This is an R Markdown document.
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
library(foreign)
library(haven)
library(sjlabelled)
##
## Attaching package: 'sjlabelled'
## The following objects are masked from 'package:haven':
##
## as_factor, read_sas, read_spss, read_stata, write_sas, zap_labels
ZA6861_v1_2_0 <- read_sav("ZA6861_v1-2-0.sav")
data <- as.data.frame(ZA6861_v1_2_0)
attach(data)
## The following object is masked from package:base:
##
## version
EUcountry = as.factor(isocntry)
From QD10 of the EB460:
##
## Conditional inference tree with 8 terminal nodes
##
## Response: qd10fact
## Input: EUcountry
## Number of observations: 27901
##
## 1) EUcountry == {AT, CY, FR, GB-NIR, GR, HR, HU, IT, LU, RO, SI}; criterion = 1, statistic = 2143.988
## 2) EUcountry == {AT, CY, FR, GR, HR, HU, LU, SI}; criterion = 1, statistic = 355.426
## 3) EUcountry == {CY, GR, HR}; criterion = 1, statistic = 169.511
## 4)* weights = 2559
## 3) EUcountry == {AT, FR, HU, LU, SI}
## 5)* weights = 4595
## 2) EUcountry == {GB-NIR, IT, RO}
## 6) EUcountry == {IT, RO}; criterion = 1, statistic = 55.938
## 7)* weights = 2055
## 6) EUcountry == {GB-NIR}
## 8)* weights = 309
## 1) EUcountry == {BE, BG, CZ, DE-E, DE-W, DK, EE, ES, FI, GB-GBN, IE, LT, LV, MT, NL, PL, PT, SE, SK}
## 9) EUcountry == {BG, DE-E, DE-W, EE, ES, GB-GBN, IE, LT, LV, MT, PL, PT, SK}; criterion = 1, statistic = 1212.273
## 10) EUcountry == {DE-E, EE, LT, LV, PL}; criterion = 1, statistic = 349.061
## 11)* weights = 4545
## 10) EUcountry == {BG, DE-W, ES, GB-GBN, IE, MT, PT, SK}
## 12)* weights = 7723
## 9) EUcountry == {BE, CZ, DK, FI, NL, SE}
## 13) EUcountry == {DK, NL, SE}; criterion = 1, statistic = 384.271
## 14)* weights = 3022
## 13) EUcountry == {BE, CZ, FI}
## 15)* weights = 3093
Plot
From QD12_6 of the EB460:
##
## Conditional inference tree with 7 terminal nodes
##
## Response: qd12_6fact
## Input: EUcountry
## Number of observations: 27901
##
## 1) EUcountry == {CY, ES, GR, HR, LT, LV, PT}; criterion = 1, statistic = 3474.163
## 2) EUcountry == {CY, ES, GR, PT}; criterion = 1, statistic = 168.25
## 3) EUcountry == {CY, ES, GR}; criterion = 1, statistic = 73.489
## 4)* weights = 2535
## 3) EUcountry == {PT}
## 5)* weights = 1061
## 2) EUcountry == {HR, LT, LV}
## 6)* weights = 3053
## 1) EUcountry == {AT, BE, BG, CZ, DE-E, DE-W, DK, EE, FI, FR, GB-GBN, GB-NIR, HU, IE, IT, LU, MT, NL, PL, RO, SE, SI, SK}
## 7) EUcountry == {DK, NL, SE}; criterion = 1, statistic = 1721.959
## 8) EUcountry == {NL}; criterion = 1, statistic = 61.602
## 9)* weights = 1015
## 8) EUcountry == {DK, SE}
## 10)* weights = 2007
## 7) EUcountry == {AT, BE, BG, CZ, DE-E, DE-W, EE, FI, FR, GB-GBN, GB-NIR, HU, IE, IT, LU, MT, PL, RO, SI, SK}
## 11) EUcountry == {AT, BG, DE-E, EE, FR, GB-NIR, HU, IE, IT, LU, MT, RO, SI, SK}; criterion = 1, statistic = 841.402
## 12)* weights = 12070
## 11) EUcountry == {BE, CZ, DE-W, FI, GB-GBN, PL}
## 13)* weights = 6160
Plot ## Robots and drones deliver goods (Q13_4)
From QD13_4 of the EB460:
##
## Conditional inference tree with 8 terminal nodes
##
## Response: qd13_4fact
## Input: EUcountry
## Number of observations: 27901
##
## 1) EUcountry == {AT, CY, DE-E, DE-W, ES, FR, GB-GBN, GB-NIR, GR, HR, HU, IE, LT, LU, LV, MT, PT, SI}; criterion = 1, statistic = 3631.414
## 2) EUcountry == {AT, CY, DE-E, DE-W, ES, FR, GB-GBN, GB-NIR, GR, HR, HU, IE, LU, MT, PT, SI}; criterion = 1, statistic = 1090.725
## 3) EUcountry == {CY, DE-E, FR, GR, LU, MT, SI}; criterion = 1, statistic = 835.748
## 4)* weights = 5067
## 3) EUcountry == {AT, DE-W, ES, GB-GBN, GB-NIR, HR, HU, IE, PT}
## 5)* weights = 8576
## 2) EUcountry == {LT, LV}
## 6) EUcountry == {LT}; criterion = 0.968, statistic = 21.118
## 7)* weights = 1001
## 6) EUcountry == {LV}
## 8)* weights = 1004
## 1) EUcountry == {BE, BG, CZ, DK, EE, FI, IT, NL, PL, RO, SE, SK}
## 9) EUcountry == {BE, BG, FI, IT, NL, RO, SK}; criterion = 1, statistic = 1331.377
## 10) EUcountry == {BE, FI, IT, NL, RO}; criterion = 1, statistic = 652.394
## 11)* weights = 5105
## 10) EUcountry == {BG, SK}
## 12)* weights = 2058
## 9) EUcountry == {CZ, DK, EE, PL, SE}
## 13) EUcountry == {EE, PL}; criterion = 1, statistic = 214.17
## 14)* weights = 2025
## 13) EUcountry == {CZ, DK, SE}
## 15)* weights = 3065
Plot ## Autonomous vehicles (Q13_5)
From QD13_5 of the EB460:
##
## Conditional inference tree with 8 terminal nodes
##
## Response: qd13_5fact
## Input: EUcountry
## Number of observations: 27901
##
## 1) EUcountry == {CY, DE-E, ES, FR, GB-GBN, GB-NIR, GR, HR, HU, IE, LT, LU, LV, MT, SI}; criterion = 1, statistic = 2613.66
## 2) EUcountry == {DE-E, ES, HR}; criterion = 1, statistic = 471.532
## 3) EUcountry == {HR}; criterion = 1, statistic = 51.051
## 4)* weights = 1048
## 3) EUcountry == {DE-E, ES}
## 5)* weights = 1539
## 2) EUcountry == {CY, FR, GB-GBN, GB-NIR, GR, HU, IE, LT, LU, LV, MT, SI}
## 6) EUcountry == {CY, FR, GB-GBN, GB-NIR, GR, IE, LT, LU, LV, MT, SI}; criterion = 1, statistic = 287.692
## 7)* weights = 8924
## 6) EUcountry == {HU}
## 8)* weights = 1053
## 1) EUcountry == {AT, BE, BG, CZ, DE-W, DK, EE, FI, IT, NL, PL, PT, RO, SE, SK}
## 9) EUcountry == {CZ, DK, PL, SE}; criterion = 1, statistic = 1227.749
## 10) EUcountry == {CZ, DK, SE}; criterion = 1, statistic = 154.998
## 11)* weights = 3065
## 10) EUcountry == {PL}
## 12)* weights = 1008
## 9) EUcountry == {AT, BE, BG, DE-W, EE, FI, IT, NL, PT, RO, SK}
## 13) EUcountry == {BG, EE, SK}; criterion = 1, statistic = 807.792
## 14)* weights = 3075
## 13) EUcountry == {AT, BE, DE-W, FI, IT, NL, PT, RO}
## 15)* weights = 8189
Plot
##
## Conditional inference tree with 7 terminal nodes
##
## Response: qd13_4fact
## Input: EUcountry
## Number of observations: 27901
##
## 1) EUcountry == {AT, CY, DE-E, DE-W, ES, FR, GB-GBN, GB-NIR, GR, HR, HU, IE, LT, LU, LV, MT, PT, SI}; criterion = 1, statistic = 3631.414
## 2) EUcountry == {AT, CY, DE-E, DE-W, ES, FR, GB-GBN, GB-NIR, GR, HR, HU, IE, LU, MT, PT, SI}; criterion = 1, statistic = 1090.725
## 3) EUcountry == {CY, DE-E, FR, GR, LU, MT, SI}; criterion = 1, statistic = 835.748
## 4)* weights = 5067
## 3) EUcountry == {AT, DE-W, ES, GB-GBN, GB-NIR, HR, HU, IE, PT}
## 5)* weights = 8576
## 2) EUcountry == {LT, LV}
## 6)* weights = 2005
## 1) EUcountry == {BE, BG, CZ, DK, EE, FI, IT, NL, PL, RO, SE, SK}
## 7) EUcountry == {BE, BG, FI, IT, NL, RO, SK}; criterion = 1, statistic = 1331.377
## 8) EUcountry == {BE, FI, IT, NL, RO}; criterion = 1, statistic = 652.394
## 9)* weights = 5105
## 8) EUcountry == {BG, SK}
## 10)* weights = 2058
## 7) EUcountry == {CZ, DK, EE, PL, SE}
## 11) EUcountry == {EE, PL}; criterion = 1, statistic = 214.17
## 12)* weights = 2025
## 11) EUcountry == {CZ, DK, SE}
## 13)* weights = 3065
Plot