v18 <- load_variables(2018, "acs5", cache = TRUE)
# B25064_001 Estimate!!Median gross rent
View(v18)
Var<-c("B23025_003E","B23025_004E","B23025_005E")
## c(Median household Income, Median Housing Value)
ca_df <- get_acs(geography = "county",
variables = Var,
year = 2018,
survey = "acs5",
state = "06",
output = "wide")
## Getting data from the 2014-2018 5-year ACS
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
## # Simple named list:
## list(mean = mean, median = median)
##
## # Auto named with `tibble::lst()`:
## tibble::lst(mean, median)
##
## # Using lambdas
## list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
#geometry = TRUE)
ca_df <- ca_df %>%
rename("Total Labor Force"=B23025_003E,
"Employed"=B23025_004E,
"Unemployed"=B23025_005E)
ca_df$rate <- 100*ca_df$Unemployed/(ca_df$`Total Labor Force`)
colnames(ca_df)
## [1] "GEOID" "NAME" "Total Labor Force"
## [4] "B23025_003M" "Employed" "B23025_004M"
## [7] "Unemployed" "B23025_005M" "rate"
library(DT)
datatable(cbind('County Name' = ca_df[[2]],
"Unemployment rate" = ca_df[[9]]) )
ca_df <- get_acs(geography = "county",
variables = Var,
year = 2018,
survey = "acs5",
state = "06",
output = "wide", geometry = T)
## Getting data from the 2014-2018 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
##
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================= | 94%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
ca_df <- ca_df %>%
rename("Total Labor Force"=B23025_003E,
"Employed"=B23025_004E,
"Unemployed"=B23025_005E)
ca_df$rate <- 100*ca_df$Unemployed/(ca_df$`Total Labor Force`)
colnames(ca_df)
## [1] "GEOID" "NAME" "Total Labor Force"
## [4] "B23025_003M" "Employed" "B23025_004M"
## [7] "Unemployed" "B23025_005M" "geometry"
## [10] "rate"
ggplot(ca_df) +
geom_sf(aes(fill = rate), color=NA) +
#coord_sf(datum=NA) +
labs(title = "2018 Unemployment rate",
caption = "Source: Census ACS 5-year, 2014-2018",
fill = "rate") +
scale_fill_viridis(direction=-1)
B23025_005E Unemployed Estimate !!Total!!In labor force!!Civilian labor force!!
B23025_003E Total Estimate!!Total!!In labor force!!Civilian labor force
B23025_004E Employed Estimate!!Total!!In labor force!!Civilian labor force!!Employed
ca_cd <- get_acs(geography = "congressional district", variables = Var, state = "CA",
year = 2018, output = "wide")
## Getting data from the 2014-2018 5-year ACS
ca_cd <- ca_cd %>%
rename("Total Labor Force"=B23025_003E,
"Employed"=B23025_004E,
"Unemployed"=B23025_005E)
ca_assembly <- get_acs(geography = "state legislative district (lower chamber)",
variables = Var, output = "wide",
state = "CA",year = 2018)
## Getting data from the 2014-2018 5-year ACS
ca_assembly <- ca_assembly %>%
rename("Total Labor Force"=B23025_003E,
"Employed"=B23025_004E,
"Unemployed"=B23025_005E)
ca_senate <- get_acs(geography = "state legislative district (upper chamber)",
variables = Var, output = "wide",
state = "CA",year = 2018)
## Getting data from the 2014-2018 5-year ACS
ca_senate <- ca_senate %>%
rename("Total Labor Force"=B23025_003E,
"Employed"=B23025_004E,
"Unemployed"=B23025_005E)
cleaning up
numextract <- function(string){
str_extract(string, "\\-*\\d+\\.*\\d*")}
ca_cd$NAME <- gsub("115th Congress", "", ca_cd$NAME)
ca_cd$NAME <- numextract(ca_cd$NAME) %>% as.numeric(ca_cd$NAME)
str(ca_cd)
## Classes 'tbl_df', 'tbl' and 'data.frame': 53 obs. of 8 variables:
## $ GEOID : chr "0601" "0603" "0605" "0606" ...
## $ NAME : num 1 3 5 6 8 10 11 13 15 16 ...
## $ Total Labor Force: num 307057 341148 383690 366051 298355 ...
## $ B23025_003M : num 2500 2409 2832 2860 3013 ...
## $ Employed : num 284276 317261 361052 336654 267817 ...
## $ B23025_004M : num 2359 2614 2995 2870 3046 ...
## $ Unemployed : num 22781 23887 22638 29397 30538 ...
## $ B23025_005M : num 1008 1040 1258 1260 1535 ...
ca_cd$rate <- 100*ca_cd$Unemployed/(ca_cd$Employed+ca_cd$Unemployed)
ca_cd %>%
ggplot(aes(x = rate, y = reorder(NAME,rate ))) +
geom_point(color = "brown", size = 1) +
labs(title = "2018 Unemployment rate by Congressional District in California",
subtitle = "Census Variable = B23025_005E",
y = "",
x = "2018 Median Unemployment rate", caption = "Tidycensus extraction by Joe Long")+
theme_economist(base_size = 7)
ca_cd[,c(2,9)] %>%
rename(Congressional_District = NAME, Unemployment_rate = rate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Congressional_District | Unemployment_rate |
---|---|
1 | 7.4 |
3 | 7.0 |
5 | 5.9 |
6 | 8.0 |
8 | 10.2 |
10 | 9.5 |
11 | 6.2 |
13 | 5.8 |
15 | 4.3 |
16 | 11.6 |
18 | 3.9 |
20 | 6.0 |
21 | 11.3 |
23 | 8.9 |
24 | 5.5 |
26 | 6.1 |
28 | 6.8 |
29 | 7.2 |
31 | 8.5 |
33 | 5.4 |
34 | 7.4 |
36 | 9.5 |
38 | 5.8 |
39 | 5.7 |
41 | 9.1 |
42 | 7.5 |
44 | 9.2 |
46 | 5.5 |
47 | 5.8 |
49 | 4.8 |
51 | 11.3 |
52 | 5.1 |
2 | 5.7 |
4 | 5.9 |
7 | 6.8 |
9 | 8.6 |
12 | 4.4 |
14 | 4.6 |
25 | 6.8 |
17 | 4.4 |
19 | 5.5 |
22 | 7.7 |
27 | 5.0 |
30 | 6.4 |
32 | 6.8 |
35 | 8.2 |
37 | 6.9 |
40 | 8.1 |
43 | 7.3 |
45 | 4.8 |
48 | 4.7 |
50 | 6.0 |
53 | 6.6 |
ca_assembly$rate <- 100*ca_assembly$Unemployed/(ca_assembly$Employed+ca_assembly$Unemployed)
#--------------------------------
ca_assembly %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = rate, y = reorder(NAME, rate))) +
geom_point(color = "brown", size = 1) +
labs(title = "2018 Unemployment rate by Assembly District in California",
subtitle = "American Community Survey",
y = "Assembly District ",
x = "Rate")+
theme_economist(base_size = 6.5)
ca_assembly[,c(2,9)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Assembly_District = NAME, Unemployment_rate = rate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed"))
Assembly_District | Unemployment_rate |
---|---|
1 | 6.4 |
2 | 7.0 |
3 | 8.7 |
4 | 5.8 |
5 | 7.2 |
6 | 4.8 |
7 | 7.4 |
8 | 7.6 |
9 | 8.0 |
10 | 4.4 |
11 | 7.0 |
12 | 8.6 |
13 | 9.3 |
14 | 6.9 |
15 | 5.8 |
16 | 3.7 |
17 | 4.6 |
18 | 6.3 |
19 | 4.9 |
20 | 4.8 |
21 | 12.6 |
22 | 3.8 |
23 | 7.9 |
24 | 4.1 |
25 | 4.4 |
29 | 5.5 |
26 | 9.3 |
27 | 6.2 |
28 | 4.1 |
30 | 5.8 |
31 | 11.1 |
32 | 11.7 |
33 | 11.3 |
34 | 8.3 |
35 | 5.6 |
36 | 8.8 |
37 | 5.6 |
38 | 5.6 |
39 | 6.3 |
40 | 8.4 |
41 | 5.1 |
42 | 8.6 |
43 | 6.9 |
44 | 6.2 |
45 | 6.0 |
46 | 8.0 |
47 | 9.3 |
48 | 7.0 |
49 | 5.2 |
50 | 6.0 |
51 | 8.7 |
52 | 7.8 |
53 | 6.9 |
54 | 6.4 |
55 | 5.7 |
56 | 11.9 |
57 | 6.0 |
58 | 6.3 |
59 | 9.1 |
60 | 7.1 |
61 | 9.4 |
62 | 7.1 |
63 | 8.5 |
64 | 8.8 |
65 | 5.8 |
66 | 5.0 |
67 | 9.0 |
68 | 4.8 |
69 | 5.6 |
70 | 6.5 |
71 | 7.6 |
72 | 5.2 |
73 | 4.3 |
74 | 4.7 |
75 | 5.5 |
76 | 5.2 |
77 | 5.1 |
78 | 4.9 |
79 | 7.5 |
80 | 9.8 |
ca_senate$rate <- 100*ca_senate$Unemployed/(ca_senate$Employed+ca_senate$Unemployed)
ca_senate %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = rate, y = reorder(NAME, rate))) +
geom_point(color = "darkgreen", size = 2) +
labs(title = "2018 Unemployment rate by State Senate District in California",
subtitle = "American Community Survey",
y = "",
x = "")+
theme_economist()
ca_senate[,c(2,9)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(State_Senate_District = NAME, '2018 Unemployment rate' = rate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed"))
State_Senate_District | 2018 Unemployment rate |
---|---|
1 | 5.7 |
2 | 6.0 |
3 | 6.0 |
4 | 7.5 |
5 | 8.9 |
6 | 8.1 |
7 | 5.4 |
8 | 8.0 |
9 | 6.0 |
10 | 4.6 |
11 | 4.8 |
12 | 9.7 |
13 | 3.9 |
14 | 12.0 |
15 | 5.1 |
16 | 8.6 |
17 | 5.4 |
18 | 7.2 |
19 | 6.2 |
20 | 8.6 |
21 | 8.9 |
22 | 6.2 |
23 | 8.5 |
24 | 7.6 |
25 | 5.9 |
26 | 5.6 |
27 | 5.6 |
28 | 8.6 |
29 | 5.8 |
33 | 7.8 |
30 | 7.8 |
31 | 8.2 |
32 | 5.8 |
34 | 5.3 |
35 | 8.0 |
36 | 4.7 |
37 | 4.7 |
38 | 6.1 |
39 | 5.3 |
40 | 10.2 |