merged <- merged %>% 
           remove_rownames %>% 
           filter(Codi != 12)  %>% 
           column_to_rownames(var="Nom_Barri") %>% 
           select("n.tot","pc.esp","pc.ue27-esp","pc.20.34","2019-2014","n.esp.M1419",
                  "hotel2019","rest1614",
                  "RFD.2017",
                  "tot_ann","pmedio","pmedio.M1519","pm_ent.M1519","pm_priv.M1519",
                  "alq.num","alq.pm","alq.pm.M1519","alq.num.M1519",
                  "tot.comp","tot.eur","perc.nou.comp","perc.usat.comp","tot.comp.M1419",
                  "nou.eur.M1419","usat.eur.M1419",
                  "percbar.filt.A", "percbar.filt"
                   )

list <- colnames(merged)
minmax <- list
minmax <- as.data.frame(minmax)
list2 <- list()

SUMMARY

summary(merged)
##      n.tot           pc.esp       pc.ue27-esp        pc.20.34    
##  Min.   :  686   Min.   :43.73   Min.   : 0.880   Min.   :13.19  
##  1st Qu.:11558   1st Qu.:77.85   1st Qu.: 3.030   1st Qu.:17.07  
##  Median :21791   Median :83.44   Median : 4.947   Median :18.01  
##  Mean   :22905   Mean   :80.67   Mean   : 7.199   Mean   :18.96  
##  3rd Qu.:31359   3rd Qu.:85.61   3rd Qu.: 8.534   3rd Qu.:20.11  
##  Max.   :58642   Max.   :94.09   Max.   :43.067   Max.   :36.59  
##    2019-2014        n.esp.M1419         hotel2019          rest1614      
##  Min.   :-8766.0   Min.   :-2311.00   Min.   :   0.00   Min.   :-75.000  
##  1st Qu.:  205.0   1st Qu.: -648.50   1st Qu.:  20.25   1st Qu.: -5.000  
##  Median :  495.0   Median : -232.50   Median :  73.50   Median :  0.500  
##  Mean   :  664.8   Mean   : -392.72   Mean   : 279.61   Mean   :  1.069  
##  3rd Qu.:  980.2   3rd Qu.:   -8.25   3rd Qu.: 272.25   3rd Qu.:  6.000  
##  Max.   : 3989.0   Max.   :  462.00   Max.   :3115.00   Max.   : 79.000  
##     RFD.2017         tot_ann            pmedio        pmedio.M1519    
##  Min.   : 38.60   Min.   :   0.00   Min.   :  0.00   Min.   :-73.150  
##  1st Qu.: 66.83   1st Qu.:  29.75   1st Qu.: 45.37   1st Qu.: -7.244  
##  Median : 83.10   Median :  99.50   Median : 70.81   Median : 10.828  
##  Mean   : 94.42   Mean   : 283.53   Mean   : 90.80   Mean   : 24.807  
##  3rd Qu.:105.80   3rd Qu.: 268.25   3rd Qu.:105.40   3rd Qu.: 30.089  
##  Max.   :248.80   Max.   :2099.00   Max.   :344.80   Max.   :260.705  
##   pm_ent.M1519       pm_priv.M1519         alq.num           alq.pm      
##  Min.   :-107.1184   Min.   :-59.0000   Min.   :  2.00   Min.   :   0.0  
##  1st Qu.:  -0.0525   1st Qu.:  0.7741   1st Qu.: 52.75   1st Qu.: 754.3  
##  Median :  23.7477   Median :  8.4181   Median :109.50   Median : 865.2  
##  Mean   :  53.0906   Mean   :  6.8620   Mean   :169.62   Mean   : 869.9  
##  3rd Qu.:  73.2969   3rd Qu.: 14.8500   3rd Qu.:249.75   3rd Qu.:1002.3  
##  Max.   : 635.8342   Max.   : 44.2917   Max.   :659.00   Max.   :1950.1  
##   alq.pm.M1519    alq.num.M1519       tot.comp        tot.eur      
##  Min.   :-303.8   Min.   :-72.00   Min.   :  5.0   Min.   :   0.0  
##  1st Qu.: 184.0   1st Qu.: 11.00   1st Qu.: 80.0   1st Qu.: 193.2  
##  Median : 237.3   Median : 27.00   Median :153.0   Median : 267.8  
##  Mean   : 239.0   Mean   : 53.97   Mean   :187.7   Mean   : 312.7  
##  3rd Qu.: 292.3   3rd Qu.: 75.00   3rd Qu.:259.8   3rd Qu.: 369.3  
##  Max.   : 714.4   Max.   :244.00   Max.   :619.0   Max.   :1125.3  
##  perc.nou.comp    perc.usat.comp   tot.comp.M1419   nou.eur.M1419     
##  Min.   : 0.000   Min.   : 50.00   Min.   :-62.00   Min.   :-495.300  
##  1st Qu.: 0.000   1st Qu.: 86.65   1st Qu.:  1.50   1st Qu.:  -7.125  
##  Median : 2.683   Median : 97.21   Median : 37.00   Median :   0.350  
##  Mean   : 7.794   Mean   : 91.99   Mean   : 40.72   Mean   : 111.703  
##  3rd Qu.:12.123   3rd Qu.:100.00   3rd Qu.: 62.00   3rd Qu.: 205.350  
##  Max.   :50.000   Max.   :100.00   Max.   :291.00   Max.   :2600.700  
##  usat.eur.M1419    percbar.filt.A    percbar.filt   
##  Min.   :-141.30   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  55.73   1st Qu.: 39.86   1st Qu.: 46.46  
##  Median :  87.35   Median : 46.31   Median : 57.54  
##  Mean   :  92.74   Mean   : 45.78   Mean   : 53.22  
##  3rd Qu.: 119.85   3rd Qu.: 50.15   3rd Qu.: 62.71  
##  Max.   : 517.50   Max.   :100.00   Max.   :100.00
for  (i in 1:25)
{
IRQ <- IQR(merged[,i])
Q <- quantile(merged[,i], c(0.25,0.5,0.75), type=7)

minmax[i,2] <- outl_min<-as.numeric(Q[1])-3*IRQ
minmax[i,3] <- outl_max<-as.numeric(Q[3])+3*IRQ

#bp <- boxplot(merged[,1][merged[,1]>outl_min & merged[,1]<outl_max], decreasing = FALSE)
out <- print(which(merged[,i] < outl_min | merged[,i] > outl_max))

if (length(out) != 0)
{
bout  <-merged[which(merged[,i] < outl_min | merged[,i] > outl_max), ]
 # print(bout)
  assign(list[i], bout)
  list2 <- append(list2, list[i])
}
}
## integer(0)
## [1] 1 2
## [1] 2 3 4
## [1] 1 2 3 4
## [1]  2 67 68
## integer(0)
## [1]  1  2  6  7  8 30
##  [1]  1  2  4  7 11 14 16 17 30 58 66 68
## [1] 20
## [1]  1  2  4  6  7  8 10 11 30
## [1] 24
## [1] 10 24 26
## [1] 24 35
## [1] 52 55
## integer(0)
## [1] 20 41 46 53 55 57
## [1] 20 48 57
## integer(0)
## integer(0)
## [1] 20
## [1] 41
## integer(0)
## [1] 59
## [1]  5 20
## [1] 57 68

VALORES MINMAX outl_min<-(Q[1])-1.5IRQ outl_max<-(Q[3])-1.5IRQ

minmax
##            minmax            V2          V3
## 1           n.tot -47846.000000 90762.75000
## 2          pc.esp     54.538055   108.92201
## 3     pc.ue27-esp    -13.481301    25.04596
## 4        pc.20.34      7.963631    29.21494
## 5       2019-2014  -2120.750000  3306.00000
## 6     n.esp.M1419  -2569.250000  1912.50000
## 7       hotel2019   -735.750000  1028.25000
## 8        rest1614    -38.000000    39.00000
## 9        RFD.2017    -50.100000   222.72500
## 10        tot_ann   -685.750000   983.75000
## 11         pmedio   -134.720993   285.49738
## 12   pmedio.M1519   -119.241496   142.08705
## 13   pm_ent.M1519   -220.100757   293.34521
## 14  pm_priv.M1519    -41.453688    57.07773
## 15        alq.num   -538.250000   840.75000
## 16         alq.pm     10.161773  1746.46574
## 17   alq.pm.M1519   -141.089218   617.38882
## 18  alq.num.M1519   -181.000000   267.00000
## 19       tot.comp   -459.250000   799.00000
## 20        tot.eur   -335.175000   897.70000
## 21  perc.nou.comp    -36.370510    48.49401
## 22 perc.usat.comp     46.614173   140.03937
## 23 tot.comp.M1419   -180.000000   243.50000
## 24  nou.eur.M1419   -644.550000   842.77500
## 25 usat.eur.M1419   -136.650000   312.22500
## 26 percbar.filt.A            NA          NA
## 27   percbar.filt            NA          NA

OUTLIERS DE CADA VARIABLE solo n.tot no tiene

for  (i in list2)
{x <- get(i)
x <- x[i]
print(x)
}
##                  pc.esp
## el Raval       48.09823
## el Barri Gòtic 43.72784
##                                       pc.ue27-esp
## el Barri Gòtic                           43.06665
## la Barceloneta                           28.23924
## Sant Pere, Santa Caterina i la Ribera    36.62403
##                                       pc.20.34
## el Raval                              29.23370
## el Barri Gòtic                        36.59020
## la Barceloneta                        30.46200
## Sant Pere, Santa Caterina i la Ribera 30.17264
##                                              2019-2014
## el Barri Gòtic                                   -8766
## el Poblenou                                       3989
## Diagonal Mar i el Front Marítim del Poblenou      3850
##                                 hotel2019
## el Raval                             1085
## el Barri Gòtic                       1112
## la Sagrada Família                   1106
## la Dreta de l'Eixample               3115
## l'Antiga Esquerra de l'Eixample      1559
## la Vila de Gràcia                    1327
##                                              rest1614
## el Raval                                          -75
## el Barri Gòtic                                    -59
## Sant Pere, Santa Caterina i la Ribera             -41
## la Dreta de l'Eixample                             79
## el Poble Sec                                      -48
## Hostafrancs                                        62
## Sants - Badal                                      43
## Sants                                              68
## la Vila de Gràcia                                 -65
## el Bon Pastor                                      44
## la Vila Olímpica del Poblenou                      68
## Diagonal Mar i el Front Marítim del Poblenou       45
##           RFD.2017
## Pedralbes    248.8
##                                       tot_ann
## el Raval                                 1781
## el Barri Gòtic                           1423
## Sant Pere, Santa Caterina i la Ribera    1273
## la Sagrada Família                       1101
## la Dreta de l'Eixample                   2099
## l'Antiga Esquerra de l'Eixample          1079
## Sant Antoni                               999
## el Poble Sec                             1112
## la Vila de Gràcia                        1122
##                              pmedio
## Sant Gervasi - la Bonanova 344.7963
##                            pmedio.M1519
## Sant Antoni                    173.7692
## Sant Gervasi - la Bonanova     260.7054
## el Putxet i el Farró           163.8440
##                            pm_ent.M1519
## Sant Gervasi - la Bonanova     635.8342
## la Font d'en Fargues           491.0000
##                  pm_priv.M1519
## la Trinitat Nova     -48.77778
## Vallbona             -59.00000
##                 alq.pm
## Pedralbes     1950.055
## la Clota         0.000
## Can Peguera      0.000
## Torre Baró       0.000
## Vallbona         0.000
## Baró de Viver    0.000
##               alq.pm.M1519
## Pedralbes         699.2251
## Canyelles         714.4444
## Baró de Viver    -303.7962
##           tot.eur
## Pedralbes  1125.3
##          perc.nou.comp
## la Clota            50
##             tot.comp.M1419
## Sant Andreu            291
##               nou.eur.M1419
## el Fort Pienc        2040.3
## Pedralbes            2600.7
##                                              usat.eur.M1419
## Baró de Viver                                         517.5
## Diagonal Mar i el Front Marítim del Poblenou         -141.3

SCALED

merged.sc <- scale(merged)
summary(merged.sc)
##      n.tot              pc.esp         pc.ue27-esp         pc.20.34      
##  Min.   :-1.51816   Min.   :-4.0958   Min.   :-0.8614   Min.   :-1.4824  
##  1st Qu.:-0.77532   1st Qu.:-0.3127   1st Qu.:-0.5683   1st Qu.:-0.4843  
##  Median :-0.07612   Median : 0.3075   Median :-0.3070   Median :-0.2420  
##  Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.57764   3rd Qu.: 0.5487   3rd Qu.: 0.1820   3rd Qu.: 0.2961  
##  Max.   : 2.44180   Max.   : 1.4883   Max.   : 4.8896   Max.   : 4.5333  
##    2019-2014        n.esp.M1419        hotel2019           rest1614       
##  Min.   :-6.2892   Min.   :-3.3793   Min.   :-0.56748   Min.   :-2.89006  
##  1st Qu.:-0.3066   1st Qu.:-0.4506   1st Qu.:-0.52638   1st Qu.:-0.23059  
##  Median :-0.1132   Median : 0.2823   Median :-0.41831   Median :-0.02163  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.00000  
##  3rd Qu.: 0.2104   3rd Qu.: 0.6773   3rd Qu.:-0.01494   3rd Qu.: 0.18732  
##  Max.   : 2.2169   Max.   : 1.5057   Max.   : 5.75454   Max.   : 2.96077  
##     RFD.2017          tot_ann             pmedio         pmedio.M1519     
##  Min.   :-1.3124   Min.   :-0.63599   Min.   :-1.3446   Min.   :-1.78829  
##  1st Qu.:-0.6488   1st Qu.:-0.56926   1st Qu.:-0.6727   1st Qu.:-0.58512  
##  Median :-0.2661   Median :-0.41280   Median :-0.2961   Median :-0.25521  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.00000  
##  3rd Qu.: 0.2677   3rd Qu.:-0.03427   3rd Qu.: 0.2162   3rd Qu.: 0.09642  
##  Max.   : 3.6301   Max.   : 4.07236   Max.   : 3.7610   Max.   : 4.30652  
##   pm_ent.M1519     pm_priv.M1519         alq.num            alq.pm        
##  Min.   :-1.4640   Min.   :-4.01762   Min.   :-1.0535   Min.   :-2.51910  
##  1st Qu.:-0.4856   1st Qu.:-0.37137   1st Qu.:-0.7346   1st Qu.:-0.33488  
##  Median :-0.2681   Median : 0.09492   Median :-0.3779   Median :-0.01371  
##  Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000   Mean   : 0.00000  
##  3rd Qu.: 0.1847   3rd Qu.: 0.48727   3rd Qu.: 0.5036   3rd Qu.: 0.38339  
##  Max.   : 5.3253   Max.   : 2.28323   Max.   : 3.0758   Max.   : 3.12773  
##   alq.pm.M1519     alq.num.M1519        tot.comp          tot.eur       
##  Min.   :-3.8223   Min.   :-1.9321   Min.   :-1.2347   Min.   :-1.7110  
##  1st Qu.:-0.3874   1st Qu.:-0.6591   1st Qu.:-0.7277   1st Qu.:-0.6537  
##  Median :-0.0116   Median :-0.4137   Median :-0.2342   Median :-0.2458  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.3756   3rd Qu.: 0.3225   3rd Qu.: 0.4873   3rd Qu.: 0.3101  
##  Max.   : 3.3482   Max.   : 2.9146   Max.   : 2.9157   Max.   : 4.4471  
##  perc.nou.comp     perc.usat.comp    tot.comp.M1419     nou.eur.M1419    
##  Min.   :-0.7483   Min.   :-3.9519   Min.   :-1.67972   Min.   :-1.3914  
##  1st Qu.:-0.7483   1st Qu.:-0.5019   1st Qu.:-0.64137   1st Qu.:-0.2724  
##  Median :-0.4908   Median : 0.4922   Median :-0.06087   Median :-0.2553  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.00000   Mean   : 0.0000  
##  3rd Qu.: 0.4157   3rd Qu.: 0.7544   3rd Qu.: 0.34794   3rd Qu.: 0.2147  
##  Max.   : 4.0522   Max.   : 0.7544   Max.   : 4.09257   Max.   : 5.7055  
##  usat.eur.M1419     percbar.filt.A      percbar.filt    
##  Min.   :-2.90215   Min.   :-3.21081   Min.   :-2.9322  
##  1st Qu.:-0.45904   1st Qu.:-0.41538   1st Qu.:-0.3723  
##  Median :-0.06689   Median : 0.03696   Median : 0.2381  
##  Mean   : 0.00000   Mean   : 0.00000   Mean   : 0.0000  
##  3rd Qu.: 0.33611   3rd Qu.: 0.30688   3rd Qu.: 0.5231  
##  Max.   : 5.26698   Max.   : 3.80305   Max.   : 2.5779

CLUSTER

set.seed(123)
finalK <- kmeans(merged.sc, centers = 5, nstart = 100)
ann <- finalK$centers
ann <- as.data.frame(ann)
merged$cluster <- finalK$cluster

ANOVA MEAN+SD CLUSTER

for  (i in 1:26)
{
min <- aggregate(merged[,i] ~ cluster, data = merged, FUN = mean)
sdd <- aggregate(merged[,i] ~ cluster, data = merged, FUN = sd)
sdmin <- merge(min,sdd,by="cluster",all.y=TRUE)
colnames(sdmin)<- c(paste0(list[i]),"mean","sd")

print(sdmin)
}
##   n.tot     mean        sd
## 1     1 26455.00 14922.839
## 2     2 17790.94 12119.641
## 3     3 19689.73  8549.702
## 4     4 43952.08  7202.346
## 5     5 15505.42 10515.134
##   pc.esp     mean       sd
## 1      1 51.94028 7.582845
## 2      2 82.60935 5.549095
## 3      3 84.27693 5.028063
## 4      4 78.71882 5.378709
## 5      5 83.85759 5.318977
##   pc.ue27-esp      mean       sd
## 1           1 32.556091 9.146157
## 2           2  3.998640 2.640868
## 3           3  7.666938 3.082958
## 4           4  9.649185 3.404287
## 5           5  4.196735 1.676709
##   pc.20.34     mean       sd
## 1        1 31.61463 3.358223
## 2        2 17.76062 1.833073
## 3        3 16.91618 2.581906
## 4        4 20.94842 1.835231
## 5        5 17.63229 1.484560
##   2019-2014       mean        sd
## 1         1 -1803.5000 4748.5513
## 2         2   651.0000  907.3169
## 3         3  1440.0000 1441.6681
## 4         4   874.3846  685.4564
## 5         5   586.6667  875.3134
##   n.esp.M1419       mean       sd
## 1           1 -1134.5000 335.9926
## 2           2  -161.5938 300.5875
## 3           3  -140.6364 211.1569
## 4           4 -1166.3846 621.8460
## 5           5  -154.7500 379.2915
##   hotel2019      mean       sd
## 1         1 751.50000 416.0389
## 2         2  79.43750 107.9925
## 3         3 134.36364 100.4990
## 4         4 978.92308 749.6974
## 5         5  31.66667  30.8260
##   rest1614        mean        sd
## 1        1 -50.0000000 21.694853
## 2        2   2.6250000 13.197629
## 3        3  17.0000000 27.509998
## 4        4  -0.1538462 42.258818
## 5        5   0.6666667  2.269695
##   RFD.2017      mean       sd
## 1        1  89.07500 16.38849
## 2        2  69.46875 22.30390
## 3        3 155.20909 51.78844
## 4        4 116.99231 33.09734
## 5        5  82.54167 17.11472
##   tot_ann       mean        sd
## 1       1 1235.75000 555.65659
## 2       2   68.78125  68.18321
## 3       3  158.09091 145.52488
## 4       4  820.30769 518.72607
## 5       5   72.25000  62.09395
##   pmedio      mean        sd
## 1      1  86.93437  8.952207
## 2      2  52.86485 23.667586
## 3      3 183.95403 78.394334
## 4      4 141.19450 61.702368
## 5      5  53.28492 26.275791
##   pmedio.M1519       mean       sd
## 1            1 -6.2389287 45.05626
## 2            2  1.4206520 21.69803
## 3            3 89.1021506 74.67913
## 4            4 61.2275704 56.23935
## 5            5 -0.8706408 24.57228
##   pm_ent.M1519       mean        sd
## 1            1 -12.154780  64.65317
## 2            2  17.025960  39.68130
## 3            3 204.440804 191.63061
## 4            4  79.588133  59.39082
## 5            5   3.568255  52.34323
##   pm_priv.M1519      mean        sd
## 1             1 18.355969  4.897977
## 2             2  4.280258 20.535113
## 3             3  5.022687 12.248069
## 4             4 14.928615  9.722295
## 5             5  2.862696 11.618596
##   alq.num      mean        sd
## 1       1 270.25000 153.13910
## 2       2  87.09375  66.54921
## 3       3 156.90909 100.21722
## 4       4 434.69231 126.33183
## 5       5  80.66667  51.50169
##   alq.pm      mean       sd
## 1      1  960.8175 107.5058
## 2      2  691.7836 302.8195
## 3      3 1265.7178 336.6723
## 4      4 1058.9407 171.1282
## 5      5  747.1656 250.0849
##   alq.pm.M1519     mean        sd
## 1            1 301.6976  27.76881
## 2            2 181.9992 152.47071
## 3            3 358.1977 159.38244
## 4            4 298.4240  37.02829
## 5            5 196.3789  92.74132
##   alq.num.M1519      mean       sd
## 1             1  62.75000 93.50356
## 2             2  19.25000 21.70328
## 3             3  62.00000 45.15307
## 4             4 158.46154 60.20052
## 5             5  23.08333 19.37411
##   tot.comp     mean        sd
## 1        1 286.0000 113.54588
## 2        2 161.6562 141.55510
## 3        3 125.0000  80.82698
## 4        4 306.0769 133.84161
## 5        5 153.3333 168.89444
##   tot.eur     mean        sd
## 1       1 292.4000  96.19948
## 2       2 221.5281 106.51172
## 3       3 565.4455 255.55034
## 4       4 396.3615 116.39838
## 5       5 240.0250  68.10376
##   perc.nou.comp      mean       sd
## 1             1  9.225648 8.981480
## 2             2  1.493168 2.313484
## 3             3  7.131685 7.013079
## 4             4  6.490874 5.957947
## 5             5 26.139675 9.686588
##   perc.usat.comp     mean       sd
## 1              1 90.69345 8.942009
## 2              2 98.44440 2.377027
## 3              3 92.86832 7.013079
## 4              4 93.17759 6.126398
## 5              5 73.09209 9.555946
##   tot.comp.M1419      mean       sd
## 1              1  9.000000 37.97368
## 2              2 59.250000 56.26321
## 3              3 -1.909091 34.55273
## 4              4 38.615385 64.22297
## 5              5 43.250000 77.75267
##   nou.eur.M1419      mean       sd
## 1             1 200.75000 165.0946
## 2             2  11.69063 192.0564
## 3             3 251.08182 867.1289
## 4             4 229.59231 574.3115
## 5             5  93.24167  73.3617
##   usat.eur.M1419      mean        sd
## 1              1  89.50000  23.33652
## 2              2  75.45625  91.60477
## 3              3 125.48182 108.41505
## 4              4 128.83077  44.73590
## 5              5  70.82500  36.11296
##   percbar.filt.A     mean        sd
## 1              1 46.09992  3.999831
## 2              2 44.57572 17.777032
## 3              3 50.02645 10.403905
## 4              4 49.22589  4.330275
## 5              5 41.24751 15.475492

ANOVA

merged$cluster <- as.factor(merged$cluster)
for  (i in 1:25)
{
maov <- aov(merged[,i] ~ cluster, data = merged)
vvv <- summary(maov)
print(paste0(list[i]))
print(vvv)
}
## [1] "n.tot"
##             Df    Sum Sq   Mean Sq F value   Pr(>F)    
## cluster      4 7.417e+09 1.854e+09   15.95 3.22e-09 ***
## Residuals   67 7.791e+09 1.163e+08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.esp"
##             Df Sum Sq Mean Sq F value  Pr(>F)    
## cluster      4   3736   934.1   30.71 1.6e-14 ***
## Residuals   67   2038    30.4                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.ue27-esp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 3088.3   772.1   70.65 <2e-16 ***
## Residuals   67  732.2    10.9                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pc.20.34"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4  805.1  201.27   50.07 <2e-16 ***
## Residuals   67  269.3    4.02                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "2019-2014"
##             Df    Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  31630691 7907673   4.139 0.00468 **
## Residuals   67 128016347 1910692                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "n.esp.M1419"
##             Df   Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 13070174 3267543   22.32 9.58e-12 ***
## Residuals   67  9808275  146392                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "hotel2019"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 9500206 2375052   20.57 4.31e-11 ***
## Residuals   67 7736807  115475                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "rest1614"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  13323    3331   6.222 0.000256 ***
## Residuals   67  35866     535                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "RFD.2017"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  69002   17250   19.45 1.16e-10 ***
## Residuals   67  59415     887                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot_ann"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 9557086 2389271   35.16 8.31e-16 ***
## Residuals   67 4553488   67963                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 191468   47867   24.23  2e-12 ***
## Residuals   67 132343    1975                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pmedio.M1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  91985   22996   12.73 9.24e-08 ***
## Residuals   67 121051    1807                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_ent.M1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 349182   87295   11.67 2.99e-07 ***
## Residuals   67 501041    7478                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "pm_priv.M1519"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4   1817   454.2   1.763  0.147
## Residuals   67  17264   257.7               
## [1] "alq.num"
##             Df  Sum Sq Mean Sq F value Pr(>F)    
## cluster      4 1268597  317149   40.19 <2e-16 ***
## Residuals   67  528776    7892                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm"
##             Df  Sum Sq Mean Sq F value  Pr(>F)    
## cluster      4 3417005  854251   11.33 4.4e-07 ***
## Residuals   67 5050229   75377                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.pm.M1519"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4  343688   85922   5.291 0.000918 ***
## Residuals   67 1088071   16240                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "alq.num.M1519"
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 192981   48245    29.7 3.24e-14 ***
## Residuals   67 108837    1624                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp"
##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## cluster      4  299944   74986   4.007 0.00566 **
## Residuals   67 1253923   18715                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.eur"
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## cluster      4 1124695  281174   15.12 7.41e-09 ***
## Residuals   67 1246112   18599                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.nou.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4   5344  1336.1   37.97 <2e-16 ***
## Residuals   67   2358    35.2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "perc.usat.comp"
##             Df Sum Sq Mean Sq F value Pr(>F)    
## cluster      4   5652  1413.1   40.09 <2e-16 ***
## Residuals   67   2362    35.2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "tot.comp.M1419"
##             Df Sum Sq Mean Sq F value Pr(>F)  
## cluster      4  35136    8784   2.554 0.0468 *
## Residuals   67 230392    3439                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [1] "nou.eur.M1419"
##             Df   Sum Sq Mean Sq F value Pr(>F)
## cluster      4   750250  187563   0.985  0.422
## Residuals   67 12761554  190471               
## [1] "usat.eur.M1419"
##             Df Sum Sq Mean Sq F value Pr(>F)
## cluster      4  44090   11022   1.768  0.146
## Residuals   67 417668    6234