library(ggplot2)
package 㤼㸱ggplot2㤼㸲 was built under R version 3.6.3Registered S3 method overwritten by 'dplyr':
  method           from
  print.rowwise_df     

Como fica a distribuição amostral simulada da média?

#Comece criando um vetor para as pontuações possíveis e outro para a probabilidade de amostragem de cada pontuação
values <- c(1,2,3)
probabilities <- c(1/3,1/3,1/3)

#Outro vetor conterá as 600 médias amostrais
smpl.means <- NULL

#Para retirar uma amostra, use a função sample()
smpl <-sample(x=values,prob = probabilities,size=3,replace=TRUE)

#Cada vez que retiramos uma amostra, calculamos sua média e a anexamos (adicionamos no final) ao vetor smpl.means
smpl.means <- append(smpl.means, mean(smpl))

#Semente aleatória para replicar os resultados
set.seed(7637060)
#Para fazer a amostragem, o cálculo e a anexação 600 vezes, o loop for fica assim
for(i in 1:600) {
smpl <-sample(x = values,prob = probabilities, size = 3,replace=TRUE)
smpl.means <- append(smpl.means, mean(smpl))
}

#criando um histograma
ggplot(NULL,aes(x=smpl.means)) +
geom_histogram()

NA
NA

#A média de uma variável aleatória discreta é chamada de valor esperado
E.values<-sum(values*probabilities)
E.values
[1] 2
#variância de X
var.values <- sum((values-E.values)^2*probabilities)
var.values
[1] 0.6666667
#desvio-padrão
sd.values<-sqrt(var.values)
sd.values
[1] 0.8164966
#De acordo com o teorema do limite central, a média da distribuição amostral deveria ser e o desvio-padrão
E.values; sd.values/sqrt(3)
[1] 2
[1] 0.4714045
#Como esses valores previstos combinam com as características da distribuição amostral?

mean(smpl.means)
[1] 2.001109
sd(smpl.means)
[1] 0.4749256

#Intervalo de Confiança

mean.battery <- 60
sd.battery <- 20
N <- 100
error <- qnorm(.025,lower.tail=FALSE)*sd.battery/sqrt(N)

#Depois, os limites:
lower <- mean.battery - error
upper <- mean.battery + error
lower
[1] 56.08007
upper
[1] 63.91993
mean.battery <- 60
sd.battery <- 20
N <- 25
error <- qt(.025,N-1,lower.tail=FALSE)*sd.battery/sqrt(N)
lower <- mean.battery - error
upper <- mean.battery + error
lower
[1] 51.74441
upper
[1] 68.25559
#Se tivermos dados brutos, poderemos usar t.test() para gerar intervalos de confiança:

battery.data <- c(82,64,68,44,54,47,50,85,51,41,61,84,53,83,91,43,35,36,33,87,90,86,49,37,48)
#Veja como usar t.test() para gerar os limites inferior e superior para uma confiança de 90%; o valor padrão é 0,95:

t.test(battery.data, conf.level=.90)

    One Sample t-test

data:  battery.data
t = 15, df = 24, p-value = 1.086e-13
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
 53.22727 66.93273
sample estimates:
mean of x 
    60.08 

#Teste de Hipóteses para Amostra Única

#Teste Z em R
z.test = function(x,mu,popvar){
one.tail.p <- NULL
z.score <- round((mean(x)-mu)/(popvar/sqrt(length(x))),3)
one.tail.p <- round(pnorm(abs(z.score),lower.tail = FALSE),3)
cat(" z =",z.score,"\n",
"one-tailed probability =", one.tail.p,"\n",
"two-tailed probability =", 2*one.tail.p )}


IQ.data <- c(100,101,104,109,125,116,105,108,110)
z.test(IQ.data,100,15)
 z = 1.733 
 one-tailed probability = 0.042 
 two-tailed probability = 0.084
FarKlempt.data <- c(3,6,9,9,4,10,6,4,12)
t.test(FarKlempt.data,mu=4, alternative="greater")

    One Sample t-test

data:  FarKlempt.data
t = 2.8823, df = 8, p-value = 0.01022
alternative hypothesis: true mean is greater than 4
95 percent confidence interval:
 5.064521      Inf
sample estimates:
mean of x 
        7 

#Distribuições-t

LS0tDQp0aXRsZTogIlIgQW7DoWxpc2UgRXN0YXTDrXN0aWNhIGNvbSBSIHBhcmEgbGVpZ29zIC0gZm9yIGR1bW1pZXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmBgYA0KDQoNCg0KIyBDb21vIGZpY2EgYSBkaXN0cmlidWnDp8OjbyBhbW9zdHJhbCBzaW11bGFkYSBkYSBtw6lkaWE/DQoNCmBgYHtyfQ0KI0NvbWVjZSBjcmlhbmRvIHVtIHZldG9yIHBhcmEgYXMgcG9udHVhw6fDtWVzIHBvc3PDrXZlaXMgZSBvdXRybyBwYXJhIGEgcHJvYmFiaWxpZGFkZSBkZSBhbW9zdHJhZ2VtIGRlIGNhZGEgcG9udHVhw6fDo28NCnZhbHVlcyA8LSBjKDEsMiwzKQ0KcHJvYmFiaWxpdGllcyA8LSBjKDEvMywxLzMsMS8zKQ0KDQojT3V0cm8gdmV0b3IgY29udGVyw6EgYXMgNjAwIG3DqWRpYXMgYW1vc3RyYWlzDQpzbXBsLm1lYW5zIDwtIE5VTEwNCg0KI1BhcmEgcmV0aXJhciB1bWEgYW1vc3RyYSwgdXNlIGEgZnVuw6fDo28gc2FtcGxlKCkNCnNtcGwgPC1zYW1wbGUoeD12YWx1ZXMscHJvYiA9IHByb2JhYmlsaXRpZXMsc2l6ZT0zLHJlcGxhY2U9VFJVRSkNCg0KI0NhZGEgdmV6IHF1ZSByZXRpcmFtb3MgdW1hIGFtb3N0cmEsIGNhbGN1bGFtb3Mgc3VhIG3DqWRpYSBlIGEgYW5leGFtb3MgKGFkaWNpb25hbW9zIG5vIGZpbmFsKSBhbyB2ZXRvciBzbXBsLm1lYW5zDQpzbXBsLm1lYW5zIDwtIGFwcGVuZChzbXBsLm1lYW5zLCBtZWFuKHNtcGwpKQ0KDQojU2VtZW50ZSBhbGVhdMOzcmlhIHBhcmEgcmVwbGljYXIgb3MgcmVzdWx0YWRvcw0Kc2V0LnNlZWQoNzYzNzA2MCkNCiNQYXJhIGZhemVyIGEgYW1vc3RyYWdlbSwgbyBjw6FsY3VsbyBlIGEgYW5leGHDp8OjbyA2MDAgdmV6ZXMsIG8gbG9vcCBmb3IgZmljYSBhc3NpbQ0KZm9yKGkgaW4gMTo2MDApIHsNCnNtcGwgPC1zYW1wbGUoeCA9IHZhbHVlcyxwcm9iID0gcHJvYmFiaWxpdGllcywgc2l6ZSA9IDMscmVwbGFjZT1UUlVFKQ0Kc21wbC5tZWFucyA8LSBhcHBlbmQoc21wbC5tZWFucywgbWVhbihzbXBsKSkNCn0NCg0KI2NyaWFuZG8gdW0gaGlzdG9ncmFtYQ0KZ2dwbG90KE5VTEwsYWVzKHg9c21wbC5tZWFucykpICsNCmdlb21faGlzdG9ncmFtKCkNCmBgYA0KDQoNCg0KYGBge3J9DQojbGlzdGUgb3MgdmFsb3JlcyDDum5pY29zDQojdW5pcXVlKHNtcGwubWVhbnMpDQojcm91bmQodW5pcXVlKHNtcGwubWVhbnMpLDIpDQoNCm0udmFsdWVzIDwtcm91bmQodW5pcXVlKHNtcGwubWVhbnMpLDIpDQoNCiNhbHRlcmFyIGEgZXNjYWxhIGUgZWl4bw0KDQpnZ3Bsb3QoTlVMTCxhZXMoeD1zbXBsLm1lYW5zKSkgKw0KZ2VvbV9oaXN0b2dyYW0oKSsNCnNjYWxlX3hfY29udGludW91cyhicmVha3M9bS52YWx1ZXMsbGFiZWw9bS52YWx1ZXMpKw0Kc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGMoMCwwKSkgKw0KbGFicyh4PWV4cHJlc3Npb24oYmFyKFgpKSx5PWV4cHJlc3Npb24gKGZyZXF1ZW5jeShiYXIoWCkpKSkNCmBgYA0KDQoNCmBgYHtyfQ0KI0EgbcOpZGlhIGRlIHVtYSB2YXJpw6F2ZWwgYWxlYXTDs3JpYSBkaXNjcmV0YSDDqSBjaGFtYWRhIGRlIHZhbG9yIGVzcGVyYWRvDQpFLnZhbHVlczwtc3VtKHZhbHVlcypwcm9iYWJpbGl0aWVzKQ0KRS52YWx1ZXMNCg0KI3ZhcmnDom5jaWEgZGUgWA0KdmFyLnZhbHVlcyA8LSBzdW0oKHZhbHVlcy1FLnZhbHVlcyleMipwcm9iYWJpbGl0aWVzKQ0KdmFyLnZhbHVlcw0KDQojZGVzdmlvLXBhZHLDo28NCnNkLnZhbHVlczwtc3FydCh2YXIudmFsdWVzKQ0Kc2QudmFsdWVzDQoNCiNEZSBhY29yZG8gY29tIG8gdGVvcmVtYSBkbyBsaW1pdGUgY2VudHJhbCwgYSBtw6lkaWEgZGEgZGlzdHJpYnVpw6fDo28gYW1vc3RyYWwgZGV2ZXJpYSBzZXIgZSBvIGRlc3Zpby1wYWRyw6NvDQpFLnZhbHVlczsgc2QudmFsdWVzL3NxcnQoMykNCg0KI0NvbW8gZXNzZXMgdmFsb3JlcyBwcmV2aXN0b3MgY29tYmluYW0gY29tIGFzIGNhcmFjdGVyw61zdGljYXMgZGEgZGlzdHJpYnVpw6fDo28gYW1vc3RyYWw/DQoNCm1lYW4oc21wbC5tZWFucykNCnNkKHNtcGwubWVhbnMpDQpgYGANCg0KDQojSW50ZXJ2YWxvIGRlIENvbmZpYW7Dp2ENCg0KYGBge3J9DQptZWFuLmJhdHRlcnkgPC0gNjANCnNkLmJhdHRlcnkgPC0gMjANCk4gPC0gMTAwDQplcnJvciA8LSBxbm9ybSguMDI1LGxvd2VyLnRhaWw9RkFMU0UpKnNkLmJhdHRlcnkvc3FydChOKQ0KDQojRGVwb2lzLCBvcyBsaW1pdGVzOg0KbG93ZXIgPC0gbWVhbi5iYXR0ZXJ5IC0gZXJyb3INCnVwcGVyIDwtIG1lYW4uYmF0dGVyeSArIGVycm9yDQpsb3dlcg0KdXBwZXINCg0KYGBgDQoNCg0KYGBge3J9DQptZWFuLmJhdHRlcnkgPC0gNjANCnNkLmJhdHRlcnkgPC0gMjANCk4gPC0gMjUNCmVycm9yIDwtIHF0KC4wMjUsTi0xLGxvd2VyLnRhaWw9RkFMU0UpKnNkLmJhdHRlcnkvc3FydChOKQ0KbG93ZXIgPC0gbWVhbi5iYXR0ZXJ5IC0gZXJyb3INCnVwcGVyIDwtIG1lYW4uYmF0dGVyeSArIGVycm9yDQpsb3dlcg0KdXBwZXINCmBgYA0KDQoNCmBgYHtyfQ0KI1NlIHRpdmVybW9zIGRhZG9zIGJydXRvcywgcG9kZXJlbW9zIHVzYXIgdC50ZXN0KCkgcGFyYSBnZXJhciBpbnRlcnZhbG9zIGRlIGNvbmZpYW7Dp2E6DQoNCmJhdHRlcnkuZGF0YSA8LSBjKDgyLDY0LDY4LDQ0LDU0LDQ3LDUwLDg1LDUxLDQxLDYxLDg0LDUzLDgzLDkxLDQzLDM1LDM2LDMzLDg3LDkwLDg2LDQ5LDM3LDQ4KQ0KI1ZlamEgY29tbyB1c2FyIHQudGVzdCgpIHBhcmEgZ2VyYXIgb3MgbGltaXRlcyBpbmZlcmlvciBlIHN1cGVyaW9yIHBhcmEgdW1hIGNvbmZpYW7Dp2EgZGUgOTAlOyBvIHZhbG9yIHBhZHLDo28gw6kgMCw5NToNCg0KdC50ZXN0KGJhdHRlcnkuZGF0YSwgY29uZi5sZXZlbD0uOTApDQoNCmBgYA0KDQojVGVzdGUgZGUgSGlww7N0ZXNlcyBwYXJhIEFtb3N0cmEgw5puaWNhDQoNCmBgYHtyfQ0KI1Rlc3RlIFogZW0gUg0Kei50ZXN0ID0gZnVuY3Rpb24oeCxtdSxwb3B2YXIpew0Kb25lLnRhaWwucCA8LSBOVUxMDQp6LnNjb3JlIDwtIHJvdW5kKChtZWFuKHgpLW11KS8ocG9wdmFyL3NxcnQobGVuZ3RoKHgpKSksMykNCm9uZS50YWlsLnAgPC0gcm91bmQocG5vcm0oYWJzKHouc2NvcmUpLGxvd2VyLnRhaWwgPSBGQUxTRSksMykNCmNhdCgiIHogPSIsei5zY29yZSwiXG4iLA0KIm9uZS10YWlsZWQgcHJvYmFiaWxpdHkgPSIsIG9uZS50YWlsLnAsIlxuIiwNCiJ0d28tdGFpbGVkIHByb2JhYmlsaXR5ID0iLCAyKm9uZS50YWlsLnAgKX0NCg0KDQpJUS5kYXRhIDwtIGMoMTAwLDEwMSwxMDQsMTA5LDEyNSwxMTYsMTA1LDEwOCwxMTApDQp6LnRlc3QoSVEuZGF0YSwxMDAsMTUpDQoNCmBgYA0KDQpgYGB7cn0NCkZhcktsZW1wdC5kYXRhIDwtIGMoMyw2LDksOSw0LDEwLDYsNCwxMikNCnQudGVzdChGYXJLbGVtcHQuZGF0YSxtdT00LCBhbHRlcm5hdGl2ZT0iZ3JlYXRlciIpDQoNCg0KYGBgDQoNCiNEaXN0cmlidWnDp8O1ZXMtdA0KDQpgYGB7cn0NCg0KYGBgDQoNCg==