6871, 11361, 6523, 6136, 8086, 9337, 12580,
## 9084, 7503, 6668, 7550, 12957, 5922, 16364, 10941, 7718,
## 8324, 6817, 8649, 8377, 7041, 6259, 9073, 16836, 20447, 6918,
## 7671, 17150, 5935, 4900, 8355, 7916, 17449, 13675, 9511,
## 7117, 7922, 8985, 8453, 7268, 7786, 5391, 7972, 9557, 7976,
## 24386, 7666, 6716, 7364, 7697, 10961, 6897, 9583, 9685, 8444,
## 4900, 6413, 3365, 13118, 12692, 7729, 10922, 8129, 4639,
## 7083, 18443, 11951, 11659, 4417, 10141, 8741, 15954, 15494,
## 8604, 4776, 6889, 8847, 9447, 6084, 8820, 6936, 8996, 12138,
## 9534, 14140, 7850, 5015, 8693, 30639, 6955, 6875, 7309, 14773,
## 10965, 22906, 8189, 6898, 8686, 8643, 17581, 7505, 5113,
## 12423, 11525, 13861, 4525, 7566, 6852, 7325, 11178, 14907,
## 9303, 27206, 9002, 9825, 5719, 5682, 10188, 15003, 9815,
## 8952, 6329, 8061, 7527, 9552, 6972, 7967, 3930, 8923, 6722,
## 4607, 5039, 6336, 11751, 6418, 6078, 8095, 12940, 7711, 5664,
## 6786, 7508, 19635, 11271, 7762, 7348, 14720, 6081, 9226,
## 10270, 9798, 5063, 7949, 8222, 4957, 9114, 17761, 10296,
## 12263, 9248, 7054, 6466, 11625, 37219, 21569, 7335, 8588,
## 12639, 12165, 10093, 13957, 12434, 9284, 7703, 9249, 8324,
## 7348, 5569, 9605, 7305, 6562, 8107, 8420, 9812, 5212, 3186,
## 8118, 7738, 56233, 7840, 12067, 6122, 6535, 14067, 7649,
## 8954, 7022, 9084, 15365, 9067, 15687, 4054, 5531, 6119, 8196,
## 14665, 8539, 8694, 6863, 12999, 7701, 5177, 10912, 3480,
## 8747, 6374, 5553, 7578, 7547, 6741, 4546, 9448, 9456, 13009,
## 8949, 8832, 7114, 14213, 10642, 4796, 7940, 10062, 11291,
## 5801, 5352, 8408, 10819, 10502, 8575, 8317, 5925, 9034, 33541,
## 6652, 6383, 9754, 8995, 7307, 8707, 3871, 7762, 7846, 7832,
## 8128, 11218, 7140, 6170, 6223, 5704, 4333, 11087, 9492, 6112,
## 11989, 4795, 8122, 8111, 6990, 18359, 5073, 6695, 6525, 8536,
## 10613, 7215, 10888, 5972, 7905, 8797, 12529, 9241, 21227,
## 5788, 7788, 6562, 7090, 9670, 8871, 6310, 6601, 9563, 6157,
## 6086, 5284, 6261, 26385, 9209, 16593, 16196, 8568, 9979,
## 8811, 12011, 5511, 6578, 6433, 8802, 6413, 7114, 10059, 9431,
## 9157, 11216, 6443, 16185, 8028, 8990, 5557, 14820, 7895,
## 7652, 14329, 5967, 8354, 28320, 8135, 6880, 8847, 4519, 7333,
## 11080, 16358, 15886, 15605, 11299, 12472, 6744, 9405, 7519,
## 6422, 7957, 11561, 9264, 10474, 10134, 7120, 6719, 7344,
## 7360, 4322, 18367, 5081, 12502, 8534, 9599, 9533, 7930, 10872,
## 8545, 18372, 10368, 10080, 6719, 14086, 7411, 7881, 21199,
## 5084, 4444, 7498, 12726, 4718, 4632, 6591, 7818, 12995, 6860,
## 9988, 10938, 9828, 7908, 14980, 9209, 9619, 10357, 7651,
## 8595, 8426, 6534, 9995, 10307, 12837, 5599, 7495, 9075, 8055,
## 13705, 6632, 7511, 5563, 6442, 6608, 6174, 6436, 8170, 10554,
## 18953, 7233, 5970, 8294, 6286, 8471, 9158, 7002, 3605, 5096,
## 10219, 8504, 18034, 11806, 16920, 4933, 10872, 15411, 16352,
## 13919, 15934, 6742, 36854, 13889, 10178, 8731, 10650, 11762,
## 10891, 8767, 7780, 14737, 7881, 10625, 12833, 8559, 9657,
## 5935, 6408, 9021, 10276, 7462, 14847, 6393, 6716, 16122,
## 6971, 10145, 6433, 5412, 5883, 9718, 7855, 7011, 15893, 7392,
## 6005, 9424, 6104, 5657, 6309, 13936, 10244, 8020, 25765,
## 9060, 11217, 9158, 11984, 26037, 10074, 3864, 5035, 8246,
## 11020, 17007, 4078, 5917, 8612, 4696, 7837, 4329, 11641,
## 13706, 11743, 9275, 12646, 13597, 16527, 8488, 6254, 6490,
## 5559, 11006, 8094, 8745, 3733, 12082, 7164, 9681, 23850,
## 10458, 5733, 8944, 6757, 8050, 5861, 14904, 9006, 41766,
## 5738, 9430, 7735, 10162, 15736, 10830, 10912, 45702, 4550,
## 6563, 4839, 6951, 17858, 16262, 6773, 4249, 8080, 6554, 10026,
## 5983, 8409, 4599, 7203, 4222, 7925, 8837, 11916, 22704, 7494,
## 13198, 11778, 8328, 9603, 8543, 10779, 7438, 10291, 5318,
## 6729, 8960, 10774, 4469, 9189, 8323, 40386, 4509), Grad.Rate = c(60,
## 56, 54, 59, 15, 63, 73, 52, 73, 76, 68, 55, 69, 100, 59,
## 46, 34, 48, 65, 48, 58, 71, 69, 71, 48, 65, 85, 71, 91, 72,
## 72, 84, 52, 69, 58, 55, 82, 48, 56, 58, 72, 51, 75, 53, 58,
## 72, 96, 67, 85, 84, 49, 18, 58, 33, 89, 93, 83, 71, 55, 60,
## 59, 61, 81, 49, 64, 83, 52, 74, 79, 67, 62, 118, 74, 64,
## 24, 66, 67, 49, 51, 58, 74, 47, 73, 58, 63, 48, 21, 87, 79,
## 77, 46, 67, 75, 91, 93, 96, 51, 100, 72, 78, 64, 80, 76,
## 72, 95, 93, 69, 59, 37, 76, 99, 45, 42, 75, 91, 75, 85, 63,
## 46, 54, 72, 94, 56, 58, 81, 82, 87, 46, 61, 60, 87, 42, 83,
## 67, 97, 58, 42, 50, 76, 82, 59, 81, 86, 63, 82, 67, 53, 24,
## 22, 69, 57, 66, 62, 43, 83, 60, 51, 62, 54, 82, 65, 29, 74,
## 55, 95, 70, 34, 76, 83, 36, 66, 72, 64, 57, 39, 60, 100,
## 65, 91, 65, 69, 64, 38, 73, 73, 100, 100, 52, 63, 79, 79,
## 60, 72, 72, 72, 44, 21, 75, 52, 54, 83, 69, 34, 66, 65, 75,
## 98, 54, 75, 89, 90, 56, 80, 54, 68, 88, 87, 65, 52, 84, 92,
## 75, 77, 57, 60, 51, 85, 91, 66, 58, 56, 69, 61, 53, 45, 100,
## 81, 63, 62, 70, 59, 37, 45, 80, 53, 65, 77, 70, 51, 77, 59,
## 55, 64, 79, 70, 68, 59, 69, 90, 77, 55, 51, 61, 66, 94, 52,
## 32, 48, 91, 78, 80, 59, 89, 85, 71, 64, 58, 67, 61, 53, 63,
## 27, 56, 54, 74, 15, 60, 83, 56, 60, 84, 44, 64, 21, 80, 72,
## 81, 83, 52, 71, 61, 72, 34, 71, 83, 65, 57, 44, 62, 76, 42,
## 76, 46, 41, 56, 54, 58, 92, 63, 83, 79, 67, 83, 64, 75, 50,
## 45, 48, 87, 65, 37, 62, 83, 69, 42, 48, 66, 68, 39, 61, 73,
## 54, 66, 62, 35, 85, 99, 96, 80, 86, 62, 47, 74, 68, 68, 70,
## 70, 64, 81, 72, 79, 68, 61, 90, 81, 77, 57, 82, 97, 69, 67,
## 85, 67, 78, 83, 88, 60, 61, 41, 100, 52, 73, 66, 64, 72,
## 79, 70, 48, 90, 67, 53, 43, 72, 71, 56, 51, 52, 67, 89, 65,
## 49, 78, 66, 85, 40, 78, 63, 72, 88, 45, 67, 59, 73, 79, 64,
## 97, 74, 80, 57, 49, 42, 53, 66, 53, 65, 59, 46, 90, 61, 53,
## 46, 98, 36, 69, 64, 50, 10, 39, 70, 81, 91, 96, 74, 52, 65,
## 88, 33, 78, 66, 46, 90, 54, 71, 63, 75, 67, 51, 45, 77, 66,
## 63, 66, 54, 81, 57, 64, 35, 63, 68, 56, 87, 53, 51, 45, 53,
## 58, 48, 52, 51, 64, 75, 37, 83, 53, 55, 49, 47, 35, 40, 97,
## 44, 54, 93, 72, 63, 63, 100, 80, 62, 43, 48, 63, 47, 68,
## 38, 45, 53, 29, 65, 50, 57, 65, 47, 37, 79, 95, 65, 53, 65,
## 36, 67, 72, 38, 45, 78, 79, 68, 95, 83, 96, 31, 73, 30, 73,
## 58, 72, 75, 89, 68, 63, 67, 86, 90, 65, 56, 90, 52, 63, 90,
## 48, 64, 92, 52, 60, 67, 55, 60, 55, 59, 52, 61, 65, 62, 87,
## 85, 71, 72, 72, 52, 80, 63, 67, 68, 52, 67, 58, 59, 50, 82,
## 40, 83, 49, 99, 99), .outcome = c(7440, 12280, 11250, 12960,
## 7560, 13290, 13868, 10468, 16548, 17080, 12572, 8352, 8700,
## 19760, 10100, 9996, 5130, 15476, 11208, 7434, 11902, 13353,
## 10990, 11280, 9925, 8620, 10995, 9690, 17926, 11290, 6450,
## 8840, 9000, 16304, 9550, 21700, 13800, 8740, 8540, 5188,
## 11660, 6500, 7844, 7150, 9900, 18420, 19030, 7452, 10870,
## 19380, 9592, 4371, 10260, 2340, 18165, 18550, 13130, 10518,
## 8900, 12950, 7380, 7706, 10230, 6060, 10750, 13050, 8400,
## 17900, 12200, 8150, 13125, 9384, 14340, 7344, 11400, 8950,
## 10938, 5962, 7242, 8300, 11850, 16624, 10335, 8730, 9300,
## 7860, 4412, 17000, 17500, 15960, 7168, 13925, 9888, 18930,
## 19510, 10860, 6120, 9800, 12247, 10900, 9990, 11138, 8300,
## 11844, 18000, 11720, 16240, 8412, 8294, 10425, 18624, 10500,
## 6900, 9216, 18740, 12050, 10628, 6230, 8920, 9130, 12292,
## 17295, 10850, 4528, 16900, 14300, 18700, 4486, 6700, 9570,
## 9800, 9000, 18432, 8730, 18590, 7248, 5800, 5962, 5710, 9650,
## 15360, 14190, 11800, 9100, 8578, 10485, 10955, 6806, 9400,
## 5120, 13900, 6597, 8390, 5840, 9650, 10390, 13320, 5500,
## 9900, 13440, 10970, 8180, 9476, 8100, 18300, 6489, 6744,
## 9150, 19964, 6120, 12200, 9420, 8958, 6108, 8330, 10310,
## 5224, 13404, 19700, 13252, 13218, 8200, 6300, 5504, 17480,
## 18485, 17230, 9376, 8800, 11090, 14067, 11600, 13470, 13960,
## 12275, 8080, 7260, 10500, 8050, 7799, 14360, 10000, 9210,
## 10690, 7550, 14424, 7994, 7620, 6398, 11700, 18800, 9414,
## 14850, 6995, 8400, 19240, 10910, 8664, 8842, 12600, 18730,
## 6987, 16880, 9400, 5170, 4938, 13850, 18700, 10100, 11700,
## 8840, 15800, 10560, 5950, 4818, 9200, 13380, 7352, 7920,
## 11200, 5150, 5925, 3957, 12990, 11100, 11500, 13240, 12450,
## 7320, 15909, 9620, 9858, 10440, 12370, 14700, 4300, 9400,
## 10700, 11200, 11510, 11390, 11200, 9250, 11040, 20100, 7680,
## 6930, 7950, 11985, 9813, 12500, 5016, 10300, 8856, 7844,
## 8200, 11320, 11505, 5580, 9866, 4386, 8550, 13000, 12480,
## 6073, 8438, 4426, 7050, 10520, 4515, 19300, 6844, 10500,
## 9900, 12850, 12474, 12250, 16975, 4738, 9090, 10850, 8832,
## 5376, 17748, 10194, 10320, 5542, 6806, 8400, 11718, 5834,
## 4856, 13380, 6746, 7799, 3735, 9840, 16404, 14134, 19670,
## 16560, 12900, 15990, 7629, 16732, 5390, 6400, 5336, 12888,
## 6530, 8530, 11000, 13312, 11925, 14210, 6360, 18200, 11690,
## 10500, 6000, 17688, 10178, 9700, 16200, 4290, 11859, 19900,
## 14400, 10100, 12030, 6684, 4449, 13840, 13970, 19960, 17475,
## 13250, 15200, 9870, 13425, 9490, 8734, 12520, 16425, 10950,
## 7410, 7411, 11070, 12950, 10880, 11200, 9985, 11690, 10800,
## 14350, 10850, 10475, 8236, 8384, 13584, 8955, 17238, 12669,
## 12000, 7844, 16160, 11250, 8990, 18820, 3811, 3738, 5472,
## 12772, 7070, 4740, 4285, 7200, 11850, 8400, 7000, 8600, 10456,
## 10570, 18720, 11550, 13332, 6800, 8678, 12140, 5000, 8650,
## 13900, 12315, 16900, 3040, 12170, 6550, 6550, 6550, 6550,
## 6550, 6550, 6550, 6550, 6550, 6840, 6550, 16130, 14500, 7850,
## 5666, 10965, 7070, 5130, 8490, 7850, 7860, 7600, 10900, 5391,
## 18810, 11412, 19040, 7700, 6735, 18732, 4440, 11648, 12024,
## 6618, 18930, 8907, 11656, 10760, 10220, 15192, 11130, 10430,
## 11800, 7090, 5697, 14220, 4460, 7560, 6994, 6600, 6600, 8723,
## 8566, 6919, 15732, 8828, 9843, 8949, 4916, 9057, 7246, 6150,
## 4440, 11450, 11180, 5972, 8400, 8677, 7558, 5634, 6634, 4104,
## 7731, 16850, 5173, 10602, 17020, 12040, 16230, 10330, 14500,
## 17840, 13226, 3687, 5800, 8074, 6760, 17230, 4973, 4652,
## 5764, 4422, 5130, 4104, 12520, 16320, 11750, 6857, 15516,
## 12212, 8199, 6172, 6704, 7032, 6950, 9096, 8786, 5988, 8840,
## 14900, 9600, 11800, 17865, 15925, 5587, 10260, 7384, 9140,
## 4450, 12925, 13500, 13850, 8670, 10000, 11600, 16260, 13750,
## 15276, 8200, 18350, 2700, 8840, 5590, 9160, 9850, 19130,
## 7844, 4470, 14200, 6390, 14510, 6940, 8994, 5918, 8124, 5542,
## 10720, 14320, 11480, 18460, 10500, 16670, 16249, 12660, 12350,
## 11150, 14800, 10535, 11428, 4200, 6400, 9100, 15884, 6797,
## 11520, 6900, 19840, 4990)), row.names = c("Abilene.Christian.University",
## "Adelphi.University", "Adrian.College", "Agnes.Scott.College",
## "Alaska.Pacific.University", "Albertus.Magnus.College", "Albion.College",
## "Alderson.Broaddus.College", "Alfred.University", "Allegheny.College",
## "Alma.College", "Alverno.College", "American.International.College",
## "Amherst.College", "Anderson.University", "Andrews.University",
## "Angelo.State.University", "Antioch.University", "Aquinas.College",
## "Arizona.State.University.Main.campus", "Augsburg.College", "Augustana.College.IL",
## "Augustana.College", "Austin.College", "Averett.College", "Baker.University",
## "Baldwin.Wallace.College", "Barat.College", "Barnard.College",
## "Barry.University", "Baylor.University", "Bellarmine.College",
## "Belmont.Abbey.College", "Beloit.College", "Benedictine.College",
## "Bennington.College", "Bentley.College", "Bethany.College", "Bethel.College.KS",
## "Bethune.Cookman.College", "Birmingham.Southern.College", "Blackburn.College",
## "Bloomsburg.Univ..of.Pennsylvania", "Bluefield.College", "Bluffton.College",
## "Boston.University", "Bowdoin.College", "Bowling.Green.State.University",
## "Bradley.University", "Brandeis.University", "Brenau.University",
## "Brewton.Parker.College", "Briar.Cliff.College", "Brigham.Young.University.at.Provo",
## "Bryn.Mawr.College", "Bucknell.University", "Butler.University",
## "Cabrini.College", "Caldwell.College", "California.Lutheran.University",
## "California.Polytechnic.San.Luis", "California.State.University.at.Fresno",
## "Calvin.College", "Campbellsville.College", "Canisius.College",
## "Capital.University", "Capitol.College", "Carnegie.Mellon.University",
## "Carroll.College", "Carson.Newman.College", "Carthage.College",
## "Cazenovia.College", "Cedar.Crest.College", "Cedarville.College",
## "Centenary.College", "Centenary.College.of.Louisiana", "Central.College",
## "Central.Connecticut.State.University", "Central.Washington.University",
## "Central.Wesleyan.College", "Centre.College", "Chapman.University",
## "Chestnut.Hill.College", "Christendom.College", "Christian.Brothers.University",
## "Christopher.Newport.University", "Claflin.College", "Claremont.McKenna.College",
## "Clark.University", "Clarkson.University", "Clinch.Valley.Coll..of..the.Univ..of.Virginia",
## "Coe.College", "Coker.College", "Colby.College", "Colgate.University",
## "College.Misericordia", "College.of.Charleston", "College.of.Mount.St..Joseph",
## "College.of.Saint.Benedict", "College.of.Saint.Elizabeth", "College.of.Saint.Rose",
## "College.of.Santa.Fe", "College.of.St..Joseph", "College.of.St..Scholastica",
## "College.of.the.Holy.Cross", "College.of.William.and.Mary", "College.of.Wooster",
## "Colorado.State.University", "Columbia.College.MO", "Columbia.College",
## "Columbia.University", "Concordia.College.at.St..Paul", "Concordia.Lutheran.College",
## "Concordia.University", "Connecticut.College", "Converse.College",
## "Creighton.University", "Cumberland.College", "D.Youville.College",
## "Dana.College", "Daniel.Webster.College", "Davidson.College",
## "Defiance.College", "Delta.State.University", "Denison.University",
## "DePauw.University", "Dickinson.College", "Dickinson.State.University",
## "Dillard.University", "Doane.College", "Dordt.College", "Dowling.College",
## "Drew.University", "Drury.College", "Duke.University", "East.Carolina.University",
## "East.Tennessee.State.University", "Eastern.Connecticut.State.University",
## "Eastern.Illinois.University", "Eastern.Mennonite.College", "Eckerd.College",
## "Elizabethtown.College", "Elms.College", "Elon.College", "Emory...Henry.College",
## "Erskine.College", "Eureka.College", "Fayetteville.State.University",
## "Ferrum.College", "Flagler.College", "Florida.Institute.of.Technology",
## "Florida.International.University", "Fontbonne.College", "Francis.Marion.University",
## "Franciscan.University.of.Steubenville", "Franklin.College",
## "Franklin.Pierce.College", "Freed.Hardeman.University", "Fresno.Pacific.College",
## "Furman.University", "Gannon.University", "Gardner.Webb.University",
## "Geneva.College", "Georgetown.College", "Georgetown.University",
## "Georgia.Institute.of.Technology", "Georgia.State.University",
## "Georgian.Court.College", "Gettysburg.College", "Goldey.Beacom.College",
## "Gordon.College", "Goshen.College", "Grace.College.and.Seminary",
## "Grand.Valley.State.University", "Greensboro.College", "Greenville.College",
## "Grove.City.College", "Guilford.College", "Hamilton.College",
## "Hamline.University", "Hampden...Sydney.College", "Hanover.College",
## "Hardin.Simmons.University", "Harding.University", "Hartwick.College",
## "Harvard.University", "Harvey.Mudd.College", "Hastings.College",
## "Hendrix.College", "Hillsdale.College", "Hiram.College", "Hofstra.University",
## "Hollins.College", "Hood.College", "Hope.College", "Huntingdon.College",
## "Huron.University", "Illinois.Benedictine.College", "Illinois.College",
## "Illinois.State.University", "Illinois.Wesleyan.University",
## "Immaculata.College", "Indiana.Wesleyan.University", "Iona.College",
## "Iowa.State.University", "Ithaca.College", "James.Madison.University",
## "Jamestown.College", "John.Brown.University", "John.Carroll.University",
## "Johns.Hopkins.University", "Judson.College", "Juniata.College",
## "Kansas.State.University", "Kansas.Wesleyan.University", "Kenyon.College",
## "King.s.College", "King.College", "La.Roche.College", "La.Salle.University",
## "Lafayette.College", "LaGrange.College", "Lake.Forest.College",
## "Lakeland.College", "Lambuth.University", "Lander.University",
## "Lebanon.Valley.College", "Lehigh.University", "Lenoir.Rhyne.College",
## "Lesley.College", "LeTourneau.University", "Lewis.and.Clark.College",
## "Lewis.University", "Lincoln.Memorial.University", "Lincoln.University",
## "Lindenwood.College", "Linfield.College", "Lock.Haven.University.of.Pennsylvania",
## "Longwood.College", "Loras.College", "Louisiana.College", "Louisiana.State.University.at.Baton.Rouge",
## "Louisiana.Tech.University", "Loyola.College", "Loyola.University",
## "Loyola.University.Chicago", "Luther.College", "Lynchburg.College",
## "Lyndon.State.College", "Macalester.College", "MacMurray.College",
## "Malone.College", "Manchester.College", "Manhattan.College",
## "Manhattanville.College", "Mankato.State.University", "Marian.College.of.Fond.du.Lac",
## "Marist.College", "Mary.Baldwin.College", "Marymount.College.Tarrytown",
## "Marymount.University", "Maryville.College", "Maryville.University",
## "Marywood.College", "Massachusetts.Institute.of.Technology",
## "McKendree.College", "McMurry.University", "McPherson.College",
## "Mercer.University", "Mercyhurst.College", "Merrimack.College",
## "Mesa.State.College", "Messiah.College", "Miami.University.at.Oxford",
## "Millersville.University.of.Penn.", "Milligan.College", "Millsaps.College",
## "Milwaukee.School.of.Engineering", "Mississippi.College", "Mississippi.State.University",
## "Mississippi.University.for.Women", "Missouri.Valley.College",
## "Monmouth.College.IL", "Monmouth.College", "Montana.College.of.Mineral.Sci....Tech.",
## "Montreat.Anderson.College", "Moorhead.State.University", "Morehouse.College",
## "Morningside.College", "Morris.College", "Mount.Holyoke.College",
## "Mount.Marty.College", "Mount.Mercy.College", "Mount.Saint.Clare.College",
## "Mount.Saint.Mary.s.College", "Mount.St..Mary.s.College", "Mount.Union.College",
## "Muhlenberg.College", "Murray.State.University", "National.Louis.University",
## "Nazareth.College.of.Rochester", "New.Jersey.Institute.of.Technology",
## "New.Mexico.Institute.of.Mining.and.Tech.", "New.York.University",
## "Newberry.College", "Niagara.University", "North.Adams.State.College",
## "North.Carolina.A....T..State.University", "North.Carolina.State.University.at.Raleigh",
## "North.Central.College", "North.Dakota.State.University", "Northeast.Missouri.State.University",
## "Northeastern.University", "Northern.Arizona.University", "Northern.Illinois.University",
## "Northwest.Missouri.State.University", "Northwest.Nazarene.College",
## "Northwestern.University", "Norwich.University", "Oberlin.College",
## "Occidental.College", "Oglethorpe.University", "Ohio.Northern.University",
## "Ohio.University", "Ohio.Wesleyan.University", "Oklahoma.Baptist.University",
## "Oklahoma.Christian.University", "Oklahoma.State.University",
## "Otterbein.College", "Ouachita.Baptist.University", "Our.Lady.of.the.Lake.University",
## "Pace.University", "Pacific.Lutheran.University", "Pacific.Union.College",
## "Pacific.University", "Pembroke.State.University", "Pepperdine.University",
## "Philadelphia.Coll..of.Textiles.and.Sci.", "Phillips.University",
## "Pikeville.College", "Pitzer.College", "Point.Loma.Nazarene.College",
## "Point.Park.College", "Polytechnic.University", "Prairie.View.A..and.M..University",
## "Presbyterian.College", "Princeton.University", "Providence.College",
## "Quincy.University", "Quinnipiac.College", "Radford.University",
## "Ramapo.College.of.New.Jersey", "Randolph.Macon.College", "Randolph.Macon.Woman.s.College",
## "Reed.College", "Rensselaer.Polytechnic.Institute", "Rider.University",
## "Ripon.College", "Rivier.College", "Roanoke.College", "Rockhurst.College",
## "Rocky.Mountain.College", "Roger.Williams.University", "Rollins.College",
## "Rosary.College", "Rutgers.at.New.Brunswick", "Rutgers.State.University.at.Camden",
## "Sacred.Heart.University", "Saint.Anselm.College", "Saint.Francis.College",
## "Saint.Joseph.s.College.IN", "Saint.Joseph.s.College", "Saint.Louis.University",
## "Saint.Mary.s.College.of.Minnesota", "Saint.Olaf.College", "Saint.Vincent.College",
## "Salem.College", "Samford.University", "San.Diego.State.University",
## "Santa.Clara.University", "Schreiner.College", "Scripps.College",
## "Seattle.Pacific.University", "Seton.Hall.University", "Shippensburg.University.of.Penn.",
## "Simmons.College", "Simpson.College", "Sioux.Falls.College",
## "Smith.College", "South.Dakota.State.University", "Southeastern.Oklahoma.State.Univ.",
## "Southern.Illinois.University.at.Edwardsville", "Southern.Methodist.University",
## "Southwest.Baptist.University", "Southwest.Missouri.State.University",
## "Southwest.State.University", "Southwestern.College", "Southwestern.University",
## "Spalding.University", "Spelman.College", "Spring.Arbor.College",
## "St..Bonaventure.University", "St..John.Fisher.College", "St..Lawrence.University",
## "St..Martin.s.College", "St..Mary.s.College.of.California", "St..Mary.s.College.of.Maryland",
## "St..Mary.s.University.of.San.Antonio", "St..Norbert.College",
## "St..Paul.s.College", "St..Thomas.Aquinas.College", "Stephens.College",
## "Stetson.University", "Stevens.Institute.of.Technology", "Stockton.College.of.New.Jersey",
## "Stonehill.College", "SUNY.at.Albany", "SUNY.at.Binghamton",
## "SUNY.at.Stony.Brook", "SUNY.College..at.Brockport", "SUNY.College.at.Buffalo",
## "SUNY.College.at.Cortland", "SUNY.College.at.Fredonia", "SUNY.College.at.New.Paltz",
## "SUNY.College.at.Plattsburgh", "SUNY.College.at.Potsdam", "SUNY.College.at.Purchase",
## "Susquehanna.University", "Sweet.Briar.College", "Tabor.College",
## "Talladega.College", "Taylor.University", "Tennessee.Wesleyan.College",
## "Texas.A.M.Univ..at.College.Station", "Texas.Christian.University",
## "Texas.Lutheran.College", "Texas.Southern.University", "Tiffin.University",
## "Transylvania.University", "Trenton.State.College", "Trinity.College.CT",
## "Trinity.College.DC", "Tulane.University", "Tusculum.College",
## "Tuskegee.University", "Union.College.NY", "University.of.Alabama.at.Birmingham",
## "University.of.California.at.Berkeley", "University.of.California.at.Irvine",
## "University.of.Central.Florida", "University.of.Chicago", "University.of.Cincinnati",
## "University.of.Connecticut.at.Storrs", "University.of.Dallas",
## "University.of.Delaware", "University.of.Denver", "University.of.Detroit.Mercy",
## "University.of.Dubuque", "University.of.Evansville", "University.of.Florida",
## "University.of.Georgia", "University.of.Hartford", "University.of.Hawaii.at.Manoa",
## "University.of.Illinois...Urbana", "University.of.Kansas", "University.of.Maine.at.Machias",
## "University.of.Maine.at.Presque.Isle", "University.of.Maryland.at.College.Park",
## "University.of.Massachusetts.at.Amherst", "University.of.Massachusetts.at.Dartmouth",
## "University.of.Michigan.at.Ann.Arbor", "University.of.Minnesota.at.Duluth",
## "University.of.Minnesota.at.Morris", "University.of.Minnesota.Twin.Cities",
## "University.of.Mississippi", "University.of.Missouri.at.Columbia",
## "University.of.Missouri.at.Saint.Louis", "University.of.Mobile",
## "University.of.Montevallo", "University.of.New.England", "University.of.New.Hampshire",
## "University.of.North.Carolina.at.Asheville", "University.of.North.Carolina.at.Chapel.Hill",
## "University.of.North.Carolina.at.Greensboro", "University.of.North.Carolina.at.Wilmington",
## "University.of.North.Dakota", "University.of.North.Florida",
## "University.of.North.Texas", "University.of.Northern.Colorado",
## "University.of.Notre.Dame", "University.of.Oklahoma", "University.of.Oregon",
## "University.of.Pennsylvania", "University.of.Portland", "University.of.Puget.Sound",
## "University.of.Rhode.Island", "University.of.Richmond", "University.of.Rochester",
## "University.of.San.Francisco", "University.of.Sci..and.Arts.of.Oklahoma",
## "University.of.South.Carolina.at.Aiken", "University.of.South.Carolina.at.Columbia",
## "University.of.South.Florida", "University.of.Southern.California",
## "University.of.Southern.Indiana", "University.of.Southern.Mississippi",
## "University.of.Tennessee.at.Knoxville", "University.of.Texas.at.Arlington",
## "University.of.Texas.at.Austin", "University.of.Texas.at.San.Antonio",
## "University.of.the.Arts", "University.of.the.Pacific", "University.of.Tulsa",
## "University.of.Utah", "University.of.Vermont", "University.of.Virginia",
## "University.of.Washington", "University.of.West.Florida", "University.of.Wisconsin.Stout",
## "University.of.Wisconsin.Superior", "University.of.Wisconsin.Whitewater",
## "University.of.Wisconsin.at.Madison", "University.of.Wisconsin.at.Milwaukee",
## "University.of.Wyoming", "Upper.Iowa.University", "Ursinus.College",
## "Ursuline.College", "Valparaiso.University", "Vanderbilt.University",
## "Villanova.University", "Virginia.State.University", "Virginia.Tech",
## "Virginia.Union.University", "Viterbo.College", "Voorhees.College",
## "Wabash.College", "Wagner.College", "Wake.Forest.University",
## "Walsh.University", "Warren.Wilson.College", "Wartburg.College",
## "Washington.and.Jefferson.College", "Washington.and.Lee.University",
## "Washington.College", "Washington.State.University", "Washington.University",
## "Wayne.State.College", "Waynesburg.College", "Webber.College",
## "Webster.University", "Wentworth.Institute.of.Technology", "Wesleyan.University",
## "West.Chester.University.of.Penn.", "West.Liberty.State.College",
## "West.Virginia.Wesleyan.College", "Western.Carolina.University",
## "Western.Maryland.College", "Western.Michigan.University", "Western.New.England.College",
## "Western.State.College.of.Colorado", "Western.Washington.University",
## "Westfield.State.College", "Westminster.College.MO", "Westmont.College",
## "Wheaton.College.IL", "Westminster.College.PA", "Wheeling.Jesuit.College",
## "Whitman.College", "Whittier.College", "Whitworth.College", "Widener.University",
## "Wilkes.University", "Willamette.University", "William.Woods.University",
## "Wilson.College", "Winona.State.University", "Winthrop.University",
## "Wisconsin.Lutheran.College", "Worcester.Polytechnic.Institute",
## "Worcester.State.College", "Xavier.University", "Xavier.University.of.Louisiana",
## "Yale.University", "York.College.of.Pennsylvania"), class = "data.frame"))
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7281.68 -1275.45 88.13 1314.46 7118.31
##
## (Dispersion Parameter for gaussian family taken to be 3958862)
##
## Null Deviance: 9568659608 on 583 degrees of freedom
## Residual Deviance: 2177372513 on 549.9996 degrees of freedom
## AIC: 10564.11
##
## Number of Local Scoring Iterations: 3
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## s(perc.alumni, df = 3) 1 2277943244 2277943244 575.4035 < 2.2e-16 ***
## s(PhD, df = 3) 1 377458006 377458006 95.3451 < 2.2e-16 ***
## s(Grad.Rate, df = 3) 1 737317805 737317805 186.2449 < 2.2e-16 ***
## s(Top25perc, df = 3) 1 41801474 41801474 10.5590 0.001227 **
## s(Books, df = 3) 1 1615073 1615073 0.4080 0.523271
## s(S.F.Ratio, df = 3) 1 481006425 481006425 121.5012 < 2.2e-16 ***
## s(P.Undergrad, df = 3) 1 38364658 38364658 9.6908 0.001948 **
## s(Enroll, df = 3) 1 178866843 178866843 45.1814 4.503e-11 ***
## s(Accept, df = 3) 1 426427233 426427233 107.7146 < 2.2e-16 ***
## s(Apps, df = 3) 1 31963476 31963476 8.0739 0.004657 **
## s(Expend, df = 3) 1 1138460948 1138460948 287.5728 < 2.2e-16 ***
## Residuals 550 2177372513 3958862
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## s(perc.alumni, df = 3) 2 4.020 0.018479 *
## s(PhD, df = 3) 2 2.144 0.118148
## s(Grad.Rate, df = 3) 2 6.275 0.002020 **
## s(Top25perc, df = 3) 2 1.051 0.350229
## s(Books, df = 3) 2 4.458 0.012007 *
## s(S.F.Ratio, df = 3) 2 10.142 4.723e-05 ***
## s(P.Undergrad, df = 3) 2 1.598 0.203225
## s(Enroll, df = 3) 2 11.026 2.019e-05 ***
## s(Accept, df = 3) 2 9.406 9.627e-05 ***
## s(Apps, df = 3) 2 5.346 0.005018 **
## s(Expend, df = 3) 2 66.784 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
perc.alumi, Grad.Rate, Books, S.F.Ratio, Enroll, Accept, Apps, and Expend show strong evidence of a non-linear relationship with the response variable, Outstate. We are able to detect this non-linear relationship by looks at the small p-values in the ANOVA for Nonparametric Effects Table.