Introduction

One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, our goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants.

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

The goal of our project is to predict the manner in which they did the exercise. This is the “classe” variable in the training set. You may use any of the other variables to predict with.

Source of Data

The training data for this project are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here:

https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

Loading the dataset and libraries required

The data for this project come from this source: http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har.

Lets load the required libraries for this project and read training and testing data from the urls above and see the shape and structure of the data we are dealing with. Lets also see the head of the training data to get the idea of what data is present in it.

library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(rpart)
library(rpart.plot)
library(RColorBrewer)
library(RGtk2)
library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.3.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
## 
##     importance
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(gbm)
## Loaded gbm 2.1.5
library(e1071)
training = read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv')
testing = read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv')
dim(training)
## [1] 19622   160
dim(testing)
## [1]  20 160
head(training)
##   X user_name raw_timestamp_part_1 raw_timestamp_part_2   cvtd_timestamp
## 1 1  carlitos           1323084231               788290 05/12/2011 11:23
## 2 2  carlitos           1323084231               808298 05/12/2011 11:23
## 3 3  carlitos           1323084231               820366 05/12/2011 11:23
## 4 4  carlitos           1323084232               120339 05/12/2011 11:23
## 5 5  carlitos           1323084232               196328 05/12/2011 11:23
## 6 6  carlitos           1323084232               304277 05/12/2011 11:23
##   new_window num_window roll_belt pitch_belt yaw_belt total_accel_belt
## 1         no         11      1.41       8.07    -94.4                3
## 2         no         11      1.41       8.07    -94.4                3
## 3         no         11      1.42       8.07    -94.4                3
## 4         no         12      1.48       8.05    -94.4                3
## 5         no         12      1.48       8.07    -94.4                3
## 6         no         12      1.45       8.06    -94.4                3
##   kurtosis_roll_belt kurtosis_picth_belt kurtosis_yaw_belt skewness_roll_belt
## 1                                                                            
## 2                                                                            
## 3                                                                            
## 4                                                                            
## 5                                                                            
## 6                                                                            
##   skewness_roll_belt.1 skewness_yaw_belt max_roll_belt max_picth_belt
## 1                                                   NA             NA
## 2                                                   NA             NA
## 3                                                   NA             NA
## 4                                                   NA             NA
## 5                                                   NA             NA
## 6                                                   NA             NA
##   max_yaw_belt min_roll_belt min_pitch_belt min_yaw_belt amplitude_roll_belt
## 1                         NA             NA                               NA
## 2                         NA             NA                               NA
## 3                         NA             NA                               NA
## 4                         NA             NA                               NA
## 5                         NA             NA                               NA
## 6                         NA             NA                               NA
##   amplitude_pitch_belt amplitude_yaw_belt var_total_accel_belt avg_roll_belt
## 1                   NA                                      NA            NA
## 2                   NA                                      NA            NA
## 3                   NA                                      NA            NA
## 4                   NA                                      NA            NA
## 5                   NA                                      NA            NA
## 6                   NA                                      NA            NA
##   stddev_roll_belt var_roll_belt avg_pitch_belt stddev_pitch_belt
## 1               NA            NA             NA                NA
## 2               NA            NA             NA                NA
## 3               NA            NA             NA                NA
## 4               NA            NA             NA                NA
## 5               NA            NA             NA                NA
## 6               NA            NA             NA                NA
##   var_pitch_belt avg_yaw_belt stddev_yaw_belt var_yaw_belt gyros_belt_x
## 1             NA           NA              NA           NA         0.00
## 2             NA           NA              NA           NA         0.02
## 3             NA           NA              NA           NA         0.00
## 4             NA           NA              NA           NA         0.02
## 5             NA           NA              NA           NA         0.02
## 6             NA           NA              NA           NA         0.02
##   gyros_belt_y gyros_belt_z accel_belt_x accel_belt_y accel_belt_z
## 1         0.00        -0.02          -21            4           22
## 2         0.00        -0.02          -22            4           22
## 3         0.00        -0.02          -20            5           23
## 4         0.00        -0.03          -22            3           21
## 5         0.02        -0.02          -21            2           24
## 6         0.00        -0.02          -21            4           21
##   magnet_belt_x magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm
## 1            -3           599          -313     -128      22.5    -161
## 2            -7           608          -311     -128      22.5    -161
## 3            -2           600          -305     -128      22.5    -161
## 4            -6           604          -310     -128      22.1    -161
## 5            -6           600          -302     -128      22.1    -161
## 6             0           603          -312     -128      22.0    -161
##   total_accel_arm var_accel_arm avg_roll_arm stddev_roll_arm var_roll_arm
## 1              34            NA           NA              NA           NA
## 2              34            NA           NA              NA           NA
## 3              34            NA           NA              NA           NA
## 4              34            NA           NA              NA           NA
## 5              34            NA           NA              NA           NA
## 6              34            NA           NA              NA           NA
##   avg_pitch_arm stddev_pitch_arm var_pitch_arm avg_yaw_arm stddev_yaw_arm
## 1            NA               NA            NA          NA             NA
## 2            NA               NA            NA          NA             NA
## 3            NA               NA            NA          NA             NA
## 4            NA               NA            NA          NA             NA
## 5            NA               NA            NA          NA             NA
## 6            NA               NA            NA          NA             NA
##   var_yaw_arm gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y
## 1          NA        0.00        0.00       -0.02        -288         109
## 2          NA        0.02       -0.02       -0.02        -290         110
## 3          NA        0.02       -0.02       -0.02        -289         110
## 4          NA        0.02       -0.03        0.02        -289         111
## 5          NA        0.00       -0.03        0.00        -289         111
## 6          NA        0.02       -0.03        0.00        -289         111
##   accel_arm_z magnet_arm_x magnet_arm_y magnet_arm_z kurtosis_roll_arm
## 1        -123         -368          337          516                  
## 2        -125         -369          337          513                  
## 3        -126         -368          344          513                  
## 4        -123         -372          344          512                  
## 5        -123         -374          337          506                  
## 6        -122         -369          342          513                  
##   kurtosis_picth_arm kurtosis_yaw_arm skewness_roll_arm skewness_pitch_arm
## 1                                                                         
## 2                                                                         
## 3                                                                         
## 4                                                                         
## 5                                                                         
## 6                                                                         
##   skewness_yaw_arm max_roll_arm max_picth_arm max_yaw_arm min_roll_arm
## 1                            NA            NA          NA           NA
## 2                            NA            NA          NA           NA
## 3                            NA            NA          NA           NA
## 4                            NA            NA          NA           NA
## 5                            NA            NA          NA           NA
## 6                            NA            NA          NA           NA
##   min_pitch_arm min_yaw_arm amplitude_roll_arm amplitude_pitch_arm
## 1            NA          NA                 NA                  NA
## 2            NA          NA                 NA                  NA
## 3            NA          NA                 NA                  NA
## 4            NA          NA                 NA                  NA
## 5            NA          NA                 NA                  NA
## 6            NA          NA                 NA                  NA
##   amplitude_yaw_arm roll_dumbbell pitch_dumbbell yaw_dumbbell
## 1                NA      13.05217      -70.49400    -84.87394
## 2                NA      13.13074      -70.63751    -84.71065
## 3                NA      12.85075      -70.27812    -85.14078
## 4                NA      13.43120      -70.39379    -84.87363
## 5                NA      13.37872      -70.42856    -84.85306
## 6                NA      13.38246      -70.81759    -84.46500
##   kurtosis_roll_dumbbell kurtosis_picth_dumbbell kurtosis_yaw_dumbbell
## 1                                                                     
## 2                                                                     
## 3                                                                     
## 4                                                                     
## 5                                                                     
## 6                                                                     
##   skewness_roll_dumbbell skewness_pitch_dumbbell skewness_yaw_dumbbell
## 1                                                                     
## 2                                                                     
## 3                                                                     
## 4                                                                     
## 5                                                                     
## 6                                                                     
##   max_roll_dumbbell max_picth_dumbbell max_yaw_dumbbell min_roll_dumbbell
## 1                NA                 NA                                 NA
## 2                NA                 NA                                 NA
## 3                NA                 NA                                 NA
## 4                NA                 NA                                 NA
## 5                NA                 NA                                 NA
## 6                NA                 NA                                 NA
##   min_pitch_dumbbell min_yaw_dumbbell amplitude_roll_dumbbell
## 1                 NA                                       NA
## 2                 NA                                       NA
## 3                 NA                                       NA
## 4                 NA                                       NA
## 5                 NA                                       NA
## 6                 NA                                       NA
##   amplitude_pitch_dumbbell amplitude_yaw_dumbbell total_accel_dumbbell
## 1                       NA                                          37
## 2                       NA                                          37
## 3                       NA                                          37
## 4                       NA                                          37
## 5                       NA                                          37
## 6                       NA                                          37
##   var_accel_dumbbell avg_roll_dumbbell stddev_roll_dumbbell var_roll_dumbbell
## 1                 NA                NA                   NA                NA
## 2                 NA                NA                   NA                NA
## 3                 NA                NA                   NA                NA
## 4                 NA                NA                   NA                NA
## 5                 NA                NA                   NA                NA
## 6                 NA                NA                   NA                NA
##   avg_pitch_dumbbell stddev_pitch_dumbbell var_pitch_dumbbell avg_yaw_dumbbell
## 1                 NA                    NA                 NA               NA
## 2                 NA                    NA                 NA               NA
## 3                 NA                    NA                 NA               NA
## 4                 NA                    NA                 NA               NA
## 5                 NA                    NA                 NA               NA
## 6                 NA                    NA                 NA               NA
##   stddev_yaw_dumbbell var_yaw_dumbbell gyros_dumbbell_x gyros_dumbbell_y
## 1                  NA               NA                0            -0.02
## 2                  NA               NA                0            -0.02
## 3                  NA               NA                0            -0.02
## 4                  NA               NA                0            -0.02
## 5                  NA               NA                0            -0.02
## 6                  NA               NA                0            -0.02
##   gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z
## 1             0.00             -234               47             -271
## 2             0.00             -233               47             -269
## 3             0.00             -232               46             -270
## 4            -0.02             -232               48             -269
## 5             0.00             -233               48             -270
## 6             0.00             -234               48             -269
##   magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z roll_forearm
## 1              -559               293               -65         28.4
## 2              -555               296               -64         28.3
## 3              -561               298               -63         28.3
## 4              -552               303               -60         28.1
## 5              -554               292               -68         28.0
## 6              -558               294               -66         27.9
##   pitch_forearm yaw_forearm kurtosis_roll_forearm kurtosis_picth_forearm
## 1         -63.9        -153                                             
## 2         -63.9        -153                                             
## 3         -63.9        -152                                             
## 4         -63.9        -152                                             
## 5         -63.9        -152                                             
## 6         -63.9        -152                                             
##   kurtosis_yaw_forearm skewness_roll_forearm skewness_pitch_forearm
## 1                                                                  
## 2                                                                  
## 3                                                                  
## 4                                                                  
## 5                                                                  
## 6                                                                  
##   skewness_yaw_forearm max_roll_forearm max_picth_forearm max_yaw_forearm
## 1                                    NA                NA                
## 2                                    NA                NA                
## 3                                    NA                NA                
## 4                                    NA                NA                
## 5                                    NA                NA                
## 6                                    NA                NA                
##   min_roll_forearm min_pitch_forearm min_yaw_forearm amplitude_roll_forearm
## 1               NA                NA                                     NA
## 2               NA                NA                                     NA
## 3               NA                NA                                     NA
## 4               NA                NA                                     NA
## 5               NA                NA                                     NA
## 6               NA                NA                                     NA
##   amplitude_pitch_forearm amplitude_yaw_forearm total_accel_forearm
## 1                      NA                                        36
## 2                      NA                                        36
## 3                      NA                                        36
## 4                      NA                                        36
## 5                      NA                                        36
## 6                      NA                                        36
##   var_accel_forearm avg_roll_forearm stddev_roll_forearm var_roll_forearm
## 1                NA               NA                  NA               NA
## 2                NA               NA                  NA               NA
## 3                NA               NA                  NA               NA
## 4                NA               NA                  NA               NA
## 5                NA               NA                  NA               NA
## 6                NA               NA                  NA               NA
##   avg_pitch_forearm stddev_pitch_forearm var_pitch_forearm avg_yaw_forearm
## 1                NA                   NA                NA              NA
## 2                NA                   NA                NA              NA
## 3                NA                   NA                NA              NA
## 4                NA                   NA                NA              NA
## 5                NA                   NA                NA              NA
## 6                NA                   NA                NA              NA
##   stddev_yaw_forearm var_yaw_forearm gyros_forearm_x gyros_forearm_y
## 1                 NA              NA            0.03            0.00
## 2                 NA              NA            0.02            0.00
## 3                 NA              NA            0.03           -0.02
## 4                 NA              NA            0.02           -0.02
## 5                 NA              NA            0.02            0.00
## 6                 NA              NA            0.02           -0.02
##   gyros_forearm_z accel_forearm_x accel_forearm_y accel_forearm_z
## 1           -0.02             192             203            -215
## 2           -0.02             192             203            -216
## 3            0.00             196             204            -213
## 4            0.00             189             206            -214
## 5           -0.02             189             206            -214
## 6           -0.03             193             203            -215
##   magnet_forearm_x magnet_forearm_y magnet_forearm_z classe
## 1              -17              654              476      A
## 2              -18              661              473      A
## 3              -18              658              469      A
## 4              -16              658              469      A
## 5              -17              655              473      A
## 6               -9              660              478      A
str(training)
## 'data.frame':    19622 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ raw_timestamp_part_1    : int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2    : int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp          : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
##  $ new_window              : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ num_window              : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt               : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt              : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt                : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt        : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ kurtosis_roll_belt      : Factor w/ 397 levels "","-0.016850",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_belt     : Factor w/ 317 levels "","-0.021887",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_belt       : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_belt      : Factor w/ 395 levels "","-0.003095",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_belt.1    : Factor w/ 338 levels "","-0.005928",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_belt       : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_belt            : Factor w/ 68 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ min_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_belt            : Factor w/ 68 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ amplitude_roll_belt     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : Factor w/ 4 levels "","#DIV/0!","0.00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ var_total_accel_belt    : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y            : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z            : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x            : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y            : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z            : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x           : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y           : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z           : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm                : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm               : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm                 : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm         : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ var_accel_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y             : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z             : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x             : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y             : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z             : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x            : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y            : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z            : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ kurtosis_roll_arm       : Factor w/ 330 levels "","-0.02438",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_arm      : Factor w/ 328 levels "","-0.00484",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_arm        : Factor w/ 395 levels "","-0.01548",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_arm       : Factor w/ 331 levels "","-0.00051",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_pitch_arm      : Factor w/ 328 levels "","-0.00184",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_arm        : Factor w/ 395 levels "","-0.00311",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell          : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell            : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ kurtosis_roll_dumbbell  : Factor w/ 398 levels "","-0.0035","-0.0073",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_dumbbell : Factor w/ 401 levels "","-0.0163","-0.0233",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_dumbbell   : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_dumbbell  : Factor w/ 401 levels "","-0.0082","-0.0096",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_pitch_dumbbell : Factor w/ 402 levels "","-0.0053","-0.0084",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_dumbbell   : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : Factor w/ 73 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ min_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : Factor w/ 73 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ amplitude_roll_dumbbell : num  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]

Data cleaning

Lets clean the raw data using several methods

Removing variables having nearly zero variance

Lets remove the variables which are near to the value of zero, as they wont me useful much using nearZeroVar

near_zero_var = nearZeroVar(training)
near_zero_training = training[,-near_zero_var]
near_zero_testing = testing[,-near_zero_var]
dim(near_zero_training)
## [1] 19622   100
dim(near_zero_testing)
## [1]  20 100

Removing variables having NAs

Lets also remove the variables which are NAs

na_var <- sapply(near_zero_training, function(x) mean(is.na(x))) > 0.95
na_training <- near_zero_training[,na_var == FALSE]
na_testing <- near_zero_testing[,na_var==FALSE]
dim(na_training)
## [1] 19622    59
dim(na_testing)
## [1] 20 59

Removing non-numeric variables

Lets remove first 7 rows as those contains non-numeric data in them

non_num_training <- na_training[,8:59]
non_num_testing <- na_testing[,8:59]
dim(non_num_training)
## [1] 19622    52
dim(non_num_testing)
## [1] 20 52

The final data after cleaning the raw data we get are non_num_training and non_num_testing and see their dimensions

Creating Data Partitioning

Now, lets partition the data using createDataPartition method with 60% as training data and 40% as testing data and store them in train and test dataframes and see their size

inTrain <- createDataPartition(non_num_training$classe, p=0.6, list=FALSE)
train <- non_num_training[inTrain,]
test <- non_num_training[-inTrain,]
dim(train)
## [1] 11776    52
dim(test)
## [1] 7846   52

Lets check if classe column is present in training dataset and problem_id in testing dataset (raw data)

'classe' %in% names(training)
## [1] TRUE
'problem_id' %in% names(testing)
## [1] TRUE

Fitting model using Decision Tree

Lets first fit the model using decision tree on our data and predict the values of test data and create a confusion matrix and finally plot a decision tree using rpart.plot

DTree_fit <- train(classe ~ ., data = train, method="rpart")
DTree_pred <- predict(DTree_fit, test)
confusionMatrix(DTree_pred, test$classe)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 2037  600  619  565  363
##          B   33  530   44  225  292
##          C  128  333  553  164  335
##          D   32   54  152  332   64
##          E    2    1    0    0  388
## 
## Overall Statistics
##                                           
##                Accuracy : 0.4894          
##                  95% CI : (0.4783, 0.5005)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.3322          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9126  0.34914  0.40424  0.25816  0.26907
## Specificity            0.6176  0.90613  0.85181  0.95396  0.99953
## Pos Pred Value         0.4869  0.47153  0.36550  0.52366  0.99233
## Neg Pred Value         0.9468  0.85302  0.87131  0.86772  0.85862
## Prevalence             0.2845  0.19347  0.17436  0.16391  0.18379
## Detection Rate         0.2596  0.06755  0.07048  0.04231  0.04945
## Detection Prevalence   0.5333  0.14326  0.19284  0.08081  0.04983
## Balanced Accuracy      0.7651  0.62764  0.62802  0.60606  0.63430
rpart.plot(DTree_fit$finalModel, roundint=FALSE)

Fitting model using Gradient Boosting

Lets now secondly fit a model using gradient boosting method and predict with training data and plot the accuracy of this model

GBM_fit <- train(classe ~ ., data = train, method = "gbm", verbose = FALSE)
GBM_fit$finalModel
## A gradient boosted model with multinomial loss function.
## 150 iterations were performed.
## There were 51 predictors of which 51 had non-zero influence.
GBM_pred <- predict(GBM_fit, test)
GBM_pred_conf <- confusionMatrix(GBM_pred, test$classe)
GBM_pred_conf
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 2208   40    0    1    3
##          B   19 1441   54    8   27
##          C    2   29 1298   37   16
##          D    3    1   14 1230   18
##          E    0    7    2   10 1378
## 
## Overall Statistics
##                                          
##                Accuracy : 0.9629         
##                  95% CI : (0.9585, 0.967)
##     No Information Rate : 0.2845         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.9531         
##                                          
##  Mcnemar's Test P-Value : 1.68e-09       
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9892   0.9493   0.9488   0.9565   0.9556
## Specificity            0.9922   0.9829   0.9870   0.9945   0.9970
## Pos Pred Value         0.9805   0.9303   0.9392   0.9716   0.9864
## Neg Pred Value         0.9957   0.9878   0.9892   0.9915   0.9901
## Prevalence             0.2845   0.1935   0.1744   0.1639   0.1838
## Detection Rate         0.2814   0.1837   0.1654   0.1568   0.1756
## Detection Prevalence   0.2870   0.1974   0.1761   0.1614   0.1781
## Balanced Accuracy      0.9907   0.9661   0.9679   0.9755   0.9763
plot(GBM_pred_conf$table, col = GBM_pred_conf$byClass,
main = paste("Gradient Boosting - Accuracy Level =",
round(GBM_pred_conf$overall['Accuracy'], 4)))

Fitting model using Random Forest

Lastly fit a model using Random FOrest method and predict with training data and plot the accuracy of this model using confusion matrix

RF_fit <- train(classe ~ ., data = train, method = "rf", ntree = 50)
RF_pred <- predict(RF_fit, test)
RF_pred_conf <- confusionMatrix(RF_pred, test$classe)
RF_pred_conf
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 2230   11    0    0    0
##          B    2 1497    9    0    0
##          C    0    9 1356   15    4
##          D    0    0    2 1269    6
##          E    0    1    1    2 1432
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9921          
##                  95% CI : (0.9899, 0.9939)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.99            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9991   0.9862   0.9912   0.9868   0.9931
## Specificity            0.9980   0.9983   0.9957   0.9988   0.9994
## Pos Pred Value         0.9951   0.9927   0.9798   0.9937   0.9972
## Neg Pred Value         0.9996   0.9967   0.9981   0.9974   0.9984
## Prevalence             0.2845   0.1935   0.1744   0.1639   0.1838
## Detection Rate         0.2842   0.1908   0.1728   0.1617   0.1825
## Detection Prevalence   0.2856   0.1922   0.1764   0.1628   0.1830
## Balanced Accuracy      0.9986   0.9922   0.9935   0.9928   0.9962
plot(RF_pred_conf$table, col = RF_pred_conf$byClass,
main = paste("Random Forest Accuracy : ",
round(RF_pred_conf$overall['Accuracy'], 4)))

Conclusion and Summary

As decision tree model’s accuracy was very low, we completely ignore that model and concentrate on the other two models’ accuracy.

RF_pred_conf$overall
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.9920979      0.9900035      0.9898811      0.9939363      0.2844762 
## AccuracyPValue  McnemarPValue 
##      0.0000000            NaN
GBM_pred_conf$overall
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##   9.629110e-01   9.530679e-01   9.584902e-01   9.669836e-01   2.844762e-01 
## AccuracyPValue  McnemarPValue 
##   0.000000e+00   1.680062e-09

After looking at the overall statistics data of both the models, the random Forest model has more accuracy than the GBM model. So, we are selecting Random Forest model for final prediction of testing data.

Final modelling and prediction on actual Test data

training_data = non_num_training
testing_data = non_num_testing
RF_final_fit <- train(classe ~ ., data = training_data, method = "rf", ntree = 50)
final_pred <- predict(RF_final_fit, testing_data)
final_pred
##  [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E