Carregamos a Biblioteca necessária
library(irr)
## Loading required package: lpSolve
Carregamos o dataset com as avaliações local, por street view e realidade virtual
data(diagnoses)
dat <- diagnoses[,1:6]
dat$rater1 = as.integer(dat$rater1)
dat$rater2 = as.integer(dat$rater2)
dat$rater3 = as.integer(dat$rater3)
dat$rater4 = as.integer(dat$rater4)
dat$rater5 = as.integer(dat$rater5)
dat$rater6 = as.integer(dat$rater6)
names(dat) = c("Local_01", "Local_02", "Street_01", "Street_02", "RV_01", "RV_02")
avaliacoes = dat
avaliacoes
kappa2(avaliacoes[,c(1,2)], "squared")
## Cohen's Kappa for 2 Raters (Weights: squared)
##
## Subjects = 30
## Raters = 2
## Kappa = 0.655
##
## z = 3.91
## p-value = 9.37e-05
kappa2(avaliacoes[,c(3,4)], "squared")
## Cohen's Kappa for 2 Raters (Weights: squared)
##
## Subjects = 30
## Raters = 2
## Kappa = 0.647
##
## z = 3.79
## p-value = 0.000152
kappa2(avaliacoes[,c(5,6)], "squared")
## Cohen's Kappa for 2 Raters (Weights: squared)
##
## Subjects = 30
## Raters = 2
## Kappa = 0.571
##
## z = 4.12
## p-value = 3.86e-05
kappam.fleiss(avaliacoes[,1:4])
## Fleiss' Kappa for m Raters
##
## Subjects = 30
## Raters = 4
## Kappa = 0.489
##
## z = 13
## p-value = 0
kappam.fleiss(avaliacoes)
## Fleiss' Kappa for m Raters
##
## Subjects = 30
## Raters = 6
## Kappa = 0.282
##
## z = 11.6
## p-value = 0
icc(avaliacoes, model="twoway", type="agreement")
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : agreement
##
## Subjects = 30
## Raters = 6
## ICC(A,1) = 0.373
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(29,33.7) = 7.03 , p = 1.21e-07
##
## 95%-Confidence Interval for ICC Population Values:
## 0.196 < ICC < 0.572
icc(avaliacoes, model="oneway", type="agreement")
## Single Score Intraclass Correlation
##
## Model: oneway
## Type : agreement
##
## Subjects = 30
## Raters = 6
## ICC(1) = 0.345
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(29,150) = 4.16 , p = 4.16e-09
##
## 95%-Confidence Interval for ICC Population Values:
## 0.198 < ICC < 0.531