Question 6.

In this exercise, you will further analyze the Wage data set considered throughout this chapter.

(a) Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polynomial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.

#Load Wage dataset. Keep an array of all cross-validation errors. We are performing K-fold cross validation with K=10.
set.seed(1)
library(ISLR)
library(boot)
all.deltas = rep(NA, 10)
for (i in 1:10) {
  glm.fit = glm(wage~poly(age, i), data=Wage)
  all.deltas[i] = cv.glm(Wage, glm.fit, K=10)$delta[2]
}
plot(1:10, all.deltas, xlab="Degree", ylab="CV error", type="l", pch=20, lwd=2, ylim=c(1590, 1700))
min.point = min(all.deltas)
sd.points = sd(all.deltas)
abline(h=min.point + 0.2 * sd.points, col="red", lty="dashed")
abline(h=min.point - 0.2 * sd.points, col="red", lty="dashed")
legend("topright", "0.2-standard deviation lines", lty="dashed", col="red")

The cv-plot with standard deviation lines show that d=3 is the smallest degree giving reasonably small cross-validation error.

We now find best degree using Anova.

fit.1 = lm(wage~poly(age, 1), data=Wage)
fit.2 = lm(wage~poly(age, 2), data=Wage)
fit.3 = lm(wage~poly(age, 3), data=Wage)
fit.4 = lm(wage~poly(age, 4), data=Wage)
fit.5 = lm(wage~poly(age, 5), data=Wage)
fit.6 = lm(wage~poly(age, 6), data=Wage)
fit.7 = lm(wage~poly(age, 7), data=Wage)
fit.8 = lm(wage~poly(age, 8), data=Wage)
fit.9 = lm(wage~poly(age, 9), data=Wage)
fit.10 = lm(wage~poly(age, 10), data=Wage)
anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
Analysis of Variance Table

Model  1: wage ~ poly(age, 1)
Model  2: wage ~ poly(age, 2)
Model  3: wage ~ poly(age, 3)
Model  4: wage ~ poly(age, 4)
Model  5: wage ~ poly(age, 5)
Model  6: wage ~ poly(age, 6)
Model  7: wage ~ poly(age, 7)
Model  8: wage ~ poly(age, 8)
Model  9: wage ~ poly(age, 9)
Model 10: wage ~ poly(age, 10)
   Res.Df     RSS Df Sum of Sq        F    Pr(>F)    
1    2998 5022216                                    
2    2997 4793430  1    228786 143.7638 < 2.2e-16 ***
3    2996 4777674  1     15756   9.9005  0.001669 ** 
4    2995 4771604  1      6070   3.8143  0.050909 .  
5    2994 4770322  1      1283   0.8059  0.369398    
6    2993 4766389  1      3932   2.4709  0.116074    
7    2992 4763834  1      2555   1.6057  0.205199    
8    2991 4763707  1       127   0.0796  0.777865    
9    2990 4756703  1      7004   4.4014  0.035994 *  
10   2989 4756701  1         3   0.0017  0.967529    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Anova shows that all polynomials above degree 3 are insignificant at 0.01 significance level.

We now plot the polynomial prediction on the data

plot(wage~age, data=Wage, col="darkgrey")
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.fit = lm(wage~poly(age, 3), data=Wage)
lm.pred = predict(lm.fit, data.frame(age=age.grid))
lines(age.grid, lm.pred, col="blue", lwd=2)

(b) Fit a step function to predict wage using age, and perform crossvalidation to choose the optimal number of cuts. Make a plot of the fit obtained.

# We use cut points of up to 10.
all.cvs = rep(NA, 10)
for (i in 2:10) {
  Wage$age.cut = cut(Wage$age, i)
  lm.fit = glm(wage~age.cut, data=Wage)
  all.cvs[i] = cv.glm(Wage, lm.fit, K=10)$delta[2]
}
plot(2:10, all.cvs[-1], xlab="Number of cuts", ylab="CV error", type="l", pch=20, lwd=2)

The cross validation shows that test error is minimum for k=8 cuts.

We now train the entire data with step function using 8 cuts and plot it.

lm.fit = glm(wage~cut(age, 8), data=Wage)
agelims = range(Wage$age)
age.grid = seq(from=agelims[1], to=agelims[2])
lm.pred = predict(lm.fit, data.frame(age=age.grid))
plot(wage~age, data=Wage, col="darkgrey")
lines(age.grid, lm.pred, col="red", lwd=2)

Question 10.

This question relates to the College data set.

(a) Split the data into a training set and a test set. Using out-of-state tuition as the response and the other variables as the predictors, perform forward stepwise selection on the training set in order to identify a satisfactory model that uses just a subset of the predictors.

set.seed(1)
library(ISLR)
library(leaps)
attach(College)
train = sample(length(Outstate), length(Outstate)/2)
test = -train
College.train = College[train, ]
College.test = College[test, ]
reg.fit = regsubsets(Outstate ~ ., data = College.train, nvmax = 17, method = "forward")
reg.summary = summary(reg.fit)
par(mfrow = c(1, 3))
plot(reg.summary$cp, xlab = "Number of Variables", ylab = "Cp", type = "l")
min.cp = min(reg.summary$cp)
std.cp = sd(reg.summary$cp)
abline(h = min.cp + 0.2 * std.cp, col = "red", lty = 2)
abline(h = min.cp - 0.2 * std.cp, col = "red", lty = 2)
plot(reg.summary$bic, xlab = "Number of Variables", ylab = "BIC", type = "l")
min.bic = min(reg.summary$bic)
std.bic = sd(reg.summary$bic)
abline(h = min.bic + 0.2 * std.bic, col = "red", lty = 2)
abline(h = min.bic - 0.2 * std.bic, col = "red", lty = 2)
plot(reg.summary$adjr2, xlab = "Number of Variables", ylab = "Adjusted R2", 
    type = "l", ylim = c(0.4, 0.84))
max.adjr2 = max(reg.summary$adjr2)
std.adjr2 = sd(reg.summary$adjr2)
abline(h = max.adjr2 + 0.2 * std.adjr2, col = "red", lty = 2)
abline(h = max.adjr2 - 0.2 * std.adjr2, col = "red", lty = 2)

All cp, BIC and adjr2 scores show that size 6 is the minimum size for the subset for which the scores are withing 0.2 standard deviations of optimum. We pick 6 as the best subset size and find best 6 variables using entire data.

reg.fit = regsubsets(Outstate ~ ., data = College, method = "forward")
coefi = coef(reg.fit, id = 6)
names(coefi)
[1] "(Intercept)" "PrivateYes"  "Room.Board"  "PhD"         "perc.alumni"
[6] "Expend"      "Grad.Rate"  

(b) Fit a GAM on the training data, using out-of-state tuition as the response and the features selected in the previous step as the predictors. Plot the results, and explain your findings.

library(gam)
Loading required package: splines
Loading required package: foreach
package 㤼㸱foreach㤼㸲 was built under R version 3.6.3
Attaching package: 㤼㸱foreach㤼㸲

The following objects are masked from 㤼㸱package:purrr㤼㸲:

    accumulate, when

Loaded gam 1.16.1
gam.fit = gam(Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, df = 2) + 
    s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, df = 2), data = College.train)
non-list contrasts argument ignored
par(mfrow = c(2, 3))
plot(gam.fit, se = T, col = "blue")

(c) Evaluate the model obtained on the test set, and explain the results obtained.

gam.pred = predict(gam.fit, College.test)
gam.err = mean((College.test$Outstate - gam.pred)^2)
gam.err
[1] 3349290
gam.tss = mean((College.test$Outstate - mean(College.test$Outstate))^2)
test.rss = 1 - gam.err/gam.tss
test.rss
[1] 0.7660016

We obtain a test R-squared of 0.77 using GAM with 6 predictors. This is a slight improvement over a test RSS of 0.74 obtained using OLS.

(d) For which variables, if any, is there evidence of a non-linear relationship with the response?

summary(gam.fit)

Call: gam(formula = Outstate ~ Private + s(Room.Board, df = 2) + s(PhD, 
    df = 2) + s(perc.alumni, df = 2) + s(Expend, df = 5) + s(Grad.Rate, 
    df = 2), data = College.train)
Deviance Residuals:
     Min       1Q   Median       3Q      Max 
-7402.89 -1114.45   -12.67  1282.69  7470.60 

(Dispersion Parameter for gaussian family taken to be 3711182)

    Null Deviance: 6989966760 on 387 degrees of freedom
Residual Deviance: 1384271126 on 373 degrees of freedom
AIC: 6987.021 

Number of Local Scoring Iterations: 2 

Anova for Parametric Effects
                        Df     Sum Sq    Mean Sq F value    Pr(>F)    
Private                  1 1778718277 1778718277 479.286 < 2.2e-16 ***
s(Room.Board, df = 2)    1 1577115244 1577115244 424.963 < 2.2e-16 ***
s(PhD, df = 2)           1  322431195  322431195  86.881 < 2.2e-16 ***
s(perc.alumni, df = 2)   1  336869281  336869281  90.771 < 2.2e-16 ***
s(Expend, df = 5)        1  530538753  530538753 142.957 < 2.2e-16 ***
s(Grad.Rate, df = 2)     1   86504998   86504998  23.309 2.016e-06 ***
Residuals              373 1384271126    3711182                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Anova for Nonparametric Effects
                       Npar Df  Npar F     Pr(F)    
(Intercept)                                         
Private                                             
s(Room.Board, df = 2)        1  1.9157    0.1672    
s(PhD, df = 2)               1  0.9699    0.3253    
s(perc.alumni, df = 2)       1  0.1859    0.6666    
s(Expend, df = 5)            4 20.5075 2.665e-15 ***
s(Grad.Rate, df = 2)         1  0.5702    0.4506    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Non-parametric Anova test shows a strong evidence of non-linear relationship between response and Expend.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IA0KICBodG1sX25vdGVib29rOg0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KLS0tDQojIyMgUXVlc3Rpb24gNi4gDQoNCl9fSW4gdGhpcyBleGVyY2lzZSwgeW91IHdpbGwgZnVydGhlciBhbmFseXplIHRoZSBgV2FnZWAgZGF0YSBzZXQgY29uc2lkZXJlZCB0aHJvdWdob3V0IHRoaXMgY2hhcHRlci5fXw0KDQpfXyhhKSBQZXJmb3JtIHBvbHlub21pYWwgcmVncmVzc2lvbiB0byBwcmVkaWN0IGB3YWdlYCB1c2luZyBgYWdlYC4gVXNlIGNyb3NzLXZhbGlkYXRpb24gdG8gc2VsZWN0IHRoZSBvcHRpbWFsIGRlZ3JlZSBkIGZvciB0aGUgcG9seW5vbWlhbC4gV2hhdCBkZWdyZWUgd2FzIGNob3NlbiwgYW5kIGhvdyBkb2VzIHRoaXMgY29tcGFyZSB0byB0aGUgcmVzdWx0cyBvZiBoeXBvdGhlc2lzIHRlc3RpbmcgdXNpbmcgQU5PVkE/IE1ha2UgYSBwbG90IG9mIHRoZSByZXN1bHRpbmcgcG9seW5vbWlhbCBmaXQgdG8gdGhlIGRhdGEuX18NCmBgYHtyfQ0KI0xvYWQgV2FnZSBkYXRhc2V0LiBLZWVwIGFuIGFycmF5IG9mIGFsbCBjcm9zcy12YWxpZGF0aW9uIGVycm9ycy4gV2UgYXJlIHBlcmZvcm1pbmcgSy1mb2xkIGNyb3NzIHZhbGlkYXRpb24gd2l0aCBLPTEwLg0Kc2V0LnNlZWQoMSkNCmxpYnJhcnkoSVNMUikNCmxpYnJhcnkoYm9vdCkNCmFsbC5kZWx0YXMgPSByZXAoTkEsIDEwKQ0KZm9yIChpIGluIDE6MTApIHsNCiAgZ2xtLmZpdCA9IGdsbSh3YWdlfnBvbHkoYWdlLCBpKSwgZGF0YT1XYWdlKQ0KICBhbGwuZGVsdGFzW2ldID0gY3YuZ2xtKFdhZ2UsIGdsbS5maXQsIEs9MTApJGRlbHRhWzJdDQp9DQpwbG90KDE6MTAsIGFsbC5kZWx0YXMsIHhsYWI9IkRlZ3JlZSIsIHlsYWI9IkNWIGVycm9yIiwgdHlwZT0ibCIsIHBjaD0yMCwgbHdkPTIsIHlsaW09YygxNTkwLCAxNzAwKSkNCm1pbi5wb2ludCA9IG1pbihhbGwuZGVsdGFzKQ0Kc2QucG9pbnRzID0gc2QoYWxsLmRlbHRhcykNCmFibGluZShoPW1pbi5wb2ludCArIDAuMiAqIHNkLnBvaW50cywgY29sPSJyZWQiLCBsdHk9ImRhc2hlZCIpDQphYmxpbmUoaD1taW4ucG9pbnQgLSAwLjIgKiBzZC5wb2ludHMsIGNvbD0icmVkIiwgbHR5PSJkYXNoZWQiKQ0KbGVnZW5kKCJ0b3ByaWdodCIsICIwLjItc3RhbmRhcmQgZGV2aWF0aW9uIGxpbmVzIiwgbHR5PSJkYXNoZWQiLCBjb2w9InJlZCIpDQpgYGANClRoZSBjdi1wbG90IHdpdGggc3RhbmRhcmQgZGV2aWF0aW9uIGxpbmVzIHNob3cgdGhhdCBkPTMgaXMgdGhlIHNtYWxsZXN0IGRlZ3JlZSBnaXZpbmcgcmVhc29uYWJseSBzbWFsbCBjcm9zcy12YWxpZGF0aW9uIGVycm9yLg0KDQpXZSBub3cgZmluZCBiZXN0IGRlZ3JlZSB1c2luZyBBbm92YS4NCmBgYHtyfQ0KZml0LjEgPSBsbSh3YWdlfnBvbHkoYWdlLCAxKSwgZGF0YT1XYWdlKQ0KZml0LjIgPSBsbSh3YWdlfnBvbHkoYWdlLCAyKSwgZGF0YT1XYWdlKQ0KZml0LjMgPSBsbSh3YWdlfnBvbHkoYWdlLCAzKSwgZGF0YT1XYWdlKQ0KZml0LjQgPSBsbSh3YWdlfnBvbHkoYWdlLCA0KSwgZGF0YT1XYWdlKQ0KZml0LjUgPSBsbSh3YWdlfnBvbHkoYWdlLCA1KSwgZGF0YT1XYWdlKQ0KZml0LjYgPSBsbSh3YWdlfnBvbHkoYWdlLCA2KSwgZGF0YT1XYWdlKQ0KZml0LjcgPSBsbSh3YWdlfnBvbHkoYWdlLCA3KSwgZGF0YT1XYWdlKQ0KZml0LjggPSBsbSh3YWdlfnBvbHkoYWdlLCA4KSwgZGF0YT1XYWdlKQ0KZml0LjkgPSBsbSh3YWdlfnBvbHkoYWdlLCA5KSwgZGF0YT1XYWdlKQ0KZml0LjEwID0gbG0od2FnZX5wb2x5KGFnZSwgMTApLCBkYXRhPVdhZ2UpDQphbm92YShmaXQuMSwgZml0LjIsIGZpdC4zLCBmaXQuNCwgZml0LjUsIGZpdC42LCBmaXQuNywgZml0LjgsIGZpdC45LCBmaXQuMTApDQpgYGANCkFub3ZhIHNob3dzIHRoYXQgYWxsIHBvbHlub21pYWxzIGFib3ZlIGRlZ3JlZSAzIGFyZSBpbnNpZ25pZmljYW50IGF0IDAuMDEgc2lnbmlmaWNhbmNlIGxldmVsLg0KDQpXZSBub3cgcGxvdCB0aGUgcG9seW5vbWlhbCBwcmVkaWN0aW9uIG9uIHRoZSBkYXRhDQpgYGB7cn0NCnBsb3Qod2FnZX5hZ2UsIGRhdGE9V2FnZSwgY29sPSJkYXJrZ3JleSIpDQphZ2VsaW1zID0gcmFuZ2UoV2FnZSRhZ2UpDQphZ2UuZ3JpZCA9IHNlcShmcm9tPWFnZWxpbXNbMV0sIHRvPWFnZWxpbXNbMl0pDQpsbS5maXQgPSBsbSh3YWdlfnBvbHkoYWdlLCAzKSwgZGF0YT1XYWdlKQ0KbG0ucHJlZCA9IHByZWRpY3QobG0uZml0LCBkYXRhLmZyYW1lKGFnZT1hZ2UuZ3JpZCkpDQpsaW5lcyhhZ2UuZ3JpZCwgbG0ucHJlZCwgY29sPSJibHVlIiwgbHdkPTIpDQpgYGANCg0KX18oYikgRml0IGEgc3RlcCBmdW5jdGlvbiB0byBwcmVkaWN0IGB3YWdlYCB1c2luZyBgYWdlYCwgYW5kIHBlcmZvcm0gY3Jvc3N2YWxpZGF0aW9uIHRvIGNob29zZSB0aGUgb3B0aW1hbCBudW1iZXIgb2YgY3V0cy4gTWFrZSBhIHBsb3Qgb2YgdGhlIGZpdCBvYnRhaW5lZC5fXw0KYGBge3J9DQojIFdlIHVzZSBjdXQgcG9pbnRzIG9mIHVwIHRvIDEwLg0KYWxsLmN2cyA9IHJlcChOQSwgMTApDQpmb3IgKGkgaW4gMjoxMCkgew0KICBXYWdlJGFnZS5jdXQgPSBjdXQoV2FnZSRhZ2UsIGkpDQogIGxtLmZpdCA9IGdsbSh3YWdlfmFnZS5jdXQsIGRhdGE9V2FnZSkNCiAgYWxsLmN2c1tpXSA9IGN2LmdsbShXYWdlLCBsbS5maXQsIEs9MTApJGRlbHRhWzJdDQp9DQpwbG90KDI6MTAsIGFsbC5jdnNbLTFdLCB4bGFiPSJOdW1iZXIgb2YgY3V0cyIsIHlsYWI9IkNWIGVycm9yIiwgdHlwZT0ibCIsIHBjaD0yMCwgbHdkPTIpDQpgYGANClRoZSBjcm9zcyB2YWxpZGF0aW9uIHNob3dzIHRoYXQgdGVzdCBlcnJvciBpcyBtaW5pbXVtIGZvciBrPTggY3V0cy4NCg0KV2Ugbm93IHRyYWluIHRoZSBlbnRpcmUgZGF0YSB3aXRoIHN0ZXAgZnVuY3Rpb24gdXNpbmcgOCBjdXRzIGFuZCBwbG90IGl0Lg0KYGBge3J9DQpsbS5maXQgPSBnbG0od2FnZX5jdXQoYWdlLCA4KSwgZGF0YT1XYWdlKQ0KYWdlbGltcyA9IHJhbmdlKFdhZ2UkYWdlKQ0KYWdlLmdyaWQgPSBzZXEoZnJvbT1hZ2VsaW1zWzFdLCB0bz1hZ2VsaW1zWzJdKQ0KbG0ucHJlZCA9IHByZWRpY3QobG0uZml0LCBkYXRhLmZyYW1lKGFnZT1hZ2UuZ3JpZCkpDQpwbG90KHdhZ2V+YWdlLCBkYXRhPVdhZ2UsIGNvbD0iZGFya2dyZXkiKQ0KbGluZXMoYWdlLmdyaWQsIGxtLnByZWQsIGNvbD0icmVkIiwgbHdkPTIpDQpgYGANCg0KIyMjIFF1ZXN0aW9uIDEwLiANCl9fVGhpcyBxdWVzdGlvbiByZWxhdGVzIHRvIHRoZSBbQ29sbGVnZV0oaHR0cHM6Ly9yZHJyLmlvL2NyYW4vSVNMUi9tYW4vQ29sbGVnZS5odG1sKSBkYXRhIHNldC5fXw0KDQpfXyhhKSBTcGxpdCB0aGUgZGF0YSBpbnRvIGEgdHJhaW5pbmcgc2V0IGFuZCBhIHRlc3Qgc2V0LiBVc2luZyBvdXQtb2Ytc3RhdGUgdHVpdGlvbiBhcyB0aGUgcmVzcG9uc2UgYW5kIHRoZSBvdGhlciB2YXJpYWJsZXMgYXMgdGhlIHByZWRpY3RvcnMsIHBlcmZvcm0gZm9yd2FyZCBzdGVwd2lzZSBzZWxlY3Rpb24gb24gdGhlIHRyYWluaW5nIHNldCBpbiBvcmRlciB0byBpZGVudGlmeSBhIHNhdGlzZmFjdG9yeSBtb2RlbCB0aGF0IHVzZXMganVzdCBhIHN1YnNldCBvZiB0aGUgcHJlZGljdG9ycy5fXw0KYGBge3J9DQpzZXQuc2VlZCgxKQ0KbGlicmFyeShJU0xSKQ0KbGlicmFyeShsZWFwcykNCmF0dGFjaChDb2xsZWdlKQ0KdHJhaW4gPSBzYW1wbGUobGVuZ3RoKE91dHN0YXRlKSwgbGVuZ3RoKE91dHN0YXRlKS8yKQ0KdGVzdCA9IC10cmFpbg0KQ29sbGVnZS50cmFpbiA9IENvbGxlZ2VbdHJhaW4sIF0NCkNvbGxlZ2UudGVzdCA9IENvbGxlZ2VbdGVzdCwgXQ0KcmVnLmZpdCA9IHJlZ3N1YnNldHMoT3V0c3RhdGUgfiAuLCBkYXRhID0gQ29sbGVnZS50cmFpbiwgbnZtYXggPSAxNywgbWV0aG9kID0gImZvcndhcmQiKQ0KcmVnLnN1bW1hcnkgPSBzdW1tYXJ5KHJlZy5maXQpDQpwYXIobWZyb3cgPSBjKDEsIDMpKQ0KcGxvdChyZWcuc3VtbWFyeSRjcCwgeGxhYiA9ICJOdW1iZXIgb2YgVmFyaWFibGVzIiwgeWxhYiA9ICJDcCIsIHR5cGUgPSAibCIpDQptaW4uY3AgPSBtaW4ocmVnLnN1bW1hcnkkY3ApDQpzdGQuY3AgPSBzZChyZWcuc3VtbWFyeSRjcCkNCmFibGluZShoID0gbWluLmNwICsgMC4yICogc3RkLmNwLCBjb2wgPSAicmVkIiwgbHR5ID0gMikNCmFibGluZShoID0gbWluLmNwIC0gMC4yICogc3RkLmNwLCBjb2wgPSAicmVkIiwgbHR5ID0gMikNCnBsb3QocmVnLnN1bW1hcnkkYmljLCB4bGFiID0gIk51bWJlciBvZiBWYXJpYWJsZXMiLCB5bGFiID0gIkJJQyIsIHR5cGUgPSAibCIpDQptaW4uYmljID0gbWluKHJlZy5zdW1tYXJ5JGJpYykNCnN0ZC5iaWMgPSBzZChyZWcuc3VtbWFyeSRiaWMpDQphYmxpbmUoaCA9IG1pbi5iaWMgKyAwLjIgKiBzdGQuYmljLCBjb2wgPSAicmVkIiwgbHR5ID0gMikNCmFibGluZShoID0gbWluLmJpYyAtIDAuMiAqIHN0ZC5iaWMsIGNvbCA9ICJyZWQiLCBsdHkgPSAyKQ0KcGxvdChyZWcuc3VtbWFyeSRhZGpyMiwgeGxhYiA9ICJOdW1iZXIgb2YgVmFyaWFibGVzIiwgeWxhYiA9ICJBZGp1c3RlZCBSMiIsIA0KICAgIHR5cGUgPSAibCIsIHlsaW0gPSBjKDAuNCwgMC44NCkpDQptYXguYWRqcjIgPSBtYXgocmVnLnN1bW1hcnkkYWRqcjIpDQpzdGQuYWRqcjIgPSBzZChyZWcuc3VtbWFyeSRhZGpyMikNCmFibGluZShoID0gbWF4LmFkanIyICsgMC4yICogc3RkLmFkanIyLCBjb2wgPSAicmVkIiwgbHR5ID0gMikNCmFibGluZShoID0gbWF4LmFkanIyIC0gMC4yICogc3RkLmFkanIyLCBjb2wgPSAicmVkIiwgbHR5ID0gMikNCmBgYA0KQWxsIGNwLCBCSUMgYW5kIGFkanIyIHNjb3JlcyBzaG93IHRoYXQgc2l6ZSA2IGlzIHRoZSBtaW5pbXVtIHNpemUgZm9yIHRoZSBzdWJzZXQgZm9yIHdoaWNoIHRoZSBzY29yZXMgYXJlIHdpdGhpbmcgMC4yIHN0YW5kYXJkIGRldmlhdGlvbnMgb2Ygb3B0aW11bS4gV2UgcGljayA2IGFzIHRoZSBiZXN0IHN1YnNldCBzaXplIGFuZCBmaW5kIGJlc3QgNiB2YXJpYWJsZXMgdXNpbmcgZW50aXJlIGRhdGEuDQoNCmBgYHtyfQ0KcmVnLmZpdCA9IHJlZ3N1YnNldHMoT3V0c3RhdGUgfiAuLCBkYXRhID0gQ29sbGVnZSwgbWV0aG9kID0gImZvcndhcmQiKQ0KY29lZmkgPSBjb2VmKHJlZy5maXQsIGlkID0gNikNCm5hbWVzKGNvZWZpKQ0KYGBgDQoNCl9fKGIpIEZpdCBhIEdBTSBvbiB0aGUgdHJhaW5pbmcgZGF0YSwgdXNpbmcgb3V0LW9mLXN0YXRlIHR1aXRpb24gYXMgdGhlIHJlc3BvbnNlIGFuZCB0aGUgZmVhdHVyZXMgc2VsZWN0ZWQgaW4gdGhlIHByZXZpb3VzIHN0ZXAgYXMgdGhlIHByZWRpY3RvcnMuIFBsb3QgdGhlIHJlc3VsdHMsIGFuZCBleHBsYWluIHlvdXIgZmluZGluZ3MuX18NCmBgYHtyfQ0KbGlicmFyeShnYW0pDQpnYW0uZml0ID0gZ2FtKE91dHN0YXRlIH4gUHJpdmF0ZSArIHMoUm9vbS5Cb2FyZCwgZGYgPSAyKSArIHMoUGhELCBkZiA9IDIpICsgDQogICAgcyhwZXJjLmFsdW1uaSwgZGYgPSAyKSArIHMoRXhwZW5kLCBkZiA9IDUpICsgcyhHcmFkLlJhdGUsIGRmID0gMiksIGRhdGEgPSBDb2xsZWdlLnRyYWluKQ0KcGFyKG1mcm93ID0gYygyLCAzKSkNCnBsb3QoZ2FtLmZpdCwgc2UgPSBULCBjb2wgPSAiYmx1ZSIpDQpgYGANCg0KX18oYykgRXZhbHVhdGUgdGhlIG1vZGVsIG9idGFpbmVkIG9uIHRoZSB0ZXN0IHNldCwgYW5kIGV4cGxhaW4gdGhlIHJlc3VsdHMgb2J0YWluZWQuX18NCmBgYHtyfQ0KZ2FtLnByZWQgPSBwcmVkaWN0KGdhbS5maXQsIENvbGxlZ2UudGVzdCkNCmdhbS5lcnIgPSBtZWFuKChDb2xsZWdlLnRlc3QkT3V0c3RhdGUgLSBnYW0ucHJlZCleMikNCmdhbS5lcnINCmBgYA0KDQpgYGB7cn0NCmdhbS50c3MgPSBtZWFuKChDb2xsZWdlLnRlc3QkT3V0c3RhdGUgLSBtZWFuKENvbGxlZ2UudGVzdCRPdXRzdGF0ZSkpXjIpDQp0ZXN0LnJzcyA9IDEgLSBnYW0uZXJyL2dhbS50c3MNCnRlc3QucnNzDQpgYGANCldlIG9idGFpbiBhIHRlc3QgUi1zcXVhcmVkIG9mIDAuNzcgdXNpbmcgR0FNIHdpdGggNiBwcmVkaWN0b3JzLiBUaGlzIGlzIGEgc2xpZ2h0IGltcHJvdmVtZW50IG92ZXIgYSB0ZXN0IFJTUyBvZiAwLjc0IG9idGFpbmVkIHVzaW5nIE9MUy4NCg0KX18oZCkgRm9yIHdoaWNoIHZhcmlhYmxlcywgaWYgYW55LCBpcyB0aGVyZSBldmlkZW5jZSBvZiBhIG5vbi1saW5lYXIgcmVsYXRpb25zaGlwIHdpdGggdGhlIHJlc3BvbnNlP19fDQpgYGB7cn0NCnN1bW1hcnkoZ2FtLmZpdCkNCmBgYA0KDQpOb24tcGFyYW1ldHJpYyBBbm92YSB0ZXN0IHNob3dzIGEgc3Ryb25nIGV2aWRlbmNlIG9mIG5vbi1saW5lYXIgcmVsYXRpb25zaGlwIGJldHdlZW4gcmVzcG9uc2UgYW5kIEV4cGVuZC4=