This script pulls together other tables created from related scripts for extracting zillow two bedroom home values for May 2020, current July 2020 number of jobs available and hourly and annual average pay per job compared to licensed massage therapists (LMTs) in each of 50 of the US states not including the new District of Columbia state added this year 2020. It also pulls in the top 3 populated city per state that makes those average pay values according to the advertised pay per job and city from Indeed. All files are in the github repository located at https://github.com/JanJanJan2018/LMT-State-Licensing-Database and the census data that we start adding to this table is pulled from 2018 data from Data.census.gov demographics to add per state to state licensing requirements excel file: https://data.census.gov/cedsci/table?q=median%20pay%20by%20region%20and%20race&tid=ACSDP1Y2018.DP05&vintage=2018&cid=DP05_0001E&g=0100000US.04000.001&hidePreview=false

library(ggplot2)
library(grid)
library(gridExtra)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:gridExtra':
## 
##     combine
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
data <- read.csv('ACSDP1Y2018.DP05_data_with_overlays_2020-07-07T154725.csv',
                 sep=',',
                 header=TRUE, na.strings = c('',' ','NA'))
                 
meta <- read.csv('ACSDP1Y2018.DP05_metadata_2020-07-07T154725.csv',header=TRUE, 
                 sep=',',na.strings=c('',' ','NA'))
head(data)
##        GEO_ID                 NAME                              DP05_0001E
## 1          id Geographic Area Name Estimate!!SEX AND AGE!!Total population
## 2 0400000US17             Illinois                                12741080
## 3 0400000US19                 Iowa                                 3156145
## 4 0400000US29             Missouri                                 6126452
## 5 0400000US32               Nevada                                 3034392
## 6 0400000US42         Pennsylvania                                12807060
##                                       DP05_0001M
## 1 Margin of Error!!SEX AND AGE!!Total population
## 2                                          *****
## 3                                          *****
## 4                                          *****
## 5                                          *****
## 6                                          *****
##                                       DP05_0001PE
## 1 Percent Estimate!!SEX AND AGE!!Total population
## 2                                        12741080
## 3                                         3156145
## 4                                         6126452
## 5                                         3034392
## 6                                        12807060
##                                              DP05_0001PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population
## 2                                                    (X)
## 3                                                    (X)
## 4                                                    (X)
## 5                                                    (X)
## 6                                                    (X)
##                                      DP05_0002E
## 1 Estimate!!SEX AND AGE!!Total population!!Male
## 2                                       6266062
## 3                                       1564888
## 4                                       3003165
## 5                                       1522374
## 6                                       6271620
##                                             DP05_0002M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Male
## 2                                                 4378
## 3                                                 3527
## 4                                                 4798
## 5                                                 2263
## 6                                                 4457
##                                             DP05_0002PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Male
## 2                                                  49.2
## 3                                                  49.6
## 4                                                  49.0
## 5                                                  50.2
## 6                                                  49.0
##                                                    DP05_0002PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Male
## 2                                                          0.1
## 3                                                          0.1
## 4                                                          0.1
## 5                                                          0.1
## 6                                                          0.1
##                                        DP05_0003E
## 1 Estimate!!SEX AND AGE!!Total population!!Female
## 2                                         6475018
## 3                                         1591257
## 4                                         3123287
## 5                                         1512018
## 6                                         6535440
##                                               DP05_0003M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Female
## 2                                                   4378
## 3                                                   3527
## 4                                                   4798
## 5                                                   2263
## 6                                                   4457
##                                               DP05_0003PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Female
## 2                                                    50.8
## 3                                                    50.4
## 4                                                    51.0
## 5                                                    49.8
## 6                                                    51.0
##                                                      DP05_0003PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Female
## 2                                                            0.1
## 3                                                            0.1
## 4                                                            0.1
## 5                                                            0.1
## 6                                                            0.1
##                                                                   DP05_0004E
## 1 Estimate!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                       96.8
## 3                                                                       98.3
## 4                                                                       96.2
## 5                                                                      100.7
## 6                                                                       96.0
##                                                                          DP05_0004M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                               0.1
## 3                                                                               0.4
## 4                                                                               0.3
## 5                                                                               0.3
## 6                                                                               0.1
##                                                                          DP05_0004PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                                (X)
## 3                                                                                (X)
## 4                                                                                (X)
## 5                                                                                (X)
## 6                                                                                (X)
##                                                                                 DP05_0004PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                                       (X)
## 3                                                                                       (X)
## 4                                                                                       (X)
## 5                                                                                       (X)
## 6                                                                                       (X)
##                                               DP05_0005E
## 1 Estimate!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                 759456
## 3                                                 197883
## 4                                                 370408
## 5                                                 184539
## 6                                                 700416
##                                                      DP05_0005M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                          2046
## 3                                                          2271
## 4                                                          2583
## 5                                                          1173
## 6                                                          2083
##                                                      DP05_0005PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                            6.0
## 3                                                            6.3
## 4                                                            6.0
## 5                                                            6.1
## 6                                                            5.5
##                                                             DP05_0005PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                                   0.1
## 3                                                                   0.1
## 4                                                                   0.1
## 5                                                                   0.1
## 6                                                                   0.1
##                                              DP05_0006E
## 1 Estimate!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                762237
## 3                                                197454
## 4                                                373737
## 5                                                188880
## 6                                                708163
##                                                     DP05_0006M
## 1 Margin of Error!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                        10975
## 3                                                         4889
## 4                                                         8163
## 5                                                         5734
## 6                                                         9762
##                                                     DP05_0006PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                           6.0
## 3                                                           6.3
## 4                                                           6.1
## 5                                                           6.2
## 6                                                           5.5
##                                                            DP05_0006PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                                  0.1
## 3                                                                  0.2
## 4                                                                  0.1
## 5                                                                  0.2
## 6                                                                  0.1
##                                                DP05_0007E
## 1 Estimate!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                  838140
## 3                                                  215222
## 4                                                  401199
## 5                                                  201625
## 6                                                  775827
##                                                       DP05_0007M
## 1 Margin of Error!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                          10161
## 3                                                           5215
## 4                                                           7657
## 5                                                           5704
## 6                                                           9517
##                                                       DP05_0007PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                             6.6
## 3                                                             6.8
## 4                                                             6.5
## 5                                                             6.6
## 6                                                             6.1
##                                                              DP05_0007PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                                    0.1
## 3                                                                    0.2
## 4                                                                    0.1
## 5                                                                    0.2
## 6                                                                    0.1
##                                                DP05_0008E
## 1 Estimate!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                  835845
## 3                                                  220659
## 4                                                  391923
## 5                                                  182398
## 6                                                  815621
##                                                       DP05_0008M
## 1 Margin of Error!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                           4854
## 3                                                           4122
## 4                                                           4812
## 5                                                           2209
## 6                                                           4096
##                                                       DP05_0008PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                             6.6
## 3                                                             7.0
## 4                                                             6.4
## 5                                                             6.0
## 6                                                             6.4
##                                                              DP05_0008PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0009E
## 1 Estimate!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                  839026
## 3                                                  220135
## 4                                                  406398
## 5                                                  180376
## 6                                                  812406
##                                                       DP05_0009M
## 1 Margin of Error!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                           5924
## 3                                                           3995
## 4                                                           5343
## 5                                                           2061
## 6                                                           5651
##                                                       DP05_0009PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                             6.6
## 3                                                             7.0
## 4                                                             6.6
## 5                                                             5.9
## 6                                                             6.3
##                                                              DP05_0009PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0010E
## 1 Estimate!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                 1765517
## 3                                                  394507
## 4                                                  819132
## 5                                                  442713
## 6                                                 1695073
##                                                       DP05_0010M
## 1 Margin of Error!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                           5311
## 3                                                           4452
## 4                                                           5822
## 5                                                           2829
## 6                                                           5655
##                                                       DP05_0010PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                            13.9
## 3                                                            12.5
## 4                                                            13.4
## 5                                                            14.6
## 6                                                            13.2
##                                                              DP05_0010PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0011E
## 1 Estimate!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                 1644390
## 3                                                  383617
## 4                                                  742343
## 5                                                  405128
## 6                                                 1496113
##                                                       DP05_0011M
## 1 Margin of Error!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                           5142
## 3                                                           3741
## 4                                                           3976
## 5                                                           2750
## 6                                                           4296
##                                                       DP05_0011PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                            12.9
## 3                                                            12.2
## 4                                                            12.1
## 5                                                            13.4
## 6                                                            11.7
##                                                              DP05_0011PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0012E
## 1 Estimate!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                 1636054
## 3                                                  369396
## 4                                                  753354
## 5                                                  396167
## 6                                                 1659541
##                                                       DP05_0012M
## 1 Margin of Error!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                           4871
## 3                                                           3161
## 4                                                           3315
## 5                                                           2674
## 6                                                           4842
##                                                       DP05_0012PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                            12.8
## 3                                                            11.7
## 4                                                            12.3
## 5                                                            13.1
## 6                                                            13.0
##                                                              DP05_0012PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0013E
## 1 Estimate!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                  855616
## 3                                                  213657
## 4                                                  419591
## 5                                                  191059
## 6                                                  916749
##                                                       DP05_0013M
## 1 Margin of Error!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                           9963
## 3                                                           4454
## 4                                                           7243
## 5                                                           4897
## 6                                                           9701
##                                                       DP05_0013PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                             6.7
## 3                                                             6.8
## 4                                                             6.8
## 5                                                             6.3
## 6                                                             7.2
##                                                              DP05_0013PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.2
## 6                                                                    0.1
##                                                DP05_0014E
## 1 Estimate!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                  814251
## 3                                                  205797
## 4                                                  413293
## 5                                                  186387
## 6                                                  894782
##                                                       DP05_0014M
## 1 Margin of Error!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                           9868
## 3                                                           4119
## 4                                                           7024
## 5                                                           5137
## 6                                                           9663
##                                                       DP05_0014PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                             6.4
## 3                                                             6.5
## 4                                                             6.7
## 5                                                             6.1
## 6                                                             7.0
##                                                              DP05_0014PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.2
## 6                                                                    0.1
##                                                DP05_0015E
## 1 Estimate!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                 1143329
## 3                                                  299333
## 4                                                  596623
## 5                                                  291996
## 6                                                 1311159
##                                                       DP05_0015M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                           2976
## 3                                                           1873
## 4                                                           2812
## 5                                                           1221
## 6                                                           3293
##                                                       DP05_0015PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                             9.0
## 3                                                             9.5
## 4                                                             9.7
## 5                                                             9.6
## 6                                                            10.2
##                                                              DP05_0015PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0016E
## 1 Estimate!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                  587651
## 3                                                  162869
## 4                                                  313646
## 5                                                  138844
## 6                                                  707570
##                                                       DP05_0016M
## 1 Margin of Error!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                           6188
## 3                                                           3158
## 4                                                           5352
## 5                                                           3225
## 6                                                           7958
##                                                       DP05_0016PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                             4.6
## 3                                                             5.2
## 4                                                             5.1
## 5                                                             4.6
## 6                                                             5.5
##                                                              DP05_0016PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                   DP05_0017E
## 1 Estimate!!SEX AND AGE!!Total population!!85 years and over
## 2                                                     259568
## 3                                                      75616
## 4                                                     124805
## 5                                                      44280
## 6                                                     313640
##                                                          DP05_0017M
## 1 Margin of Error!!SEX AND AGE!!Total population!!85 years and over
## 2                                                              5554
## 3                                                              3074
## 4                                                              5244
## 5                                                              3193
## 6                                                              7963
##                                                          DP05_0017PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!85 years and over
## 2                                                                2.0
## 3                                                                2.4
## 4                                                                2.0
## 5                                                                1.5
## 6                                                                2.4
##                                                                 DP05_0017PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!85 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                    DP05_0018E
## 1 Estimate!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                        38.3
## 3                                                        38.1
## 4                                                        38.8
## 5                                                        38.2
## 6                                                        40.8
##                                                           DP05_0018M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                                0.1
## 3                                                                0.2
## 4                                                                0.1
## 5                                                                0.2
## 6                                                                0.1
##                                                           DP05_0018PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                                 (X)
## 3                                                                 (X)
## 4                                                                 (X)
## 5                                                                 (X)
## 6                                                                 (X)
##                                                                  DP05_0018PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                                        (X)
## 3                                                                        (X)
## 4                                                                        (X)
## 5                                                                        (X)
## 6                                                                        (X)
##                                                DP05_0019E
## 1 Estimate!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                 2855802
## 3                                                  733389
## 4                                                 1377726
## 5                                                  689220
## 6                                                 2647617
##                                                       DP05_0019M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                           2274
## 3                                                           2389
## 4                                                           3160
## 5                                                            913
## 6                                                           1899
##                                                       DP05_0019PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                            22.4
## 3                                                            23.2
## 4                                                            22.5
## 5                                                            22.7
## 6                                                            20.7
##                                                              DP05_0019PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                   DP05_0020E
## 1 Estimate!!SEX AND AGE!!Total population!!16 years and over
## 2                                                   10216304
## 3                                                    2506580
## 4                                                    4907003
## 5                                                    2420990
## 6                                                   10470798
##                                                          DP05_0020M
## 1 Margin of Error!!SEX AND AGE!!Total population!!16 years and over
## 2                                                              5459
## 3                                                              3373
## 4                                                              4497
## 5                                                              3306
## 6                                                              5368
##                                                          DP05_0020PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!16 years and over
## 2                                                               80.2
## 3                                                               79.4
## 4                                                               80.1
## 5                                                               79.8
## 6                                                               81.8
##                                                                 DP05_0020PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!16 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0021E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                    9885278
## 3                                                    2422756
## 4                                                    4748726
## 5                                                    2345172
## 6                                                   10159443
##                                                          DP05_0021M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                              2274
## 3                                                              2389
## 4                                                              3160
## 5                                                               913
## 6                                                              1899
##                                                          DP05_0021PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                               77.6
## 3                                                               76.8
## 4                                                               77.5
## 5                                                               77.3
## 6                                                               79.3
##                                                                 DP05_0021PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0022E
## 1 Estimate!!SEX AND AGE!!Total population!!21 years and over
## 2                                                    9379230
## 3                                                    2277260
## 4                                                    4505646
## 5                                                    2236266
## 6                                                    9635621
##                                                          DP05_0022M
## 1 Margin of Error!!SEX AND AGE!!Total population!!21 years and over
## 2                                                              8440
## 3                                                              5679
## 4                                                              6850
## 5                                                              4122
## 6                                                              7363
##                                                          DP05_0022PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!21 years and over
## 2                                                               73.6
## 3                                                               72.2
## 4                                                               73.5
## 5                                                               73.7
## 6                                                               75.2
##                                                                 DP05_0022PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!21 years and over
## 2                                                                       0.1
## 3                                                                       0.2
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0023E
## 1 Estimate!!SEX AND AGE!!Total population!!62 years and over
## 2                                                    2459839
## 3                                                     661366
## 4                                                    1284321
## 5                                                     589051
## 6                                                    2861918
##                                                          DP05_0023M
## 1 Margin of Error!!SEX AND AGE!!Total population!!62 years and over
## 2                                                              9329
## 3                                                              4411
## 4                                                              6208
## 5                                                              4630
## 6                                                              9666
##                                                          DP05_0023PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!62 years and over
## 2                                                               19.3
## 3                                                               21.0
## 4                                                               21.0
## 5                                                               19.4
## 6                                                               22.3
##                                                                 DP05_0023PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!62 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.2
## 6                                                                       0.1
##                                                   DP05_0024E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                    1990548
## 3                                                     537818
## 4                                                    1035074
## 5                                                     475120
## 6                                                    2332369
##                                                          DP05_0024M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                              2970
## 3                                                              2027
## 4                                                              3446
## 5                                                              1480
## 6                                                              2802
##                                                          DP05_0024PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                               15.6
## 3                                                               17.0
## 4                                                               16.9
## 5                                                               15.7
## 6                                                               18.2
##                                                                 DP05_0024PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0025E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                    9885278
## 3                                                    2422756
## 4                                                    4748726
## 5                                                    2345172
## 6                                                   10159443
##                                                          DP05_0025M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                              2274
## 3                                                              2389
## 4                                                              3160
## 5                                                               913
## 6                                                              1899
##                                                          DP05_0025PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                            9885278
## 3                                                            2422756
## 4                                                            4748726
## 5                                                            2345172
## 6                                                           10159443
##                                                                 DP05_0025PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                                       (X)
## 3                                                                       (X)
## 4                                                                       (X)
## 5                                                                       (X)
## 6                                                                       (X)
##                                                         DP05_0026E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                          4801941
## 3                                                          1188114
## 4                                                          2298091
## 5                                                          1169070
## 6                                                          4919474
##                                                                DP05_0026M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                                    3028
## 3                                                                    2543
## 4                                                                    3571
## 5                                                                    1337
## 6                                                                    3260
##                                                                DP05_0026PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                                     48.6
## 3                                                                     49.0
## 4                                                                     48.4
## 5                                                                     49.9
## 6                                                                     48.4
##                                                                       DP05_0026PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                                             0.1
## 3                                                                             0.1
## 4                                                                             0.1
## 5                                                                             0.1
## 6                                                                             0.1
##                                                           DP05_0027E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                            5083337
## 3                                                            1234642
## 4                                                            2450635
## 5                                                            1176102
## 6                                                            5239969
##                                                                  DP05_0027M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                                      2781
## 3                                                                      2254
## 4                                                                      3289
## 5                                                                      1437
## 6                                                                      3023
##                                                                  DP05_0027PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                                       51.4
## 3                                                                       51.0
## 4                                                                       51.6
## 5                                                                       50.1
## 6                                                                       51.6
##                                                                         DP05_0027PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                                               0.1
## 3                                                                               0.1
## 4                                                                               0.1
## 5                                                                               0.1
## 6                                                                               0.1
##                                                                                      DP05_0028E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                          94.5
## 3                                                                                          96.2
## 4                                                                                          93.8
## 5                                                                                          99.4
## 6                                                                                          93.9
##                                                                                             DP05_0028M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                  0.1
## 3                                                                                                  0.3
## 4                                                                                                  0.2
## 5                                                                                                  0.2
## 6                                                                                                  0.1
##                                                                                             DP05_0028PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                   (X)
## 3                                                                                                   (X)
## 4                                                                                                   (X)
## 5                                                                                                   (X)
## 6                                                                                                   (X)
##                                                                                                    DP05_0028PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                          (X)
## 3                                                                                                          (X)
## 4                                                                                                          (X)
## 5                                                                                                          (X)
## 6                                                                                                          (X)
##                                                   DP05_0029E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                    1990548
## 3                                                     537818
## 4                                                    1035074
## 5                                                     475120
## 6                                                    2332369
##                                                          DP05_0029M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                              2970
## 3                                                              2027
## 4                                                              3446
## 5                                                              1480
## 6                                                              2802
##                                                          DP05_0029PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                            1990548
## 3                                                             537818
## 4                                                            1035074
## 5                                                             475120
## 6                                                            2332369
##                                                                 DP05_0029PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                                       (X)
## 3                                                                       (X)
## 4                                                                       (X)
## 5                                                                       (X)
## 6                                                                       (X)
##                                                         DP05_0030E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                           869736
## 3                                                           239515
## 4                                                           456820
## 5                                                           223916
## 6                                                          1020825
##                                                                DP05_0030M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                                    1783
## 3                                                                    1176
## 4                                                                    2154
## 5                                                                    1014
## 6                                                                    1549
##                                                                DP05_0030PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                                     43.7
## 3                                                                     44.5
## 4                                                                     44.1
## 5                                                                     47.1
## 6                                                                     43.8
##                                                                       DP05_0030PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                                             0.1
## 3                                                                             0.1
## 4                                                                             0.1
## 5                                                                             0.1
## 6                                                                             0.1
##                                                           DP05_0031E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                            1120812
## 3                                                             298303
## 4                                                             578254
## 5                                                             251204
## 6                                                            1311544
##                                                                  DP05_0031M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                                      2090
## 3                                                                      1394
## 4                                                                      2434
## 5                                                                       930
## 6                                                                      2017
##                                                                  DP05_0031PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                                       56.3
## 3                                                                       55.5
## 4                                                                       55.9
## 5                                                                       52.9
## 6                                                                       56.2
##                                                                         DP05_0031PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                                               0.1
## 3                                                                               0.1
## 4                                                                               0.1
## 5                                                                               0.1
## 6                                                                               0.1
##                                                                                      DP05_0032E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                          77.6
## 3                                                                                          80.3
## 4                                                                                          79.0
## 5                                                                                          89.1
## 6                                                                                          77.8
##                                                                                             DP05_0032M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                  0.2
## 3                                                                                                  0.5
## 4                                                                                                  0.5
## 5                                                                                                  0.5
## 6                                                                                                  0.1
##                                                                                             DP05_0032PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                   (X)
## 3                                                                                                   (X)
## 4                                                                                                   (X)
## 5                                                                                                   (X)
## 6                                                                                                   (X)
##                                                                                                    DP05_0032PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                          (X)
## 3                                                                                                          (X)
## 4                                                                                                          (X)
## 5                                                                                                          (X)
## 6                                                                                                          (X)
##                         DP05_0033E                              DP05_0033M
## 1 Estimate!!RACE!!Total population Margin of Error!!RACE!!Total population
## 2                         12741080                                   *****
## 3                          3156145                                   *****
## 4                          6126452                                   *****
## 5                          3034392                                   *****
## 6                         12807060                                   *****
##                                DP05_0033PE
## 1 Percent Estimate!!RACE!!Total population
## 2                                 12741080
## 3                                  3156145
## 4                                  6126452
## 5                                  3034392
## 6                                 12807060
##                                       DP05_0033PM
## 1 Percent Margin of Error!!RACE!!Total population
## 2                                             (X)
## 3                                             (X)
## 4                                             (X)
## 5                                             (X)
## 6                                             (X)
##                                   DP05_0034E
## 1 Estimate!!RACE!!Total population!!One race
## 2                                   12400103
## 3                                    3086877
## 4                                    5952588
## 5                                    2878562
## 6                                   12473515
##                                          DP05_0034M
## 1 Margin of Error!!RACE!!Total population!!One race
## 2                                             12577
## 3                                              5586
## 4                                              7671
## 5                                              9895
## 6                                             13725
##                                          DP05_0034PE
## 1 Percent Estimate!!RACE!!Total population!!One race
## 2                                               97.3
## 3                                               97.8
## 4                                               97.2
## 5                                               94.9
## 6                                               97.4
##                                                 DP05_0034PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race
## 2                                                       0.1
## 3                                                       0.2
## 4                                                       0.1
## 5                                                       0.3
## 6                                                       0.1
##                                            DP05_0035E
## 1 Estimate!!RACE!!Total population!!Two or more races
## 2                                              340977
## 3                                               69268
## 4                                              173864
## 5                                              155830
## 6                                              333545
##                                                   DP05_0035M
## 1 Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                      12577
## 3                                                       5586
## 4                                                       7671
## 5                                                       9895
## 6                                                      13725
##                                                   DP05_0035PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races
## 2                                                         2.7
## 3                                                         2.2
## 4                                                         2.8
## 5                                                         5.1
## 6                                                         2.6
##                                                          DP05_0035PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                                0.1
## 3                                                                0.2
## 4                                                                0.1
## 5                                                                0.3
## 6                                                                0.1
##                                   DP05_0036E
## 1 Estimate!!RACE!!Total population!!One race
## 2                                   12400103
## 3                                    3086877
## 4                                    5952588
## 5                                    2878562
## 6                                   12473515
##                                          DP05_0036M
## 1 Margin of Error!!RACE!!Total population!!One race
## 2                                             12577
## 3                                              5586
## 4                                              7671
## 5                                              9895
## 6                                             13725
##                                          DP05_0036PE
## 1 Percent Estimate!!RACE!!Total population!!One race
## 2                                               97.3
## 3                                               97.8
## 4                                               97.2
## 5                                               94.9
## 6                                               97.4
##                                                 DP05_0036PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race
## 2                                                       0.1
## 3                                                       0.2
## 4                                                       0.1
## 5                                                       0.3
## 6                                                       0.1
##                                          DP05_0037E
## 1 Estimate!!RACE!!Total population!!One race!!White
## 2                                           9135145
## 3                                           2846099
## 4                                           5035197
## 5                                           1924976
## 6                                          10256084
##                                                 DP05_0037M
## 1 Margin of Error!!RACE!!Total population!!One race!!White
## 2                                                    26772
## 3                                                     5629
## 4                                                     7994
## 5                                                    16699
## 6                                                    17296
##                                                 DP05_0037PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!White
## 2                                                      71.7
## 3                                                      90.2
## 4                                                      82.2
## 5                                                      63.4
## 6                                                      80.1
##                                                        DP05_0037PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!White
## 2                                                              0.2
## 3                                                              0.2
## 4                                                              0.1
## 5                                                              0.6
## 6                                                              0.1
##                                                              DP05_0038E
## 1 Estimate!!RACE!!Total population!!One race!!Black or African American
## 2                                                               1793079
## 3                                                                115137
## 4                                                                704327
## 5                                                                280385
## 6                                                               1428406
##                                                                     DP05_0038M
## 1 Margin of Error!!RACE!!Total population!!One race!!Black or African American
## 2                                                                        10015
## 3                                                                         4782
## 4                                                                         6416
## 5                                                                         7032
## 6                                                                        12545
##                                                                     DP05_0038PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Black or African American
## 2                                                                          14.1
## 3                                                                           3.6
## 4                                                                          11.5
## 5                                                                           9.2
## 6                                                                          11.2
##                                                                            DP05_0038PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Black or African American
## 2                                                                                  0.1
## 3                                                                                  0.2
## 4                                                                                  0.1
## 5                                                                                  0.2
## 6                                                                                  0.1
##                                                                      DP05_0039E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                         35846
## 3                                                                         11494
## 4                                                                         27705
## 5                                                                         44666
## 6                                                                         21418
##                                                                             DP05_0039M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                                 4591
## 3                                                                                 1274
## 4                                                                                 3183
## 5                                                                                 3794
## 6                                                                                 2246
##                                                                             DP05_0039PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                                   0.3
## 3                                                                                   0.4
## 4                                                                                   0.5
## 5                                                                                   1.5
## 6                                                                                   0.2
##                                                                                    DP05_0039PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                                          0.1
## 3                                                                                          0.1
## 4                                                                                          0.1
## 5                                                                                          0.1
## 6                                                                                          0.1
##                                                                                                DP05_0040E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                    3055
## 3                                                                                                     603
## 4                                                                                                    8373
## 5                                                                                                    2626
## 6                                                                                                    2569
##                                                                                                       DP05_0040M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                           1023
## 3                                                                                                            412
## 4                                                                                                           1600
## 5                                                                                                           1119
## 6                                                                                                           1058
##                                                                                                       DP05_0040PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                             0.0
## 3                                                                                                             0.0
## 4                                                                                                             0.1
## 5                                                                                                             0.1
## 6                                                                                                             0.0
##                                                                                                              DP05_0040PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                                DP05_0041E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                    2651
## 3                                                                                                     153
## 4                                                                                                     462
## 5                                                                                                     512
## 6                                                                                                     351
##                                                                                                       DP05_0041M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                           1224
## 3                                                                                                            142
## 4                                                                                                            359
## 5                                                                                                            505
## 6                                                                                                            267
##                                                                                                       DP05_0041PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                             0.0
## 3                                                                                                             0.0
## 4                                                                                                             0.0
## 5                                                                                                             0.0
## 6                                                                                                             0.0
##                                                                                                              DP05_0041PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                              DP05_0042E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                   135
## 3                                                                                                   264
## 4                                                                                                  1210
## 5                                                                                                  2425
## 6                                                                                                   302
##                                                                                                     DP05_0042M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                          212
## 3                                                                                                          218
## 4                                                                                                          790
## 5                                                                                                         1174
## 6                                                                                                          372
##                                                                                                     DP05_0042PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                           0.0
## 3                                                                                                           0.0
## 4                                                                                                           0.0
## 5                                                                                                           0.1
## 6                                                                                                           0.0
##                                                                                                            DP05_0042PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                                  0.1
## 3                                                                                                                  0.1
## 4                                                                                                                  0.1
## 5                                                                                                                  0.1
## 6                                                                                                                  0.1
##                                                                                             DP05_0043E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                  222
## 3                                                                                                 1964
## 4                                                                                                  653
## 5                                                                                                  857
## 6                                                                                                  447
##                                                                                                    DP05_0043M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                         174
## 3                                                                                                         681
## 4                                                                                                         330
## 5                                                                                                         451
## 6                                                                                                         425
##                                                                                                    DP05_0043PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                          0.0
## 3                                                                                                          0.1
## 4                                                                                                          0.0
## 5                                                                                                          0.0
## 6                                                                                                          0.0
##                                                                                                           DP05_0043PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                                 0.1
## 3                                                                                                                 0.1
## 4                                                                                                                 0.1
## 5                                                                                                                 0.1
## 6                                                                                                                 0.1
##                                          DP05_0044E
## 1 Estimate!!RACE!!Total population!!One race!!Asian
## 2                                            717938
## 3                                             79971
## 4                                            121417
## 5                                            250137
## 6                                            455027
##                                                 DP05_0044M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian
## 2                                                     6617
## 3                                                     3082
## 4                                                     3689
## 5                                                     5954
## 6                                                     6288
##                                                 DP05_0044PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian
## 2                                                       5.6
## 3                                                       2.5
## 4                                                       2.0
## 5                                                       8.2
## 6                                                       3.6
##                                                        DP05_0044PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian
## 2                                                              0.1
## 3                                                              0.1
## 4                                                              0.1
## 5                                                              0.2
## 6                                                              0.1
##                                                        DP05_0045E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                          256122
## 3                                                           12415
## 4                                                           30435
## 5                                                           11123
## 6                                                          143539
##                                                               DP05_0045M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                                  10098
## 3                                                                   2942
## 4                                                                   3766
## 5                                                                   2466
## 6                                                                   8217
##                                                               DP05_0045PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                                     2.0
## 3                                                                     0.4
## 4                                                                     0.5
## 5                                                                     0.4
## 6                                                                     1.1
##                                                                      DP05_0045PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                                            0.1
## 3                                                                            0.1
## 4                                                                            0.1
## 5                                                                            0.1
## 6                                                                            0.1
##                                                   DP05_0046E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                     132447
## 3                                                      13121
## 4                                                      29621
## 5                                                      39196
## 6                                                     119817
##                                                          DP05_0046M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                              8810
## 3                                                              1977
## 4                                                              3299
## 5                                                              5103
## 6                                                              7260
##                                                          DP05_0046PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                                1.0
## 3                                                                0.4
## 4                                                                0.5
## 5                                                                1.3
## 6                                                                0.9
##                                                                 DP05_0046PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.2
## 6                                                                       0.1
##                                                    DP05_0047E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                      124649
## 3                                                        5029
## 4                                                       11302
## 5                                                      129739
## 6                                                       25128
##                                                           DP05_0047M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                               8120
## 3                                                               1225
## 4                                                               2102
## 5                                                               7539
## 6                                                               3284
##                                                           DP05_0047PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                                 1.0
## 3                                                                 0.2
## 4                                                                 0.2
## 5                                                                 4.3
## 6                                                                 0.2
##                                                                  DP05_0047PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                                        0.1
## 3                                                                        0.1
## 4                                                                        0.1
## 5                                                                        0.2
## 6                                                                        0.1
##                                                    DP05_0048E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                       17958
## 3                                                        1494
## 4                                                        2388
## 5                                                       11514
## 6                                                        5056
##                                                           DP05_0048M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                               2295
## 3                                                                775
## 4                                                               1159
## 5                                                               2257
## 6                                                               1189
##                                                           DP05_0048PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                                 0.1
## 3                                                                 0.0
## 4                                                                 0.0
## 5                                                                 0.4
## 6                                                                 0.0
##                                                                  DP05_0048PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                                        0.1
## 3                                                                        0.1
## 4                                                                        0.1
## 5                                                                        0.1
## 6                                                                        0.1
##                                                  DP05_0049E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                     56597
## 3                                                      6717
## 4                                                     11526
## 5                                                     11750
## 6                                                     39144
##                                                         DP05_0049M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                             5468
## 3                                                             1890
## 4                                                             1973
## 5                                                             2453
## 6                                                             4971
##                                                         DP05_0049PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                               0.4
## 3                                                               0.2
## 4                                                               0.2
## 5                                                               0.4
## 6                                                               0.3
##                                                                DP05_0049PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                                      0.1
## 3                                                                      0.1
## 4                                                                      0.1
## 5                                                                      0.1
## 6                                                                      0.1
##                                                      DP05_0050E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                         35367
## 3                                                         11705
## 4                                                         17208
## 5                                                         17744
## 6                                                         40920
##                                                             DP05_0050M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                                 6566
## 3                                                                 2817
## 4                                                                 4212
## 5                                                                 4766
## 6                                                                 4670
##                                                             DP05_0050PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                                   0.3
## 3                                                                   0.4
## 4                                                                   0.3
## 5                                                                   0.6
## 6                                                                   0.3
##                                                                    DP05_0050PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                                          0.1
## 3                                                                          0.1
## 4                                                                          0.1
## 5                                                                          0.2
## 6                                                                          0.1
##                                                       DP05_0051E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                          94798
## 3                                                          29490
## 4                                                          18937
## 5                                                          29071
## 6                                                          81423
##                                                              DP05_0051M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                                  8476
## 3                                                                  3525
## 4                                                                  3013
## 5                                                                  4901
## 6                                                                  6597
##                                                              DP05_0051PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                                    0.7
## 3                                                                    0.9
## 4                                                                    0.3
## 5                                                                    1.0
## 6                                                                    0.6
##                                                                     DP05_0051PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                                           0.1
## 3                                                                           0.1
## 4                                                                           0.1
## 5                                                                           0.2
## 6                                                                           0.1
##                                                                               DP05_0052E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                   5317
## 3                                                                                   3463
## 4                                                                                   7385
## 5                                                                                  19612
## 6                                                                                   5008
##                                                                                      DP05_0052M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                          1835
## 3                                                                                          1362
## 4                                                                                          1417
## 5                                                                                          1707
## 6                                                                                          1684
##                                                                                      DP05_0052PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                            0.0
## 3                                                                                            0.1
## 4                                                                                            0.1
## 5                                                                                            0.6
## 6                                                                                            0.0
##                                                                                             DP05_0052PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                   0.1
## 3                                                                                                   0.1
## 4                                                                                                   0.1
## 5                                                                                                   0.1
## 6                                                                                                   0.1
##                                                                                                DP05_0053E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                    1927
## 3                                                                                                     541
## 4                                                                                                    1844
## 5                                                                                                    6472
## 6                                                                                                     935
##                                                                                                       DP05_0053M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                            757
## 3                                                                                                            474
## 4                                                                                                           1238
## 5                                                                                                           1757
## 6                                                                                                            498
##                                                                                                       DP05_0053PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                             0.0
## 3                                                                                                             0.0
## 4                                                                                                             0.0
## 5                                                                                                             0.2
## 6                                                                                                             0.0
##                                                                                                              DP05_0053PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                                      DP05_0054E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                           789
## 3                                                                                                           561
## 4                                                                                                           226
## 5                                                                                                          5668
## 6                                                                                                           746
##                                                                                                             DP05_0054M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                                  461
## 3                                                                                                                  469
## 4                                                                                                                  247
## 5                                                                                                                 2108
## 6                                                                                                                  528
##                                                                                                             DP05_0054PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                                   0.0
## 3                                                                                                                   0.0
## 4                                                                                                                   0.0
## 5                                                                                                                   0.2
## 6                                                                                                                   0.0
##                                                                                                                    DP05_0054PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                                          0.1
## 3                                                                                                                          0.1
## 4                                                                                                                          0.1
## 5                                                                                                                          0.1
## 6                                                                                                                          0.1
##                                                                                       DP05_0055E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                            710
## 3                                                                                            348
## 4                                                                                           2729
## 5                                                                                           3528
## 6                                                                                            766
##                                                                                              DP05_0055M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                                   681
## 3                                                                                                   473
## 4                                                                                                   828
## 5                                                                                                  1359
## 6                                                                                                   483
##                                                                                              DP05_0055PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                                    0.0
## 3                                                                                                    0.0
## 4                                                                                                    0.0
## 5                                                                                                    0.1
## 6                                                                                                    0.0
##                                                                                                     DP05_0055PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                                           0.1
## 3                                                                                                           0.1
## 4                                                                                                           0.1
## 5                                                                                                           0.1
## 6                                                                                                           0.1
##                                                                                                       DP05_0056E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                           1891
## 3                                                                                                           2013
## 4                                                                                                           2586
## 5                                                                                                           3944
## 6                                                                                                           2561
##                                                                                                              DP05_0056M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                                  1640
## 3                                                                                                                  1109
## 4                                                                                                                   660
## 5                                                                                                                  1984
## 6                                                                                                                  1515
##                                                                                                              DP05_0056PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                                    0.0
## 3                                                                                                                    0.1
## 4                                                                                                                    0.0
## 5                                                                                                                    0.1
## 6                                                                                                                    0.0
##                                                                                                                     DP05_0056PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                                           0.1
## 3                                                                                                                           0.1
## 4                                                                                                                           0.1
## 5                                                                                                                           0.1
## 6                                                                                                                           0.1
##                                                    DP05_0057E
## 1 Estimate!!RACE!!Total population!!One race!!Some other race
## 2                                                      712778
## 3                                                       30713
## 4                                                       56557
## 5                                                      358786
## 6                                                      307572
##                                                           DP05_0057M
## 1 Margin of Error!!RACE!!Total population!!One race!!Some other race
## 2                                                              25545
## 3                                                               5286
## 4                                                               6735
## 5                                                              16689
## 6                                                              16186
##                                                           DP05_0057PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Some other race
## 2                                                                 5.6
## 3                                                                 1.0
## 4                                                                 0.9
## 5                                                                11.8
## 6                                                                 2.4
##                                                                  DP05_0057PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Some other race
## 2                                                                        0.2
## 3                                                                        0.2
## 4                                                                        0.1
## 5                                                                        0.5
## 6                                                                        0.1
##                                            DP05_0058E
## 1 Estimate!!RACE!!Total population!!Two or more races
## 2                                              340977
## 3                                               69268
## 4                                              173864
## 5                                              155830
## 6                                              333545
##                                                   DP05_0058M
## 1 Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                      12577
## 3                                                       5586
## 4                                                       7671
## 5                                                       9895
## 6                                                      13725
##                                                   DP05_0058PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races
## 2                                                         2.7
## 3                                                         2.2
## 4                                                         2.8
## 5                                                         5.1
## 6                                                         2.6
##                                                          DP05_0058PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                                0.1
## 3                                                                0.2
## 4                                                                0.1
## 5                                                                0.3
## 6                                                                0.1
##                                                                                 DP05_0059E
## 1 Estimate!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                   116872
## 3                                                                                    30402
## 4                                                                                    75345
## 5                                                                                    32463
## 6                                                                                   148313
##                                                                                        DP05_0059M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                            7015
## 3                                                                                            3934
## 4                                                                                            5750
## 5                                                                                            5046
## 6                                                                                            9404
##                                                                                        DP05_0059PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                              0.9
## 3                                                                                              1.0
## 4                                                                                              1.2
## 5                                                                                              1.1
## 6                                                                                              1.2
##                                                                                               DP05_0059PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                                     0.1
## 3                                                                                                     0.1
## 4                                                                                                     0.1
## 5                                                                                                     0.2
## 6                                                                                                     0.1
##                                                                                         DP05_0060E
## 1 Estimate!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                            35817
## 3                                                                                             9285
## 4                                                                                            39150
## 5                                                                                            14754
## 6                                                                                            32795
##                                                                                                DP05_0060M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                                    3506
## 3                                                                                                    1612
## 4                                                                                                    3567
## 5                                                                                                    2162
## 6                                                                                                    2462
##                                                                                                DP05_0060PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                                      0.3
## 3                                                                                                      0.3
## 4                                                                                                      0.6
## 5                                                                                                      0.5
## 6                                                                                                      0.3
##                                                                                                       DP05_0060PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                                             0.1
## 3                                                                                                             0.1
## 4                                                                                                             0.1
## 5                                                                                                             0.1
## 6                                                                                                             0.1
##                                                             DP05_0061E
## 1 Estimate!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                82982
## 3                                                                13266
## 4                                                                29126
## 5                                                                38991
## 6                                                                55627
##                                                                    DP05_0061M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                        7432
## 3                                                                        2302
## 4                                                                        3547
## 5                                                                        5565
## 6                                                                        5231
##                                                                    DP05_0061PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                          0.7
## 3                                                                          0.4
## 4                                                                          0.5
## 5                                                                          1.3
## 6                                                                          0.4
##                                                                           DP05_0061PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                                 0.1
## 3                                                                                 0.1
## 4                                                                                 0.1
## 5                                                                                 0.2
## 6                                                                                 0.1
##                                                                                                             DP05_0062E
## 1 Estimate!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                 8368
## 3                                                                                                                 1951
## 4                                                                                                                 4404
## 5                                                                                                                 5393
## 6                                                                                                                11223
##                                                                                                                    DP05_0062M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                        2255
## 3                                                                                                                        1063
## 4                                                                                                                        1478
## 5                                                                                                                        2120
## 6                                                                                                                        2142
##                                                                                                                    DP05_0062PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                          0.1
## 3                                                                                                                          0.1
## 4                                                                                                                          0.1
## 5                                                                                                                          0.2
## 6                                                                                                                          0.1
##                                                                                                                           DP05_0062PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                                 0.1
## 3                                                                                                                                 0.1
## 4                                                                                                                                 0.1
## 5                                                                                                                                 0.1
## 6                                                                                                                                 0.1
##                                                                              DP05_0063E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population
## 2                                                                              12741080
## 3                                                                               3156145
## 4                                                                               6126452
## 5                                                                               3034392
## 6                                                                              12807060
##                                                                                     DP05_0063M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population
## 2                                                                                        *****
## 3                                                                                        *****
## 4                                                                                        *****
## 5                                                                                        *****
## 6                                                                                        *****
##                                                                                     DP05_0063PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population
## 2                                                                                      12741080
## 3                                                                                       3156145
## 4                                                                                       6126452
## 5                                                                                       3034392
## 6                                                                                      12807060
##                                                                                            DP05_0063PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population
## 2                                                                                                  (X)
## 3                                                                                                  (X)
## 4                                                                                                  (X)
## 5                                                                                                  (X)
## 6                                                                                                  (X)
##                                                                                     DP05_0064E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                      9431680
## 3                                                                                      2909568
## 4                                                                                      5196815
## 5                                                                                      2050048
## 6                                                                                     10543254
##                                                                                            DP05_0064M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                               27696
## 3                                                                                                7192
## 4                                                                                               10284
## 5                                                                                               19415
## 6                                                                                               19389
##                                                                                            DP05_0064PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                                 74.0
## 3                                                                                                 92.2
## 4                                                                                                 84.8
## 5                                                                                                 67.6
## 6                                                                                                 82.3
##                                                                                                   DP05_0064PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                                         0.2
## 3                                                                                                         0.2
## 4                                                                                                         0.2
## 5                                                                                                         0.6
## 6                                                                                                         0.2
##                                                                                                         DP05_0065E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                          1952694
## 3                                                                                                           151562
## 4                                                                                                           794984
## 5                                                                                                           337660
## 6                                                                                                          1632035
##                                                                                                                DP05_0065M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                                    6946
## 3                                                                                                                    2986
## 4                                                                                                                    4485
## 5                                                                                                                    5928
## 6                                                                                                                    9570
##                                                                                                                DP05_0065PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                                     15.3
## 3                                                                                                                      4.8
## 4                                                                                                                     13.0
## 5                                                                                                                     11.1
## 6                                                                                                                     12.7
##                                                                                                                       DP05_0065PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                                             0.1
## 3                                                                                                                             0.1
## 4                                                                                                                             0.1
## 5                                                                                                                             0.2
## 6                                                                                                                             0.1
##                                                                                                                 DP05_0066E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                   100555
## 3                                                                                                                    27116
## 4                                                                                                                    79954
## 5                                                                                                                    71817
## 6                                                                                                                    89728
##                                                                                                                        DP05_0066M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                            6939
## 3                                                                                                                            2729
## 4                                                                                                                            4579
## 5                                                                                                                            4490
## 6                                                                                                                            5118
##                                                                                                                        DP05_0066PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                              0.8
## 3                                                                                                                              0.9
## 4                                                                                                                              1.3
## 5                                                                                                                              2.4
## 6                                                                                                                              0.7
##                                                                                                                               DP05_0066PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                                     0.1
## 3                                                                                                                                     0.1
## 4                                                                                                                                     0.1
## 5                                                                                                                                     0.1
## 6                                                                                                                                     0.1
##                                                                                     DP05_0067E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                       831487
## 3                                                                                        98900
## 4                                                                                       159166
## 5                                                                                       318010
## 6                                                                                       536235
##                                                                                            DP05_0067M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                                4879
## 3                                                                                                2688
## 4                                                                                                2654
## 5                                                                                                4322
## 6                                                                                                4513
##                                                                                            DP05_0067PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                                  6.5
## 3                                                                                                  3.1
## 4                                                                                                  2.6
## 5                                                                                                 10.5
## 6                                                                                                  4.2
##                                                                                                   DP05_0067PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                                         0.1
## 3                                                                                                         0.1
## 4                                                                                                         0.1
## 5                                                                                                         0.1
## 6                                                                                                         0.1
##                                                                                                                          DP05_0068E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                             16444
## 3                                                                                                                              6579
## 4                                                                                                                             13760
## 5                                                                                                                             41746
## 6                                                                                                                             18764
##                                                                                                                                 DP05_0068M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                                     3163
## 3                                                                                                                                     1746
## 4                                                                                                                                     2328
## 5                                                                                                                                     3352
## 6                                                                                                                                     3667
##                                                                                                                                 DP05_0068PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                                       0.1
## 3                                                                                                                                       0.2
## 4                                                                                                                                       0.2
## 5                                                                                                                                       1.4
## 6                                                                                                                                       0.1
##                                                                                                                                        DP05_0068PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                                              0.1
## 3                                                                                                                                              0.1
## 4                                                                                                                                              0.1
## 5                                                                                                                                              0.1
## 6                                                                                                                                              0.1
##                                                                                               DP05_0069E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                 776129
## 3                                                                                                  37007
## 4                                                                                                  66685
## 5                                                                                                 390057
## 6                                                                                                 355417
##                                                                                                      DP05_0069M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                         26600
## 3                                                                                                          5555
## 4                                                                                                          7078
## 5                                                                                                         15973
## 6                                                                                                         16623
##                                                                                                      DP05_0069PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                            6.1
## 3                                                                                                            1.2
## 4                                                                                                            1.1
## 5                                                                                                           12.9
## 6                                                                                                            2.8
##                                                                                                             DP05_0069PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                                   0.2
## 3                                                                                                                   0.2
## 4                                                                                                                   0.1
## 5                                                                                                                   0.5
## 6                                                                                                                   0.1
##                                                DP05_0070E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                12741080
## 3                                                 3156145
## 4                                                 6126452
## 5                                                 3034392
## 6                                                12807060
##                                                       DP05_0070M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                          *****
## 3                                                          *****
## 4                                                          *****
## 5                                                          *****
## 6                                                          *****
##                                                       DP05_0070PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                        12741080
## 3                                                         3156145
## 4                                                         6126452
## 5                                                         3034392
## 6                                                        12807060
##                                                              DP05_0070PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                                    (X)
## 3                                                                    (X)
## 4                                                                    (X)
## 5                                                                    (X)
## 6                                                                    (X)
##                                                                                  DP05_0071E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                   2208868
## 3                                                                                    191473
## 4                                                                                    253474
## 5                                                                                    881145
## 6                                                                                    974763
##                                                                                         DP05_0071M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                             1158
## 3                                                                                              901
## 4                                                                                             2044
## 5                                                                                            *****
## 6                                                                                             1237
##                                                                                         DP05_0071PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                              17.3
## 3                                                                                               6.1
## 4                                                                                               4.1
## 5                                                                                              29.0
## 6                                                                                               7.6
##                                                                                                DP05_0071PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                                      0.1
## 3                                                                                                      0.1
## 4                                                                                                      0.1
## 5                                                                                                    *****
## 6                                                                                                      0.1
##                                                                                           DP05_0072E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                            1744028
## 3                                                                                             155179
## 4                                                                                             179787
## 5                                                                                             668365
## 6                                                                                             158286
##                                                                                                  DP05_0072M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                                     18280
## 3                                                                                                      4714
## 4                                                                                                      5745
## 5                                                                                                     11586
## 6                                                                                                     10718
##                                                                                                  DP05_0072PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                                       13.7
## 3                                                                                                        4.9
## 4                                                                                                        2.9
## 5                                                                                                       22.0
## 6                                                                                                        1.2
##                                                                                                         DP05_0072PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                                               0.1
## 3                                                                                                               0.1
## 4                                                                                                               0.1
## 5                                                                                                               0.4
## 6                                                                                                               0.1
##                                                                                                DP05_0073E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                  206543
## 3                                                                                                    7792
## 4                                                                                                   16816
## 5                                                                                                   25740
## 6                                                                                                  477312
##                                                                                                       DP05_0073M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                          13313
## 3                                                                                                           2075
## 4                                                                                                           3020
## 5                                                                                                           3589
## 6                                                                                                          13697
##                                                                                                       DP05_0073PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                             1.6
## 3                                                                                                             0.2
## 4                                                                                                             0.3
## 5                                                                                                             0.8
## 6                                                                                                             3.7
##                                                                                                              DP05_0073PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                         DP05_0074E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                            27617
## 3                                                                                             1714
## 4                                                                                             8220
## 5                                                                                            35071
## 6                                                                                            24185
##                                                                                                DP05_0074M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                                    3919
## 3                                                                                                     696
## 4                                                                                                    2577
## 5                                                                                                    5849
## 6                                                                                                    3640
##                                                                                                DP05_0074PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                                      0.2
## 3                                                                                                      0.1
## 4                                                                                                      0.1
## 5                                                                                                      1.2
## 6                                                                                                      0.2
##                                                                                                       DP05_0074PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                                             0.1
## 3                                                                                                             0.1
## 4                                                                                                             0.1
## 5                                                                                                             0.2
## 6                                                                                                             0.1
##                                                                                                            DP05_0075E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                              230680
## 3                                                                                                               26788
## 4                                                                                                               48651
## 5                                                                                                              151969
## 6                                                                                                              314980
##                                                                                                                   DP05_0075M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                                      14103
## 3                                                                                                                       4189
## 4                                                                                                                       5487
## 5                                                                                                                      10271
## 6                                                                                                                      15287
##                                                                                                                   DP05_0075PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                                         1.8
## 3                                                                                                                         0.8
## 4                                                                                                                         0.8
## 5                                                                                                                         5.0
## 6                                                                                                                         2.5
##                                                                                                                          DP05_0075PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                                                0.1
## 3                                                                                                                                0.1
## 4                                                                                                                                0.1
## 5                                                                                                                                0.3
## 6                                                                                                                                0.1
##                                                                        DP05_0076E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                        10532212
## 3                                                                         2964672
## 4                                                                         5872978
## 5                                                                         2153247
## 6                                                                        11832297
##                                                                               DP05_0076M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                                   1158
## 3                                                                                    901
## 4                                                                                   2044
## 5                                                                                  *****
## 6                                                                                   1237
##                                                                               DP05_0076PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                                    82.7
## 3                                                                                    93.9
## 4                                                                                    95.9
## 5                                                                                    71.0
## 6                                                                                    92.4
##                                                                                      DP05_0076PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                                            0.1
## 3                                                                                            0.1
## 4                                                                                            0.1
## 5                                                                                          *****
## 6                                                                                            0.1
##                                                                                     DP05_0077E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                      7760732
## 3                                                                                      2695583
## 4                                                                                      4857174
## 5                                                                                      1469593
## 6                                                                                      9723288
##                                                                                            DP05_0077M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                                3669
## 3                                                                                                2165
## 4                                                                                                2076
## 5                                                                                                1806
## 6                                                                                                3360
##                                                                                            DP05_0077PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                                 60.9
## 3                                                                                                 85.4
## 4                                                                                                 79.3
## 5                                                                                                 48.4
## 6                                                                                                 75.9
##                                                                                                   DP05_0077PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                                         0.1
## 3                                                                                                         0.1
## 4                                                                                                         0.1
## 5                                                                                                         0.1
## 6                                                                                                         0.1
##                                                                                                         DP05_0078E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                          1759316
## 3                                                                                                           113562
## 4                                                                                                           698641
## 5                                                                                                           266440
## 6                                                                                                          1352804
##                                                                                                                DP05_0078M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                                    8262
## 3                                                                                                                    4619
## 4                                                                                                                    6145
## 5                                                                                                                    5865
## 6                                                                                                                    9315
##                                                                                                                DP05_0078PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                                     13.8
## 3                                                                                                                      3.6
## 4                                                                                                                     11.4
## 5                                                                                                                      8.8
## 6                                                                                                                     10.6
##                                                                                                                       DP05_0078PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                                             0.1
## 3                                                                                                                             0.1
## 4                                                                                                                             0.1
## 5                                                                                                                             0.2
## 6                                                                                                                             0.1
##                                                                                                                 DP05_0079E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                    17215
## 3                                                                                                                     9710
## 4                                                                                                                    23149
## 5                                                                                                                    30185
## 6                                                                                                                    14367
##                                                                                                                        DP05_0079M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                            2351
## 3                                                                                                                             951
## 4                                                                                                                            2507
## 5                                                                                                                            2060
## 6                                                                                                                            1986
##                                                                                                                        DP05_0079PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                              0.1
## 3                                                                                                                              0.3
## 4                                                                                                                              0.4
## 5                                                                                                                              1.0
## 6                                                                                                                              0.1
##                                                                                                                               DP05_0079PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                                     0.1
## 3                                                                                                                                     0.1
## 4                                                                                                                                     0.1
## 5                                                                                                                                     0.1
## 6                                                                                                                                     0.1
##                                                                                     DP05_0080E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                       711970
## 3                                                                                        79643
## 4                                                                                       120440
## 5                                                                                       244471
## 6                                                                                       450077
##                                                                                            DP05_0080M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                                6521
## 3                                                                                                3042
## 4                                                                                                3635
## 5                                                                                                5630
## 6                                                                                                5816
##                                                                                            DP05_0080PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                                  5.6
## 3                                                                                                  2.5
## 4                                                                                                  2.0
## 5                                                                                                  8.1
## 6                                                                                                  3.5
##                                                                                                   DP05_0080PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                                         0.1
## 3                                                                                                         0.1
## 4                                                                                                         0.1
## 5                                                                                                         0.2
## 6                                                                                                         0.1
##                                                                                                                          DP05_0081E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                              2887
## 3                                                                                                                              2945
## 4                                                                                                                              7095
## 5                                                                                                                             18249
## 6                                                                                                                              3557
##                                                                                                                                 DP05_0081M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                                      697
## 3                                                                                                                                     1388
## 4                                                                                                                                     1376
## 5                                                                                                                                     1393
## 6                                                                                                                                     1479
##                                                                                                                                 DP05_0081PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                                       0.0
## 3                                                                                                                                       0.1
## 4                                                                                                                                       0.1
## 5                                                                                                                                       0.6
## 6                                                                                                                                       0.0
##                                                                                                                                        DP05_0081PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                                              0.1
## 3                                                                                                                                              0.1
## 4                                                                                                                                              0.1
## 5                                                                                                                                              0.1
## 6                                                                                                                                              0.1
##                                                                                               DP05_0082E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                  24310
## 3                                                                                                   4000
## 4                                                                                                   9832
## 5                                                                                                  11810
## 6                                                                                                  21357
##                                                                                                      DP05_0082M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                          3879
## 3                                                                                                          1973
## 4                                                                                                          2191
## 5                                                                                                          3634
## 6                                                                                                          3645
##                                                                                                      DP05_0082PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                            0.2
## 3                                                                                                            0.1
## 4                                                                                                            0.2
## 5                                                                                                            0.4
## 6                                                                                                            0.2
##                                                                                                             DP05_0082PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                                   0.1
## 3                                                                                                                   0.1
## 4                                                                                                                   0.1
## 5                                                                                                                   0.1
## 6                                                                                                                   0.1
##                                                                                           DP05_0083E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                             255782
## 3                                                                                              59229
## 4                                                                                             156647
## 5                                                                                             112499
## 6                                                                                             266847
##                                                                                                  DP05_0083M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                                     10111
## 3                                                                                                      4832
## 4                                                                                                      6711
## 5                                                                                                      8253
## 6                                                                                                     11020
##                                                                                                  DP05_0083PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                                        2.0
## 3                                                                                                        1.9
## 4                                                                                                        2.6
## 5                                                                                                        3.7
## 6                                                                                                        2.1
##                                                                                                         DP05_0083PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                                               0.1
## 3                                                                                                               0.2
## 4                                                                                                               0.1
## 5                                                                                                               0.3
## 6                                                                                                               0.1
##                                                                                                                                DP05_0084E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                   11405
## 3                                                                                                                                     493
## 4                                                                                                                                    2330
## 5                                                                                                                                    3740
## 6                                                                                                                                   11356
##                                                                                                                                       DP05_0084M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                           2606
## 3                                                                                                                                            321
## 4                                                                                                                                           1060
## 5                                                                                                                                           1741
## 6                                                                                                                                           2873
##                                                                                                                                       DP05_0084PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                             0.1
## 3                                                                                                                                             0.0
## 4                                                                                                                                             0.0
## 5                                                                                                                                             0.1
## 6                                                                                                                                             0.1
##                                                                                                                                              DP05_0084PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                                    0.1
## 3                                                                                                                                                    0.1
## 4                                                                                                                                                    0.1
## 5                                                                                                                                                    0.1
## 6                                                                                                                                                    0.1
##                                                                                                                                                         DP05_0085E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                           244377
## 3                                                                                                                                                            58736
## 4                                                                                                                                                           154317
## 5                                                                                                                                                           108759
## 6                                                                                                                                                           255491
##                                                                                                                                                                DP05_0085M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                                   10212
## 3                                                                                                                                                                    4738
## 4                                                                                                                                                                    6664
## 5                                                                                                                                                                    8217
## 6                                                                                                                                                                   10346
##                                                                                                                                                                DP05_0085PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                                      1.9
## 3                                                                                                                                                                      1.9
## 4                                                                                                                                                                      2.5
## 5                                                                                                                                                                      3.6
## 6                                                                                                                                                                      2.0
##                                                                                                                                                                       DP05_0085PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                                             0.1
## 3                                                                                                                                                                             0.2
## 4                                                                                                                                                                             0.1
## 5                                                                                                                                                                             0.3
## 6                                                                                                                                                                             0.1
##                      DP05_0086E                           DP05_0086M
## 1 Estimate!!Total housing units Margin of Error!!Total housing units
## 2                       5376176                                  518
## 3                       1409568                                  354
## 4                       2806296                                  623
## 5                       1268717                                  151
## 6                       5713136                                  439
##                             DP05_0086PE
## 1 Percent Estimate!!Total housing units
## 2                                   (X)
## 3                                   (X)
## 4                                   (X)
## 5                                   (X)
## 6                                   (X)
##                                    DP05_0086PM
## 1 Percent Margin of Error!!Total housing units
## 2                                          (X)
## 3                                          (X)
## 4                                          (X)
## 5                                          (X)
## 6                                          (X)
##                                                                  DP05_0087E
## 1 Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                   9074766
## 3                                                                   2327219
## 4                                                                   4633370
## 5                                                                   2075166
## 6                                                                   9781212
##                                                                         DP05_0087M
## 1 Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                            18777
## 3                                                                             6259
## 4                                                                             7810
## 5                                                                             9912
## 6                                                                            13540
##                                                                         DP05_0087PE
## 1 Percent Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                           9074766
## 3                                                                           2327219
## 4                                                                           4633370
## 5                                                                           2075166
## 6                                                                           9781212
##                                                                                DP05_0087PM
## 1 Percent Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                                      (X)
## 3                                                                                      (X)
## 4                                                                                      (X)
## 5                                                                                      (X)
## 6                                                                                      (X)
##                                                                        DP05_0088E
## 1 Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                         4385340
## 3                                                                         1139250
## 4                                                                         2240784
## 5                                                                         1036350
## 6                                                                         4726343
##                                                                               DP05_0088M
## 1 Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                                  12630
## 3                                                                                   3838
## 4                                                                                   5295
## 5                                                                                   6057
## 6                                                                                   8924
##                                                                               DP05_0088PE
## 1 Percent Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                                    48.3
## 3                                                                                    49.0
## 4                                                                                    48.4
## 5                                                                                    49.9
## 6                                                                                    48.3
##                                                                                      DP05_0088PM
## 1 Percent Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                                            0.1
## 3                                                                                            0.1
## 4                                                                                            0.1
## 5                                                                                            0.2
## 6                                                                                            0.1
##                                                                          DP05_0089E
## 1 Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                           4689426
## 3                                                                           1187969
## 4                                                                           2392586
## 5                                                                           1038816
## 6                                                                           5054869
##                                                                                 DP05_0089M
## 1 Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                                    12019
## 3                                                                                     4084
## 4                                                                                     5182
## 5                                                                                     5752
## 6                                                                                     8755
##                                                                                 DP05_0089PE
## 1 Percent Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                                      51.7
## 3                                                                                      51.0
## 4                                                                                      51.6
## 5                                                                                      50.1
## 6                                                                                      51.7
##                                                                                        DP05_0089PM
## 1 Percent Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                                              0.1
## 3                                                                                              0.1
## 4                                                                                              0.1
## 5                                                                                              0.2
## 6                                                                                              0.1
meta <- meta[,-3]              
head(meta)
##        GEO_ID                                                     id
## 1        NAME                                   Geographic Area Name
## 2  DP05_0001E                Estimate!!SEX AND AGE!!Total population
## 3  DP05_0001M         Margin of Error!!SEX AND AGE!!Total population
## 4 DP05_0001PE        Percent Estimate!!SEX AND AGE!!Total population
## 5 DP05_0001PM Percent Margin of Error!!SEX AND AGE!!Total population
## 6  DP05_0002E          Estimate!!SEX AND AGE!!Total population!!Male
df <- data[-c(1,21,40),-1]
row.names(df) <- NULL
df$NAME <- as.character(paste(df$NAME))
metanames <- meta$GEO_ID
dfnames <- as.factor(colnames(df))
length(metanames)==length(dfnames)
## [1] TRUE
g <- metanames==dfnames
sum(g==TRUE)
## [1] 357
meta$id <- as.character(paste(meta$id))

err <- grep('Error',meta$id)

DF <- df[,-err]
head(DF)
##           NAME DP05_0001E DP05_0001PE DP05_0002E DP05_0002PE DP05_0003E
## 1     Illinois   12741080    12741080    6266062        49.2    6475018
## 2         Iowa    3156145     3156145    1564888        49.6    1591257
## 3     Missouri    6126452     6126452    3003165        49.0    3123287
## 4       Nevada    3034392     3034392    1522374        50.2    1512018
## 5 Pennsylvania   12807060    12807060    6271620        49.0    6535440
## 6         Utah    3161105     3161105    1592457        50.4    1568648
##   DP05_0003PE DP05_0004E DP05_0004PE DP05_0005E DP05_0005PE DP05_0006E
## 1        50.8       96.8         (X)     759456         6.0     762237
## 2        50.4       98.3         (X)     197883         6.3     197454
## 3        51.0       96.2         (X)     370408         6.0     373737
## 4        49.8      100.7         (X)     184539         6.1     188880
## 5        51.0       96.0         (X)     700416         5.5     708163
## 6        49.6      101.5         (X)     250194         7.9     257110
##   DP05_0006PE DP05_0007E DP05_0007PE DP05_0008E DP05_0008PE DP05_0009E
## 1         6.0     838140         6.6     835845         6.6     839026
## 2         6.3     215222         6.8     220659         7.0     220135
## 3         6.1     401199         6.5     391923         6.4     406398
## 4         6.2     201625         6.6     182398         6.0     180376
## 5         5.5     775827         6.1     815621         6.4     812406
## 6         8.1     270952         8.6     250173         7.9     260774
##   DP05_0009PE DP05_0010E DP05_0010PE DP05_0011E DP05_0011PE DP05_0012E
## 1         6.6    1765517        13.9    1644390        12.9    1636054
## 2         7.0     394507        12.5     383617        12.2     369396
## 3         6.6     819132        13.4     742343        12.1     753354
## 4         5.9     442713        14.6     405128        13.4     396167
## 5         6.3    1695073        13.2    1496113        11.7    1659541
## 6         8.2     463344        14.7     437953        13.9     319031
##   DP05_0012PE DP05_0013E DP05_0013PE DP05_0014E DP05_0014PE DP05_0015E
## 1        12.8     855616         6.7     814251         6.4    1143329
## 2        11.7     213657         6.8     205797         6.5     299333
## 3        12.3     419591         6.8     413293         6.7     596623
## 4        13.1     191059         6.3     186387         6.1     291996
## 5        13.0     916749         7.2     894782         7.0    1311159
## 6        10.1     152425         4.8     147852         4.7     212206
##   DP05_0015PE DP05_0016E DP05_0016PE DP05_0017E DP05_0017PE DP05_0018E
## 1         9.0     587651         4.6     259568         2.0       38.3
## 2         9.5     162869         5.2      75616         2.4       38.1
## 3         9.7     313646         5.1     124805         2.0       38.8
## 4         9.6     138844         4.6      44280         1.5       38.2
## 5        10.2     707570         5.5     313640         2.4       40.8
## 6         6.7     103828         3.3      35263         1.1       31.0
##   DP05_0018PE DP05_0019E DP05_0019PE DP05_0020E DP05_0020PE DP05_0021E
## 1         (X)    2855802        22.4   10216304        80.2    9885278
## 2         (X)     733389        23.2    2506580        79.4    2422756
## 3         (X)    1377726        22.5    4907003        80.1    4748726
## 4         (X)     689220        22.7    2420990        79.8    2345172
## 5         (X)    2647617        20.7   10470798        81.8   10159443
## 6         (X)     931831        29.5    2329530        73.7    2229274
##   DP05_0021PE DP05_0022E DP05_0022PE DP05_0023E DP05_0023PE DP05_0024E
## 1        77.6    9379230        73.6    2459839        19.3    1990548
## 2        76.8    2277260        72.2     661366        21.0     537818
## 3        77.5    4505646        73.5    1284321        21.0    1035074
## 4        77.3    2236266        73.7     589051        19.4     475120
## 5        79.3    9635621        75.2    2861918        22.3    2332369
## 6        70.5    2087145        66.0     439430        13.9     351297
##   DP05_0024PE DP05_0025E DP05_0025PE DP05_0026E DP05_0026PE DP05_0027E
## 1        15.6    9885278     9885278    4801941        48.6    5083337
## 2        17.0    2422756     2422756    1188114        49.0    1234642
## 3        16.9    4748726     4748726    2298091        48.4    2450635
## 4        15.7    2345172     2345172    1169070        49.9    1176102
## 5        18.2   10159443    10159443    4919474        48.4    5239969
## 6        11.1    2229274     2229274    1113904        50.0    1115370
##   DP05_0027PE DP05_0028E DP05_0028PE DP05_0029E DP05_0029PE DP05_0030E
## 1        51.4       94.5         (X)    1990548     1990548     869736
## 2        51.0       96.2         (X)     537818      537818     239515
## 3        51.6       93.8         (X)    1035074     1035074     456820
## 4        50.1       99.4         (X)     475120      475120     223916
## 5        51.6       93.9         (X)    2332369     2332369    1020825
## 6        50.0       99.9         (X)     351297      351297     164068
##   DP05_0030PE DP05_0031E DP05_0031PE DP05_0032E DP05_0032PE DP05_0033E
## 1        43.7    1120812        56.3       77.6         (X)   12741080
## 2        44.5     298303        55.5       80.3         (X)    3156145
## 3        44.1     578254        55.9       79.0         (X)    6126452
## 4        47.1     251204        52.9       89.1         (X)    3034392
## 5        43.8    1311544        56.2       77.8         (X)   12807060
## 6        46.7     187229        53.3       87.6         (X)    3161105
##   DP05_0033PE DP05_0034E DP05_0034PE DP05_0035E DP05_0035PE DP05_0036E
## 1    12741080   12400103        97.3     340977         2.7   12400103
## 2     3156145    3086877        97.8      69268         2.2    3086877
## 3     6126452    5952588        97.2     173864         2.8    5952588
## 4     3034392    2878562        94.9     155830         5.1    2878562
## 5    12807060   12473515        97.4     333545         2.6   12473515
## 6     3161105    3059954        96.8     101151         3.2    3059954
##   DP05_0036PE DP05_0037E DP05_0037PE DP05_0038E DP05_0038PE DP05_0039E
## 1        97.3    9135145        71.7    1793079        14.1      35846
## 2        97.8    2846099        90.2     115137         3.6      11494
## 3        97.2    5035197        82.2     704327        11.5      27705
## 4        94.9    1924976        63.4     280385         9.2      44666
## 5        97.4   10256084        80.1    1428406        11.2      21418
## 6        96.8    2708195        85.7      40365         1.3      34678
##   DP05_0039PE DP05_0040E DP05_0040PE DP05_0041E DP05_0041PE DP05_0042E
## 1         0.3       3055         0.0       2651         0.0        135
## 2         0.4        603         0.0        153         0.0        264
## 3         0.5       8373         0.1        462         0.0       1210
## 4         1.5       2626         0.1        512         0.0       2425
## 5         0.2       2569         0.0        351         0.0        302
## 6         1.1        709         0.0          0         0.0      15970
##   DP05_0042PE DP05_0043E DP05_0043PE DP05_0044E DP05_0044PE DP05_0045E
## 1         0.0        222         0.0     717938         5.6     256122
## 2         0.0       1964         0.1      79971         2.5      12415
## 3         0.0        653         0.0     121417         2.0      30435
## 4         0.1        857         0.0     250137         8.2      11123
## 5         0.0        447         0.0     455027         3.6     143539
## 6         0.5       2265         0.1      75898         2.4      12079
##   DP05_0045PE DP05_0046E DP05_0046PE DP05_0047E DP05_0047PE DP05_0048E
## 1         2.0     132447         1.0     124649         1.0      17958
## 2         0.4      13121         0.4       5029         0.2       1494
## 3         0.5      29621         0.5      11302         0.2       2388
## 4         0.4      39196         1.3     129739         4.3      11514
## 5         1.1     119817         0.9      25128         0.2       5056
## 6         0.4      14285         0.5       8034         0.3       6208
##   DP05_0048PE DP05_0049E DP05_0049PE DP05_0050E DP05_0050PE DP05_0051E
## 1         0.1      56597         0.4      35367         0.3      94798
## 2         0.0       6717         0.2      11705         0.4      29490
## 3         0.0      11526         0.2      17208         0.3      18937
## 4         0.4      11750         0.4      17744         0.6      29071
## 5         0.0      39144         0.3      40920         0.3      81423
## 6         0.2       6756         0.2       9663         0.3      18873
##   DP05_0051PE DP05_0052E DP05_0052PE DP05_0053E DP05_0053PE DP05_0054E
## 1         0.7       5317         0.0       1927         0.0        789
## 2         0.9       3463         0.1        541         0.0        561
## 3         0.3       7385         0.1       1844         0.0        226
## 4         1.0      19612         0.6       6472         0.2       5668
## 5         0.6       5008         0.0        935         0.0        746
## 6         0.6      29362         0.9       2090         0.1        836
##   DP05_0054PE DP05_0055E DP05_0055PE DP05_0056E DP05_0056PE DP05_0057E
## 1         0.0        710         0.0       1891         0.0     712778
## 2         0.0        348         0.0       2013         0.1      30713
## 3         0.0       2729         0.0       2586         0.0      56557
## 4         0.2       3528         0.1       3944         0.1     358786
## 5         0.0        766         0.0       2561         0.0     307572
## 6         0.0       8386         0.3      18050         0.6     171456
##   DP05_0057PE DP05_0058E DP05_0058PE DP05_0059E DP05_0059PE DP05_0060E
## 1         5.6     340977         2.7     116872         0.9      35817
## 2         1.0      69268         2.2      30402         1.0       9285
## 3         0.9     173864         2.8      75345         1.2      39150
## 4        11.8     155830         5.1      32463         1.1      14754
## 5         2.4     333545         2.6     148313         1.2      32795
## 6         5.4     101151         3.2      12469         0.4      17190
##   DP05_0060PE DP05_0061E DP05_0061PE DP05_0062E DP05_0062PE DP05_0063E
## 1         0.3      82982         0.7       8368         0.1   12741080
## 2         0.3      13266         0.4       1951         0.1    3156145
## 3         0.6      29126         0.5       4404         0.1    6126452
## 4         0.5      38991         1.3       5393         0.2    3034392
## 5         0.3      55627         0.4      11223         0.1   12807060
## 6         0.5      29698         0.9        988         0.0    3161105
##   DP05_0063PE DP05_0064E DP05_0064PE DP05_0065E DP05_0065PE DP05_0066E
## 1    12741080    9431680        74.0    1952694        15.3     100555
## 2     3156145    2909568        92.2     151562         4.8      27116
## 3     6126452    5196815        84.8     794984        13.0      79954
## 4     3034392    2050048        67.6     337660        11.1      71817
## 5    12807060   10543254        82.3    1632035        12.7      89728
## 6     3161105    2800377        88.6      58241         1.8      56454
##   DP05_0066PE DP05_0067E DP05_0067PE DP05_0068E DP05_0068PE DP05_0069E
## 1         0.8     831487         6.5      16444         0.1     776129
## 2         0.9      98900         3.1       6579         0.2      37007
## 3         1.3     159166         2.6      13760         0.2      66685
## 4         2.4     318010        10.5      41746         1.4     390057
## 5         0.7     536235         4.2      18764         0.1     355417
## 6         1.8     115638         3.7      47609         1.5     191869
##   DP05_0069PE DP05_0070E DP05_0070PE DP05_0071E DP05_0071PE DP05_0072E
## 1         6.1   12741080    12741080    2208868        17.3    1744028
## 2         1.2    3156145     3156145     191473         6.1     155179
## 3         1.1    6126452     6126452     253474         4.1     179787
## 4        12.9    3034392     3034392     881145        29.0     668365
## 5         2.8   12807060    12807060     974763         7.6     158286
## 6         6.1    3161105     3161105     450220        14.2     313226
##   DP05_0072PE DP05_0073E DP05_0073PE DP05_0074E DP05_0074PE DP05_0075E
## 1        13.7     206543         1.6      27617         0.2     230680
## 2         4.9       7792         0.2       1714         0.1      26788
## 3         2.9      16816         0.3       8220         0.1      48651
## 4        22.0      25740         0.8      35071         1.2     151969
## 5         1.2     477312         3.7      24185         0.2     314980
## 6         9.9      12566         0.4       2766         0.1     121662
##   DP05_0075PE DP05_0076E DP05_0076PE DP05_0077E DP05_0077PE DP05_0078E
## 1         1.8   10532212        82.7    7760732        60.9    1759316
## 2         0.8    2964672        93.9    2695583        85.4     113562
## 3         0.8    5872978        95.9    4857174        79.3     698641
## 4         5.0    2153247        71.0    1469593        48.4     266440
## 5         2.5   11832297        92.4    9723288        75.9    1352804
## 6         3.8    2710885        85.8    2459891        77.8      37546
##   DP05_0078PE DP05_0079E DP05_0079PE DP05_0080E DP05_0080PE DP05_0081E
## 1        13.8      17215         0.1     711970         5.6       2887
## 2         3.6       9710         0.3      79643         2.5       2945
## 3        11.4      23149         0.4     120440         2.0       7095
## 4         8.8      30185         1.0     244471         8.1      18249
## 5        10.6      14367         0.1     450077         3.5       3557
## 6         1.2      27959         0.9      74784         2.4      28810
##   DP05_0081PE DP05_0082E DP05_0082PE DP05_0083E DP05_0083PE DP05_0084E
## 1         0.0      24310         0.2     255782         2.0      11405
## 2         0.1       4000         0.1      59229         1.9        493
## 3         0.1       9832         0.2     156647         2.6       2330
## 4         0.6      11810         0.4     112499         3.7       3740
## 5         0.0      21357         0.2     266847         2.1      11356
## 6         0.9       6356         0.2      75539         2.4       2925
##   DP05_0084PE DP05_0085E DP05_0085PE DP05_0086E DP05_0086PE DP05_0087E
## 1         0.1     244377         1.9    5376176         (X)    9074766
## 2         0.0      58736         1.9    1409568         (X)    2327219
## 3         0.0     154317         2.5    2806296         (X)    4633370
## 4         0.1     108759         3.6    1268717         (X)    2075166
## 5         0.1     255491         2.0    5713136         (X)    9781212
## 6         0.1      72614         2.3    1108739         (X)    2087341
##   DP05_0087PE DP05_0088E DP05_0088PE DP05_0089E DP05_0089PE
## 1     9074766    4385340        48.3    4689426        51.7
## 2     2327219    1139250        49.0    1187969        51.0
## 3     4633370    2240784        48.4    2392586        51.6
## 4     2075166    1036350        49.9    1038816        50.1
## 5     9781212    4726343        48.3    5054869        51.7
## 6     2087341    1041497        49.9    1045844        50.1
estimate <- grep('Estimate',meta$id)

Estimate <- meta[estimate,]
head(Estimate)
##         GEO_ID                                                      id
## 2   DP05_0001E                 Estimate!!SEX AND AGE!!Total population
## 4  DP05_0001PE         Percent Estimate!!SEX AND AGE!!Total population
## 6   DP05_0002E           Estimate!!SEX AND AGE!!Total population!!Male
## 8  DP05_0002PE   Percent Estimate!!SEX AND AGE!!Total population!!Male
## 10  DP05_0003E         Estimate!!SEX AND AGE!!Total population!!Female
## 12 DP05_0003PE Percent Estimate!!SEX AND AGE!!Total population!!Female
age <- Estimate[grep('AGE',Estimate$id),]
head(age)
##         GEO_ID                                                      id
## 2   DP05_0001E                 Estimate!!SEX AND AGE!!Total population
## 4  DP05_0001PE         Percent Estimate!!SEX AND AGE!!Total population
## 6   DP05_0002E           Estimate!!SEX AND AGE!!Total population!!Male
## 8  DP05_0002PE   Percent Estimate!!SEX AND AGE!!Total population!!Male
## 10  DP05_0003E         Estimate!!SEX AND AGE!!Total population!!Female
## 12 DP05_0003PE Percent Estimate!!SEX AND AGE!!Total population!!Female
race <- Estimate[grep('RACE',Estimate$id),]
head(race)
##          GEO_ID                                                          id
## 130  DP05_0033E                            Estimate!!RACE!!Total population
## 132 DP05_0033PE                    Percent Estimate!!RACE!!Total population
## 134  DP05_0034E                  Estimate!!RACE!!Total population!!One race
## 136 DP05_0034PE          Percent Estimate!!RACE!!Total population!!One race
## 138  DP05_0035E         Estimate!!RACE!!Total population!!Two or more races
## 140 DP05_0035PE Percent Estimate!!RACE!!Total population!!Two or more races
percentRace <- race[grep('Percent',race$id),]
percentRace$id <- gsub('Percent Estimate!!RACE!!','',percentRace$id)
percentRace
##          GEO_ID
## 132 DP05_0033PE
## 136 DP05_0034PE
## 140 DP05_0035PE
## 144 DP05_0036PE
## 148 DP05_0037PE
## 152 DP05_0038PE
## 156 DP05_0039PE
## 160 DP05_0040PE
## 164 DP05_0041PE
## 168 DP05_0042PE
## 172 DP05_0043PE
## 176 DP05_0044PE
## 180 DP05_0045PE
## 184 DP05_0046PE
## 188 DP05_0047PE
## 192 DP05_0048PE
## 196 DP05_0049PE
## 200 DP05_0050PE
## 204 DP05_0051PE
## 208 DP05_0052PE
## 212 DP05_0053PE
## 216 DP05_0054PE
## 220 DP05_0055PE
## 224 DP05_0056PE
## 228 DP05_0057PE
## 232 DP05_0058PE
## 236 DP05_0059PE
## 240 DP05_0060PE
## 244 DP05_0061PE
## 248 DP05_0062PE
## 280 DP05_0070PE
## 284 DP05_0071PE
## 288 DP05_0072PE
## 292 DP05_0073PE
## 296 DP05_0074PE
## 300 DP05_0075PE
## 304 DP05_0076PE
## 308 DP05_0077PE
## 312 DP05_0078PE
## 316 DP05_0079PE
## 320 DP05_0080PE
## 324 DP05_0081PE
## 328 DP05_0082PE
## 332 DP05_0083PE
## 336 DP05_0084PE
## 340 DP05_0085PE
##                                                                                                                                                                           id
## 132                                                                                                                                                         Total population
## 136                                                                                                                                               Total population!!One race
## 140                                                                                                                                      Total population!!Two or more races
## 144                                                                                                                                               Total population!!One race
## 148                                                                                                                                        Total population!!One race!!White
## 152                                                                                                                    Total population!!One race!!Black or African American
## 156                                                                                                            Total population!!One race!!American Indian and Alaska Native
## 160                                                                                  Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 164                                                                                  Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 168                                                                                    Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 172                                                                                     Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 176                                                                                                                                        Total population!!One race!!Asian
## 180                                                                                                                          Total population!!One race!!Asian!!Asian Indian
## 184                                                                                                                               Total population!!One race!!Asian!!Chinese
## 188                                                                                                                              Total population!!One race!!Asian!!Filipino
## 192                                                                                                                              Total population!!One race!!Asian!!Japanese
## 196                                                                                                                                Total population!!One race!!Asian!!Korean
## 200                                                                                                                            Total population!!One race!!Asian!!Vietnamese
## 204                                                                                                                           Total population!!One race!!Asian!!Other Asian
## 208                                                                                                   Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 212                                                                                  Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 216                                                                            Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 220                                                                                           Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 224                                                                           Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 228                                                                                                                              Total population!!One race!!Some other race
## 232                                                                                                                                      Total population!!Two or more races
## 236                                                                                                 Total population!!Two or more races!!White and Black or African American
## 240                                                                                         Total population!!Two or more races!!White and American Indian and Alaska Native
## 244                                                                                                                     Total population!!Two or more races!!White and Asian
## 248                                                                     Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 280                                                                                                          Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population
## 284                                                                        Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 288                                                               Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 292                                                          Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 296                                                                 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 300                                              Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 304                                                                                  Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 308                                                                     Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 312                                                 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 316                                         Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 320                                                                     Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 324                                Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 328                                                           Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 332                                                               Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 336                          Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 340 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races

Lets get the white, black, asian, native american indian, two or more total, pacific islander, and latino groups.

totalPop <- percentRace[1,]
black <- percentRace[6,]
white <- percentRace[5,]
twoOrMore <- percentRace[3,]
AmericanIndian <- percentRace[7,]
Asian <- percentRace[12,]
pacificIslander <- percentRace[20,]
LatinoHispanic <- percentRace[32,]

totalPop$id <- 'total_state_population'
black$id <- 'percent_black'
white$id <- 'percent_white'
twoOrMore$id <- 'percent_two_or_more'
AmericanIndian$id <- 'percent_Native_American'
Asian$id <- 'percent_Asian'
pacificIslander$id <- 'percent_Pacific_Islander'
LatinoHispanic$id <- 'percent_Latino'

EthnicBackground <- rbind(totalPop,black,white,twoOrMore,AmericanIndian,Asian,pacificIslander,LatinoHispanic)
EthnicBackground
##          GEO_ID                       id
## 132 DP05_0033PE   total_state_population
## 152 DP05_0038PE            percent_black
## 148 DP05_0037PE            percent_white
## 140 DP05_0035PE      percent_two_or_more
## 156 DP05_0039PE  percent_Native_American
## 176 DP05_0044PE            percent_Asian
## 208 DP05_0052PE percent_Pacific_Islander
## 284 DP05_0071PE           percent_Latino
IDs <- EthnicBackground$GEO_ID
class(IDs)
## [1] "factor"
IDs <- as.character(paste(IDs))
DF2 <- DF[,c('NAME',IDs)]
DF2
##              NAME DP05_0033PE DP05_0038PE DP05_0037PE DP05_0035PE DP05_0039PE
## 1        Illinois    12741080        14.1        71.7         2.7         0.3
## 2            Iowa     3156145         3.6        90.2         2.2         0.4
## 3        Missouri     6126452        11.5        82.2         2.8         0.5
## 4          Nevada     3034392         9.2        63.4         5.1         1.5
## 5    Pennsylvania    12807060        11.2        80.1         2.6         0.2
## 6            Utah     3161105         1.3        85.7         3.2         1.1
## 7   West Virginia     1805832         3.8        93.0         1.9         0.1
## 8        Colorado     5695564         4.2        84.1         4.0         1.0
## 9         Georgia    10519475        31.6        58.3         2.7         0.3
## 10          Idaho     1754208         0.7        89.9         3.0         1.3
## 11       Maryland     6042718        30.0        54.7         3.7         0.2
## 12     New Jersey     8908520        13.6        66.9         2.8         0.2
## 13     New Mexico     2095428         2.2        76.4         3.2         9.6
## 14           Ohio    11689442        12.4        81.0         3.1         0.2
## 15         Alaska      737438         3.4        64.4         8.4        15.1
## 16        Florida    21299325        16.0        74.6         2.9         0.3
## 17         Hawaii     1420491         2.0        24.3        24.3         0.2
## 18  Massachusetts     6902149         7.8        77.3         3.4         0.2
## 19 South Carolina     5084127        26.6        67.0         2.4         0.5
## 20          Maine     1338404         1.4        94.3         2.2         0.6
## 21 North Carolina    10383620        21.4        68.4         2.9         1.2
## 22   South Dakota      882235         2.2        84.0         2.7         8.8
## 23        Alabama     4887871        26.7        67.7         2.1         0.5
## 24        Indiana     6691878         9.5        82.8         2.7         0.2
## 25       Kentucky     4468402         7.9        86.7         2.4         0.2
## 26      Louisiana     4659978        32.4        61.7         2.3         0.6
## 27      Tennessee     6770010        16.8        77.3         2.2         0.3
## 28        Vermont      626299         1.2        94.1         2.0         0.3
## 29     Washington     7535591         3.9        74.8         6.0         1.3
## 30       Michigan     9995915        13.8        78.3         2.9         0.5
## 31       Nebraska     1929268         4.7        86.4         3.1         1.0
## 32  New Hampshire     1356458         1.7        92.4         2.2         0.3
## 33       Oklahoma     3943079         7.3        72.2         7.7         7.8
## 34         Oregon     4190713         2.0        83.9         4.7         1.2
## 35   Rhode Island     1057315         6.7        80.7         3.1         0.4
## 36      Wisconsin     5813568         6.4        85.3         2.5         0.9
## 37        Wyoming      577737         0.6        91.5         2.4         2.8
## 38       Arkansas     3013825        15.2        76.5         2.9         0.7
## 39     California    39557045         5.8        59.5         5.1         0.8
## 40       Delaware      967171        22.5        68.2         2.7         0.5
## 41         Kansas     2911510         5.9        84.0         3.7         0.9
## 42      Minnesota     5611179         6.6        82.5         3.1         1.1
## 43    Mississippi     2986530        38.0        58.1         1.5         0.4
## 44        Montana     1062305         0.5        88.6         3.1         6.4
## 45       Virginia     8517685        19.2        67.4         4.1         0.3
## 46        Arizona     7171646         4.7        78.0         4.0         4.6
## 47    Connecticut     3572665        11.0        75.2         3.4         0.3
## 48       New York    19542209        15.7        63.3         3.3         0.4
## 49   North Dakota      760077         3.4        85.7         2.3         5.4
## 50          Texas    28701845        12.3        73.5         2.7         0.5
##    DP05_0044PE DP05_0052PE DP05_0071PE
## 1          5.6         0.0        17.3
## 2          2.5         0.1         6.1
## 3          2.0         0.1         4.1
## 4          8.2         0.6        29.0
## 5          3.6         0.0         7.6
## 6          2.4         0.9        14.2
## 7          0.7         0.0         1.4
## 8          3.2         0.1        21.7
## 9          4.1         0.1         9.7
## 10         1.5         0.2        12.7
## 11         6.3         0.1        10.4
## 12         9.7         0.0        20.6
## 13         1.6         0.1        49.1
## 14         2.3         0.0         3.9
## 15         6.3         1.1         7.2
## 16         2.8         0.1        26.1
## 17        37.6        10.2        10.7
## 18         6.8         0.0        12.3
## 19         1.6         0.1         5.8
## 20         1.2         0.0         1.7
## 21         3.0         0.1         9.6
## 22         1.7         0.0         3.9
## 23         1.3         0.0         4.3
## 24         2.3         0.1         7.1
## 25         1.5         0.1         3.6
## 26         1.6         0.0         5.1
## 27         1.8         0.1         5.5
## 28         1.9         0.0         2.0
## 29         8.8         0.7        12.9
## 30         3.3         0.0         5.2
## 31         2.4         0.1        11.1
## 32         2.7         0.0         3.9
## 33         2.1         0.1        10.9
## 34         4.6         0.4        13.3
## 35         3.4         0.1        15.9
## 36         2.8         0.0         6.9
## 37         1.0         0.2        10.0
## 38         1.6         0.3         7.6
## 39        14.7         0.4        39.3
## 40         4.0         0.1         9.5
## 41         2.8         0.1        12.0
## 42         4.9         0.0         5.5
## 43         0.9         0.0         2.9
## 44         0.8         0.1         3.9
## 45         6.5         0.1         9.5
## 46         3.3         0.2        31.6
## 47         4.6         0.0        16.5
## 48         8.5         0.0        19.2
## 49         1.8         0.0         3.6
## 50         5.0         0.1        39.6
colnames(DF2) <- c('state',EthnicBackground$id)
DF2
##             state total_state_population percent_black percent_white
## 1        Illinois               12741080          14.1          71.7
## 2            Iowa                3156145           3.6          90.2
## 3        Missouri                6126452          11.5          82.2
## 4          Nevada                3034392           9.2          63.4
## 5    Pennsylvania               12807060          11.2          80.1
## 6            Utah                3161105           1.3          85.7
## 7   West Virginia                1805832           3.8          93.0
## 8        Colorado                5695564           4.2          84.1
## 9         Georgia               10519475          31.6          58.3
## 10          Idaho                1754208           0.7          89.9
## 11       Maryland                6042718          30.0          54.7
## 12     New Jersey                8908520          13.6          66.9
## 13     New Mexico                2095428           2.2          76.4
## 14           Ohio               11689442          12.4          81.0
## 15         Alaska                 737438           3.4          64.4
## 16        Florida               21299325          16.0          74.6
## 17         Hawaii                1420491           2.0          24.3
## 18  Massachusetts                6902149           7.8          77.3
## 19 South Carolina                5084127          26.6          67.0
## 20          Maine                1338404           1.4          94.3
## 21 North Carolina               10383620          21.4          68.4
## 22   South Dakota                 882235           2.2          84.0
## 23        Alabama                4887871          26.7          67.7
## 24        Indiana                6691878           9.5          82.8
## 25       Kentucky                4468402           7.9          86.7
## 26      Louisiana                4659978          32.4          61.7
## 27      Tennessee                6770010          16.8          77.3
## 28        Vermont                 626299           1.2          94.1
## 29     Washington                7535591           3.9          74.8
## 30       Michigan                9995915          13.8          78.3
## 31       Nebraska                1929268           4.7          86.4
## 32  New Hampshire                1356458           1.7          92.4
## 33       Oklahoma                3943079           7.3          72.2
## 34         Oregon                4190713           2.0          83.9
## 35   Rhode Island                1057315           6.7          80.7
## 36      Wisconsin                5813568           6.4          85.3
## 37        Wyoming                 577737           0.6          91.5
## 38       Arkansas                3013825          15.2          76.5
## 39     California               39557045           5.8          59.5
## 40       Delaware                 967171          22.5          68.2
## 41         Kansas                2911510           5.9          84.0
## 42      Minnesota                5611179           6.6          82.5
## 43    Mississippi                2986530          38.0          58.1
## 44        Montana                1062305           0.5          88.6
## 45       Virginia                8517685          19.2          67.4
## 46        Arizona                7171646           4.7          78.0
## 47    Connecticut                3572665          11.0          75.2
## 48       New York               19542209          15.7          63.3
## 49   North Dakota                 760077           3.4          85.7
## 50          Texas               28701845          12.3          73.5
##    percent_two_or_more percent_Native_American percent_Asian
## 1                  2.7                     0.3           5.6
## 2                  2.2                     0.4           2.5
## 3                  2.8                     0.5           2.0
## 4                  5.1                     1.5           8.2
## 5                  2.6                     0.2           3.6
## 6                  3.2                     1.1           2.4
## 7                  1.9                     0.1           0.7
## 8                  4.0                     1.0           3.2
## 9                  2.7                     0.3           4.1
## 10                 3.0                     1.3           1.5
## 11                 3.7                     0.2           6.3
## 12                 2.8                     0.2           9.7
## 13                 3.2                     9.6           1.6
## 14                 3.1                     0.2           2.3
## 15                 8.4                    15.1           6.3
## 16                 2.9                     0.3           2.8
## 17                24.3                     0.2          37.6
## 18                 3.4                     0.2           6.8
## 19                 2.4                     0.5           1.6
## 20                 2.2                     0.6           1.2
## 21                 2.9                     1.2           3.0
## 22                 2.7                     8.8           1.7
## 23                 2.1                     0.5           1.3
## 24                 2.7                     0.2           2.3
## 25                 2.4                     0.2           1.5
## 26                 2.3                     0.6           1.6
## 27                 2.2                     0.3           1.8
## 28                 2.0                     0.3           1.9
## 29                 6.0                     1.3           8.8
## 30                 2.9                     0.5           3.3
## 31                 3.1                     1.0           2.4
## 32                 2.2                     0.3           2.7
## 33                 7.7                     7.8           2.1
## 34                 4.7                     1.2           4.6
## 35                 3.1                     0.4           3.4
## 36                 2.5                     0.9           2.8
## 37                 2.4                     2.8           1.0
## 38                 2.9                     0.7           1.6
## 39                 5.1                     0.8          14.7
## 40                 2.7                     0.5           4.0
## 41                 3.7                     0.9           2.8
## 42                 3.1                     1.1           4.9
## 43                 1.5                     0.4           0.9
## 44                 3.1                     6.4           0.8
## 45                 4.1                     0.3           6.5
## 46                 4.0                     4.6           3.3
## 47                 3.4                     0.3           4.6
## 48                 3.3                     0.4           8.5
## 49                 2.3                     5.4           1.8
## 50                 2.7                     0.5           5.0
##    percent_Pacific_Islander percent_Latino
## 1                       0.0           17.3
## 2                       0.1            6.1
## 3                       0.1            4.1
## 4                       0.6           29.0
## 5                       0.0            7.6
## 6                       0.9           14.2
## 7                       0.0            1.4
## 8                       0.1           21.7
## 9                       0.1            9.7
## 10                      0.2           12.7
## 11                      0.1           10.4
## 12                      0.0           20.6
## 13                      0.1           49.1
## 14                      0.0            3.9
## 15                      1.1            7.2
## 16                      0.1           26.1
## 17                     10.2           10.7
## 18                      0.0           12.3
## 19                      0.1            5.8
## 20                      0.0            1.7
## 21                      0.1            9.6
## 22                      0.0            3.9
## 23                      0.0            4.3
## 24                      0.1            7.1
## 25                      0.1            3.6
## 26                      0.0            5.1
## 27                      0.1            5.5
## 28                      0.0            2.0
## 29                      0.7           12.9
## 30                      0.0            5.2
## 31                      0.1           11.1
## 32                      0.0            3.9
## 33                      0.1           10.9
## 34                      0.4           13.3
## 35                      0.1           15.9
## 36                      0.0            6.9
## 37                      0.2           10.0
## 38                      0.3            7.6
## 39                      0.4           39.3
## 40                      0.1            9.5
## 41                      0.1           12.0
## 42                      0.0            5.5
## 43                      0.0            2.9
## 44                      0.1            3.9
## 45                      0.1            9.5
## 46                      0.2           31.6
## 47                      0.0           16.5
## 48                      0.0           19.2
## 49                      0.0            3.6
## 50                      0.1           39.6
Ethnicities <- DF2[order(DF2$state),]
row.names(Ethnicities) <- NULL
Ethnicities
##             state total_state_population percent_black percent_white
## 1         Alabama                4887871          26.7          67.7
## 2          Alaska                 737438           3.4          64.4
## 3         Arizona                7171646           4.7          78.0
## 4        Arkansas                3013825          15.2          76.5
## 5      California               39557045           5.8          59.5
## 6        Colorado                5695564           4.2          84.1
## 7     Connecticut                3572665          11.0          75.2
## 8        Delaware                 967171          22.5          68.2
## 9         Florida               21299325          16.0          74.6
## 10        Georgia               10519475          31.6          58.3
## 11         Hawaii                1420491           2.0          24.3
## 12          Idaho                1754208           0.7          89.9
## 13       Illinois               12741080          14.1          71.7
## 14        Indiana                6691878           9.5          82.8
## 15           Iowa                3156145           3.6          90.2
## 16         Kansas                2911510           5.9          84.0
## 17       Kentucky                4468402           7.9          86.7
## 18      Louisiana                4659978          32.4          61.7
## 19          Maine                1338404           1.4          94.3
## 20       Maryland                6042718          30.0          54.7
## 21  Massachusetts                6902149           7.8          77.3
## 22       Michigan                9995915          13.8          78.3
## 23      Minnesota                5611179           6.6          82.5
## 24    Mississippi                2986530          38.0          58.1
## 25       Missouri                6126452          11.5          82.2
## 26        Montana                1062305           0.5          88.6
## 27       Nebraska                1929268           4.7          86.4
## 28         Nevada                3034392           9.2          63.4
## 29  New Hampshire                1356458           1.7          92.4
## 30     New Jersey                8908520          13.6          66.9
## 31     New Mexico                2095428           2.2          76.4
## 32       New York               19542209          15.7          63.3
## 33 North Carolina               10383620          21.4          68.4
## 34   North Dakota                 760077           3.4          85.7
## 35           Ohio               11689442          12.4          81.0
## 36       Oklahoma                3943079           7.3          72.2
## 37         Oregon                4190713           2.0          83.9
## 38   Pennsylvania               12807060          11.2          80.1
## 39   Rhode Island                1057315           6.7          80.7
## 40 South Carolina                5084127          26.6          67.0
## 41   South Dakota                 882235           2.2          84.0
## 42      Tennessee                6770010          16.8          77.3
## 43          Texas               28701845          12.3          73.5
## 44           Utah                3161105           1.3          85.7
## 45        Vermont                 626299           1.2          94.1
## 46       Virginia                8517685          19.2          67.4
## 47     Washington                7535591           3.9          74.8
## 48  West Virginia                1805832           3.8          93.0
## 49      Wisconsin                5813568           6.4          85.3
## 50        Wyoming                 577737           0.6          91.5
##    percent_two_or_more percent_Native_American percent_Asian
## 1                  2.1                     0.5           1.3
## 2                  8.4                    15.1           6.3
## 3                  4.0                     4.6           3.3
## 4                  2.9                     0.7           1.6
## 5                  5.1                     0.8          14.7
## 6                  4.0                     1.0           3.2
## 7                  3.4                     0.3           4.6
## 8                  2.7                     0.5           4.0
## 9                  2.9                     0.3           2.8
## 10                 2.7                     0.3           4.1
## 11                24.3                     0.2          37.6
## 12                 3.0                     1.3           1.5
## 13                 2.7                     0.3           5.6
## 14                 2.7                     0.2           2.3
## 15                 2.2                     0.4           2.5
## 16                 3.7                     0.9           2.8
## 17                 2.4                     0.2           1.5
## 18                 2.3                     0.6           1.6
## 19                 2.2                     0.6           1.2
## 20                 3.7                     0.2           6.3
## 21                 3.4                     0.2           6.8
## 22                 2.9                     0.5           3.3
## 23                 3.1                     1.1           4.9
## 24                 1.5                     0.4           0.9
## 25                 2.8                     0.5           2.0
## 26                 3.1                     6.4           0.8
## 27                 3.1                     1.0           2.4
## 28                 5.1                     1.5           8.2
## 29                 2.2                     0.3           2.7
## 30                 2.8                     0.2           9.7
## 31                 3.2                     9.6           1.6
## 32                 3.3                     0.4           8.5
## 33                 2.9                     1.2           3.0
## 34                 2.3                     5.4           1.8
## 35                 3.1                     0.2           2.3
## 36                 7.7                     7.8           2.1
## 37                 4.7                     1.2           4.6
## 38                 2.6                     0.2           3.6
## 39                 3.1                     0.4           3.4
## 40                 2.4                     0.5           1.6
## 41                 2.7                     8.8           1.7
## 42                 2.2                     0.3           1.8
## 43                 2.7                     0.5           5.0
## 44                 3.2                     1.1           2.4
## 45                 2.0                     0.3           1.9
## 46                 4.1                     0.3           6.5
## 47                 6.0                     1.3           8.8
## 48                 1.9                     0.1           0.7
## 49                 2.5                     0.9           2.8
## 50                 2.4                     2.8           1.0
##    percent_Pacific_Islander percent_Latino
## 1                       0.0            4.3
## 2                       1.1            7.2
## 3                       0.2           31.6
## 4                       0.3            7.6
## 5                       0.4           39.3
## 6                       0.1           21.7
## 7                       0.0           16.5
## 8                       0.1            9.5
## 9                       0.1           26.1
## 10                      0.1            9.7
## 11                     10.2           10.7
## 12                      0.2           12.7
## 13                      0.0           17.3
## 14                      0.1            7.1
## 15                      0.1            6.1
## 16                      0.1           12.0
## 17                      0.1            3.6
## 18                      0.0            5.1
## 19                      0.0            1.7
## 20                      0.1           10.4
## 21                      0.0           12.3
## 22                      0.0            5.2
## 23                      0.0            5.5
## 24                      0.0            2.9
## 25                      0.1            4.1
## 26                      0.1            3.9
## 27                      0.1           11.1
## 28                      0.6           29.0
## 29                      0.0            3.9
## 30                      0.0           20.6
## 31                      0.1           49.1
## 32                      0.0           19.2
## 33                      0.1            9.6
## 34                      0.0            3.6
## 35                      0.0            3.9
## 36                      0.1           10.9
## 37                      0.4           13.3
## 38                      0.0            7.6
## 39                      0.1           15.9
## 40                      0.1            5.8
## 41                      0.0            3.9
## 42                      0.1            5.5
## 43                      0.1           39.6
## 44                      0.9           14.2
## 45                      0.0            2.0
## 46                      0.1            9.5
## 47                      0.7           12.9
## 48                      0.0            1.4
## 49                      0.0            6.9
## 50                      0.2           10.0
write.csv(Ethnicities, 'race_distribution_2018.csv',row.names=FALSE)

Merge the state licensing excel file with this csv file to add in the demographic race data per state.

stateREQs <- read.csv('stateLicensingRequirements.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'))
colnames(stateREQs)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"
stateREQs <- stateREQs[,1:36]
colnames(stateREQs)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"
Ethnicities$state <- as.factor(Ethnicities$state)
StateLicensing <- merge(stateREQs,Ethnicities, by.x='state',by.y='state')
dim(StateLicensing)
## [1] 50 44
colnames(StateLicensing)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"                  
## [37] "total_state_population"                   
## [38] "percent_black"                            
## [39] "percent_white"                            
## [40] "percent_two_or_more"                      
## [41] "percent_Native_American"                  
## [42] "percent_Asian"                            
## [43] "percent_Pacific_Islander"                 
## [44] "percent_Latino"

We added the demographics to the state licensing requirements and facts csv version of the excel version.

Now lets add in the fields from our Indeed web scrape to update the columns 32-34 of the StateLicensing table.We added them in manually before, but now that a table was made with the copy of the indeed web scrape script that uses the modified writeIndeedJobData5Pages() using the original getIndeedJobData5Pages(). We can update the table on the fly as needed as long as the Indeed site doesn’t change its layout. This file is the statesRates.csv file made in the ‘copy-indeed-webscrape-function-altered.Rmd’ script.

statesRates <- read.csv('statesRates.csv', sep=',',header=TRUE, na.strings=c('',' ','NA'),
                       stringsAsFactors = FALSE)
head(statesRates)
##   state jobsListed MinHourlySalary MaxHourlySalary MinAnnualSalary
## 1    AK         28        15.00000        15.00000        40000.00
## 2    AL         64        16.13333        43.20000        25000.00
## 3    AR         63        20.00000        23.00000        35000.00
## 4    AZ        225        13.94667        73.64444        34333.33
## 5    CA        206        15.62015        70.82524        43373.93
## 6    CO        237        11.79637        76.87764        25000.00
##   MaxAnnualSalary avgHourly avgAnualSalary
## 1        50000.00  15.00000       45000.00
## 2        50000.00  29.66667       37500.00
## 3        50000.00  21.50000       42500.00
## 4        67164.44  43.79556       50748.89
## 5        54267.86  43.22269       48820.89
## 6        62000.00  44.33700       43500.00
statesOrdered <- statesRates[order(statesRates$state),]
head(statesOrdered)
##   state jobsListed MinHourlySalary MaxHourlySalary MinAnnualSalary
## 1    AK         28        15.00000        15.00000        40000.00
## 2    AL         64        16.13333        43.20000        25000.00
## 3    AR         63        20.00000        23.00000        35000.00
## 4    AZ        225        13.94667        73.64444        34333.33
## 5    CA        206        15.62015        70.82524        43373.93
## 6    CO        237        11.79637        76.87764        25000.00
##   MaxAnnualSalary avgHourly avgAnualSalary
## 1        50000.00  15.00000       45000.00
## 2        50000.00  29.66667       37500.00
## 3        50000.00  21.50000       42500.00
## 4        67164.44  43.79556       50748.89
## 5        54267.86  43.22269       48820.89
## 6        62000.00  44.33700       43500.00

When ordering by the state abbreviations, the order isn’t the same as by the state spelled out. So lets compare the two and adjust changes.

statesOrdered$state
##  [1] "AK" "AL" "AR" "AZ" "CA" "CO" "CT" "DE" "FL" "GA" "HI" "IA" "ID" "IL" "IN"
## [16] "KS" "KY" "LA" "MA" "MD" "ME" "MI" "MN" "MO" "MS" "MT" "NC" "ND" "NE" "NH"
## [31] "NJ" "NM" "NV" "NY" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT" "VA"
## [46] "VT" "WA" "WI" "WV" "WY" NA

The statesOrdered has an NA, lets remove it.

statesOrdered <- statesOrdered[1:50,]
states <- c("Alaska"  ,"Alabama"     ,      "Arkansas"     ,     "Arizona"     ,    "California",    
 "Colorado"    ,   "Connecticut"  ,  "Delaware"     ,  "Florida"    ,    "Georgia"  ,     
"Hawaii"   ,     "Iowa"   , "Idaho"   ,       "Illinois"  ,     "Indiana"        ,       
 "Kansas"   ,      "Kentucky",       "Louisiana" ,  "Massachusetts",  "Maryland" , "Maine",     
  "Michigan"  ,     "Minnesota"   ,  "Missouri"  , "Mississippi"    ,    
"Montana"       , "North Carolina","North Dakota" ,"Nebraska"   ,  "New Hampshire" , "New Jersey", "New Mexico"     , "Nevada"       ,      
"New York"    ,      "Ohio"       ,   
"Oklahoma"      , "Oregon"       ,  "Pennsylvania"   ,"Rhode Island",   "South Carolina",
"South Dakota"  , "Tennessee"     , "Texas"          ,"Utah"       , "Virginia",   "Vermont",   
 "Washington" ,"Wisconsin" ,  "West Virginia"  ,   "Wyoming" )

states
##  [1] "Alaska"         "Alabama"        "Arkansas"       "Arizona"       
##  [5] "California"     "Colorado"       "Connecticut"    "Delaware"      
##  [9] "Florida"        "Georgia"        "Hawaii"         "Iowa"          
## [13] "Idaho"          "Illinois"       "Indiana"        "Kansas"        
## [17] "Kentucky"       "Louisiana"      "Massachusetts"  "Maryland"      
## [21] "Maine"          "Michigan"       "Minnesota"      "Missouri"      
## [25] "Mississippi"    "Montana"        "North Carolina" "North Dakota"  
## [29] "Nebraska"       "New Hampshire"  "New Jersey"     "New Mexico"    
## [33] "Nevada"         "New York"       "Ohio"           "Oklahoma"      
## [37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
## [41] "South Dakota"   "Tennessee"      "Texas"          "Utah"          
## [45] "Virginia"       "Vermont"        "Washington"     "Wisconsin"     
## [49] "West Virginia"  "Wyoming"
statesOrdered$stateName <- states
statesOrdered <- statesOrdered[,c(1,9,2:8)]
statesOrdered <- statesOrdered[order(statesOrdered$stateName),]
head(statesOrdered)
##   state  stateName jobsListed MinHourlySalary MaxHourlySalary MinAnnualSalary
## 2    AL    Alabama         64        16.13333        43.20000        25000.00
## 1    AK     Alaska         28        15.00000        15.00000        40000.00
## 4    AZ    Arizona        225        13.94667        73.64444        34333.33
## 3    AR   Arkansas         63        20.00000        23.00000        35000.00
## 5    CA California        206        15.62015        70.82524        43373.93
## 6    CO   Colorado        237        11.79637        76.87764        25000.00
##   MaxAnnualSalary avgHourly avgAnualSalary
## 2        50000.00  29.66667       37500.00
## 1        50000.00  15.00000       45000.00
## 4        67164.44  43.79556       50748.89
## 3        50000.00  21.50000       42500.00
## 5        54267.86  43.22269       48820.89
## 6        62000.00  44.33700       43500.00

Lets make sure the stateName of the statesOrdered and the state of the StateLicensing tables are identical before updating the table with the latest job information from Indeed.

as.factor(statesOrdered$stateName)==StateLicensing$state
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE

That checks out, so we can now update the information with the latest data.

StateLicensing$LMT_AnualMedianPayAdvertised_Indeed <- statesOrdered$avgAnualSalary
StateLicensing$LMT_HourlyMedianPayRangeAdvertised_Indeed <- statesOrdered$avgHourly
StateLicensing$LMT_medianJobsListed_IndeedFirst5pages <- statesOrdered$jobsListed
colnames(StateLicensing)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"                  
## [37] "total_state_population"                   
## [38] "percent_black"                            
## [39] "percent_white"                            
## [40] "percent_two_or_more"                      
## [41] "percent_Native_American"                  
## [42] "percent_Asian"                            
## [43] "percent_Pacific_Islander"                 
## [44] "percent_Latino"

We should change the names of those columns to say ‘avg’ instead of ‘median’.

colnames(StateLicensing)[32:34] <- gsub('[mM]edian','Avg',colnames(StateLicensing)[32:34])
colnames(StateLicensing)
##  [1] "state"                                 
##  [2] "massageBoard"                          
##  [3] "licenseByReciprocity"                  
##  [4] "proofOtherOrAllStateLicense"           
##  [5] "stateResidencyProof"                   
##  [6] "passportSizePhoto"                     
##  [7] "driversLicensePhotoCopy"               
##  [8] "nameChangeProof"                       
##  [9] "socialSecurityCopy"                    
## [10] "Hours"                                 
## [11] "MBLEX_or_NCBTMB"                       
## [12] "goodHealthClearance"                   
## [13] "BoardBackgroundCheckFee"               
## [14] "stateApplyingBackgroundCheck"          
## [15] "DOJ_backgroundCheck"                   
## [16] "applicationCost"                       
## [17] "licensingCost"                         
## [18] "licenseRenewalFee"                     
## [19] "CPR_certification"                     
## [20] "licensingETA"                          
## [21] "healthReferences"                      
## [22] "CEU"                                   
## [23] "timeLicenseValidYears"                 
## [24] "liabilityInsurance"                    
## [25] "schoolTranscripts"                     
## [26] "MBLEX_transcript"                      
## [27] "notes"                                 
## [28] "notes2"                                
## [29] "notes3"                                
## [30] "notes4"                                
## [31] "citiesGreaterThan300k_orTop3"          
## [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
## [34] "LMT_AnualAvgPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"       
## [36] "median2018IncomeByState"               
## [37] "total_state_population"                
## [38] "percent_black"                         
## [39] "percent_white"                         
## [40] "percent_two_or_more"                   
## [41] "percent_Native_American"               
## [42] "percent_Asian"                         
## [43] "percent_Pacific_Islander"              
## [44] "percent_Latino"

The Zillow data was also added manually from the find3zillowCitiesFunctionMedian2BRHomeValues.Rmd file that used a downloaded Zillow dataset on 2 bedroom zillow home value index value per city. The file is ‘updatedZillow2BR.csv’ made from our copy-find3zillowCitiesFunctionMean2BRHomeValues.Rmd script.

zillowData <- read.csv('updatedZillow2BR.csv',sep=',', header=TRUE, na.strings=c('',' ','NA'))
head(zillowData)
##   State X2020.05.31
## 1    AK    244762.0
## 2    AL     93323.5
## 3    AR    115130.0
## 4    AZ    200447.0
## 5    CA    627870.5
## 6    CO    266867.0
zillowData$State
##  [1] AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS
## [26] MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY
## 50 Levels: AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ... WY
zillowData$stateName <- states
zillowData
##    State X2020.05.31      stateName
## 1     AK    244762.0         Alaska
## 2     AL     93323.5        Alabama
## 3     AR    115130.0       Arkansas
## 4     AZ    200447.0        Arizona
## 5     CA    627870.5     California
## 6     CO    266867.0       Colorado
## 7     CT    249270.5    Connecticut
## 8     DE    142480.5       Delaware
## 9     FL    287185.0        Florida
## 10    GA     55150.5        Georgia
## 11    HI    306563.0         Hawaii
## 12    IA    105498.5           Iowa
## 13    ID    236233.0          Idaho
## 14    IL    184647.5       Illinois
## 15    IN     83773.0        Indiana
## 16    KS    129371.5         Kansas
## 17    KY    131360.0       Kentucky
## 18    LA     81342.5      Louisiana
## 19    MA    195805.5  Massachusetts
## 20    MD    225819.5       Maryland
## 21    ME    142633.5          Maine
## 22    MI    118743.0       Michigan
## 23    MN    187554.0      Minnesota
## 24    MO     83029.0       Missouri
## 25    MS     97128.0    Mississippi
## 26    MT    217002.5        Montana
## 27    NC    157095.0 North Carolina
## 28    ND    178108.0   North Dakota
## 29    NE    151995.5       Nebraska
## 30    NH    217130.0  New Hampshire
## 31    NJ    226637.0     New Jersey
## 32    NM    137343.0     New Mexico
## 33    NV    282642.5         Nevada
## 34    NY     95848.0       New York
## 35    OH    101587.0           Ohio
## 36    OK    103543.0       Oklahoma
## 37    OR    253686.5         Oregon
## 38    PA    147670.5   Pennsylvania
## 39    RI    231550.5   Rhode Island
## 40    SC    180467.0 South Carolina
## 41    SD    156400.5   South Dakota
## 42    TN    185365.0      Tennessee
## 43    TX    153400.0          Texas
## 44    UT    262224.0           Utah
## 45    VA    163733.0       Virginia
## 46    VT    187487.5        Vermont
## 47    WA    255647.5     Washington
## 48    WI    172931.5      Wisconsin
## 49    WV    111134.0  West Virginia
## 50    WY    181051.5        Wyoming
zOrdered <- zillowData[order(zillowData$stateName),]
zOrdered
##    State X2020.05.31      stateName
## 2     AL     93323.5        Alabama
## 1     AK    244762.0         Alaska
## 4     AZ    200447.0        Arizona
## 3     AR    115130.0       Arkansas
## 5     CA    627870.5     California
## 6     CO    266867.0       Colorado
## 7     CT    249270.5    Connecticut
## 8     DE    142480.5       Delaware
## 9     FL    287185.0        Florida
## 10    GA     55150.5        Georgia
## 11    HI    306563.0         Hawaii
## 13    ID    236233.0          Idaho
## 14    IL    184647.5       Illinois
## 15    IN     83773.0        Indiana
## 12    IA    105498.5           Iowa
## 16    KS    129371.5         Kansas
## 17    KY    131360.0       Kentucky
## 18    LA     81342.5      Louisiana
## 21    ME    142633.5          Maine
## 20    MD    225819.5       Maryland
## 19    MA    195805.5  Massachusetts
## 22    MI    118743.0       Michigan
## 23    MN    187554.0      Minnesota
## 25    MS     97128.0    Mississippi
## 24    MO     83029.0       Missouri
## 26    MT    217002.5        Montana
## 29    NE    151995.5       Nebraska
## 33    NV    282642.5         Nevada
## 30    NH    217130.0  New Hampshire
## 31    NJ    226637.0     New Jersey
## 32    NM    137343.0     New Mexico
## 34    NY     95848.0       New York
## 27    NC    157095.0 North Carolina
## 28    ND    178108.0   North Dakota
## 35    OH    101587.0           Ohio
## 36    OK    103543.0       Oklahoma
## 37    OR    253686.5         Oregon
## 38    PA    147670.5   Pennsylvania
## 39    RI    231550.5   Rhode Island
## 40    SC    180467.0 South Carolina
## 41    SD    156400.5   South Dakota
## 42    TN    185365.0      Tennessee
## 43    TX    153400.0          Texas
## 44    UT    262224.0           Utah
## 46    VT    187487.5        Vermont
## 45    VA    163733.0       Virginia
## 47    WA    255647.5     Washington
## 49    WV    111134.0  West Virginia
## 48    WI    172931.5      Wisconsin
## 50    WY    181051.5        Wyoming
zillowOrdered <- zOrdered[,2:3]
colnames(zillowOrdered)[1] <- 'zillow2BR_2020May'
zillowOrdered
##    zillow2BR_2020May      stateName
## 2            93323.5        Alabama
## 1           244762.0         Alaska
## 4           200447.0        Arizona
## 3           115130.0       Arkansas
## 5           627870.5     California
## 6           266867.0       Colorado
## 7           249270.5    Connecticut
## 8           142480.5       Delaware
## 9           287185.0        Florida
## 10           55150.5        Georgia
## 11          306563.0         Hawaii
## 13          236233.0          Idaho
## 14          184647.5       Illinois
## 15           83773.0        Indiana
## 12          105498.5           Iowa
## 16          129371.5         Kansas
## 17          131360.0       Kentucky
## 18           81342.5      Louisiana
## 21          142633.5          Maine
## 20          225819.5       Maryland
## 19          195805.5  Massachusetts
## 22          118743.0       Michigan
## 23          187554.0      Minnesota
## 25           97128.0    Mississippi
## 24           83029.0       Missouri
## 26          217002.5        Montana
## 29          151995.5       Nebraska
## 33          282642.5         Nevada
## 30          217130.0  New Hampshire
## 31          226637.0     New Jersey
## 32          137343.0     New Mexico
## 34           95848.0       New York
## 27          157095.0 North Carolina
## 28          178108.0   North Dakota
## 35          101587.0           Ohio
## 36          103543.0       Oklahoma
## 37          253686.5         Oregon
## 38          147670.5   Pennsylvania
## 39          231550.5   Rhode Island
## 40          180467.0 South Carolina
## 41          156400.5   South Dakota
## 42          185365.0      Tennessee
## 43          153400.0          Texas
## 44          262224.0           Utah
## 46          187487.5        Vermont
## 45          163733.0       Virginia
## 47          255647.5     Washington
## 49          111134.0  West Virginia
## 48          172931.5      Wisconsin
## 50          181051.5        Wyoming
StateLicensing$state==zillowOrdered$stateName
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE

Everything checks out so we can now update our zillow 2 bedroom median home values per state to the mean values per state instead. Some of the top 3 cities of population weren’t in the Zillow data, such as AL.

StateLicensing$Zillow_2BR_3cityMedianHomeValue <- zillowOrdered$zillow2BR_2020May
colnames(StateLicensing)[35] <- 'Zillow_2BR_3cityAverageHomeValue'
colnames(StateLicensing)
##  [1] "state"                                 
##  [2] "massageBoard"                          
##  [3] "licenseByReciprocity"                  
##  [4] "proofOtherOrAllStateLicense"           
##  [5] "stateResidencyProof"                   
##  [6] "passportSizePhoto"                     
##  [7] "driversLicensePhotoCopy"               
##  [8] "nameChangeProof"                       
##  [9] "socialSecurityCopy"                    
## [10] "Hours"                                 
## [11] "MBLEX_or_NCBTMB"                       
## [12] "goodHealthClearance"                   
## [13] "BoardBackgroundCheckFee"               
## [14] "stateApplyingBackgroundCheck"          
## [15] "DOJ_backgroundCheck"                   
## [16] "applicationCost"                       
## [17] "licensingCost"                         
## [18] "licenseRenewalFee"                     
## [19] "CPR_certification"                     
## [20] "licensingETA"                          
## [21] "healthReferences"                      
## [22] "CEU"                                   
## [23] "timeLicenseValidYears"                 
## [24] "liabilityInsurance"                    
## [25] "schoolTranscripts"                     
## [26] "MBLEX_transcript"                      
## [27] "notes"                                 
## [28] "notes2"                                
## [29] "notes3"                                
## [30] "notes4"                                
## [31] "citiesGreaterThan300k_orTop3"          
## [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
## [34] "LMT_AnualAvgPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityAverageHomeValue"      
## [36] "median2018IncomeByState"               
## [37] "total_state_population"                
## [38] "percent_black"                         
## [39] "percent_white"                         
## [40] "percent_two_or_more"                   
## [41] "percent_Native_American"               
## [42] "percent_Asian"                         
## [43] "percent_Pacific_Islander"              
## [44] "percent_Latino"

Now, we can write our table out to csv. We manually put in the 2018 median household income per state from data.census.gov, but we can update that later or as needed when more relevant data is available. That was two years ago, and there should be 2020 data soon because of the 2020 census.

Because this will be the same table but with added and updated columns, we should name it something else to keep separate from the original table with fewer columns.

write.csv(StateLicensing,'stateLicensingDemographicsAddedAndUpdated.csv',row.names=FALSE)

Note that the original csv file stateLicensingRequirements.csv has to be manually input for the changes, then use this script to add the demographics, updated Zillow 2BR home values, and update the average Indeed pay rates and job listings. Don’t make changes in the file just written out or else they will be lost if modifying the state by state licensing requirements of the first variables.


Now, lets add in the data on the alternate jobs available for a massage therapist looking to move to another state and work as a massage therapist, but needing alternate work to pay bills while waiting for license approval.

I have gathered the information on job title for the first five web pages of job listings on Indeed for similar jobs to a massage therapist or that might not need any license to work as. These jobs are: nanny, server, personal trainer, security, data science, house cleaner, warehouse worker, and cashier. The data scientist job is more relevant to me specifically, but some people could possibly have experience as a coder or computer programmer and statistical analyst to land a job in data science without the intense and rigorous education required in machine learning that I went through. It is not likely, but some people do make it to similar jobs with just a couple months to years of proving they are qualified as computer programmers and coders. So, we will assume that is the case, and that companies don’t want to pay higher salaries to arrogant top educated and possibly difficult to work with graduates and would rather pay motivated and slightly proven but coachable males and females from team building backgrounds or sports competitive athletes used to the heirarchical structure of ‘yes sir and mam’ to their directors at lower wages than a professional, skilled, and educated in the background theory that could possibly question the director’s motives, authority, and decisions, and possibly leak the lack of sound leadership within the company to something as viral as a social media site.

So, without further a do, lets start, shall we?

We will import the data sets individually for each of the 50 states’ counts, and salaries be it hourly, annual, or both from our top three populated cities of each state.

house cleaner:

houseCleaner <- read.csv('./Alternate Jobs Each State Indeed/statesRates-house cleaner.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
houseCleaner$stateName <- states
houseCleaner <- houseCleaner[,c(1,10,2:9)]
head(houseCleaner)
##   state  stateName jobsListed   jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska          4 house cleaner              NA              NA
## 2    AL    Alabama         67 house cleaner        8.777778        9.984127
## 3    AR   Arkansas         27 house cleaner       12.000000       12.000000
## 4    AZ    Arizona        170 house cleaner       11.080000       22.800000
## 5    CA California        211 house cleaner       12.678910       24.690521
## 6    CO   Colorado        211 house cleaner       12.000000       32.332891
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA        NA             NA
## 2           17000           20000  9.380952          18500
## 3              NA              NA 12.000000             NA
## 4              NA              NA 16.940000             NA
## 5           40600           40600 18.684716          40600
## 6           20000           30000 22.166445          25000

nanny:

nanny <- read.csv('./Alternate Jobs Each State Indeed/statesRates-nanny.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
nanny$stateName <- states
nanny <- nanny[,c(1,10,2:9)]
head(nanny)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska         26       nanny       10.434783        15.13043
## 2    AL    Alabama         48       nanny       11.166667        17.89583
## 3    AR   Arkansas         83       nanny        9.265823        16.69620
## 4    AZ    Arizona        182       nanny       10.000000        24.06593
## 5    CA California        206       nanny       10.000000        38.68932
## 6    CO   Colorado        183       nanny       12.765027        23.38251
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  12.78261             NA
## 2              NA              NA  14.53125             NA
## 3              NA              NA  12.98101             NA
## 4        33000.00           74000  17.03297       53500.00
## 5        75285.71          110000  24.34466       92642.86
## 6              NA              NA  18.07377             NA

cashier:

cashier <- read.csv('./Alternate Jobs Each State Indeed/statesRates-cashier.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
cashier$stateName <- states
cashier <- cashier[,c(1,10,2:9)]
head(cashier)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        121     cashier       10.336449        14.32710
## 2    AL    Alabama        185     cashier        7.614865        13.72432
## 3    AR   Arkansas        190     cashier        9.077632        10.70526
## 4    AZ    Arizona        223     cashier        9.000000        15.10202
## 5    CA California        225     cashier       13.013333        21.01333
## 6    CO   Colorado        214     cashier       10.221963        18.17757
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA 12.331776             NA
## 2              NA              NA 10.669595             NA
## 3              NA              NA  9.891447             NA
## 4              NA              NA 12.051009             NA
## 5              NA              NA 17.013333             NA
## 6              NA              NA 14.199766             NA

personal trainer:

personalTrainer <- read.csv('./Alternate Jobs Each State Indeed/statesRates-personal trainer.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
personalTrainer$stateName <- states
personalTrainer <- personalTrainer[,c(1,10,2:9)]
head(personalTrainer)
##   state  stateName jobsListed      jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska         47 personal trainer              NA              NA
## 2    AL    Alabama         87 personal trainer        8.628205        48.14103
## 3    AR   Arkansas         57 personal trainer       15.541667        28.66667
## 4    AZ    Arizona        153 personal trainer        9.274510        35.45752
## 5    CA California        220 personal trainer       13.181818        61.22727
## 6    CO   Colorado        197 personal trainer       12.000000        46.78173
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        35000.00        60000.00        NA       47500.00
## 2        40000.00        50000.00  28.38462       45000.00
## 3        50000.00        50000.00  22.10417       50000.00
## 4        30106.65        82081.72  22.36601       56094.18
## 5        29863.64        96409.09  37.20455       63136.36
## 6        40553.03        66659.62  29.39086       53606.32

security:

security <- read.csv('./Alternate Jobs Each State Indeed/statesRates-security.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
security$stateName <- states
security <- security[,c(1,10,2:9)]
head(security)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        165    security       12.375887        17.09929
## 2    AL    Alabama        202    security        7.861386        21.62406
## 3    AR   Arkansas        207    security        9.285024        16.14493
## 4    AZ    Arizona        227    security       11.339207        27.54075
## 5    CA California        239    security       13.317992        26.04184
## 6    CO   Colorado        229    security       12.323144        33.90044
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        54507.89       118837.39  14.73759       86672.64
## 2        43161.32        81731.72  14.74272       62446.52
## 3        25418.47        43191.34  12.71498       34304.90
## 4        27822.25        95855.86  19.43998       61839.06
## 5        45180.27       110648.30  19.67992       77914.28
## 6        36774.32       112976.10  23.11179       74875.21
server <- read.csv('./Alternate Jobs Each State Indeed/statesRates-server.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
server$stateName <- states
server <- server[,c(1,10,2:9)]
head(server)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska         73      server       10.005616        10.17000
## 2    AL    Alabama        220      server        8.261364        23.11364
## 3    AR   Arkansas        201      server        9.751244        17.19900
## 4    AZ    Arizona        222      server        9.000000        22.76126
## 5    CA California        230      server       12.334783        25.23478
## 6    CO   Colorado        217      server        8.980000        32.23502
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  10.08781             NA
## 2              NA              NA  15.68750             NA
## 3              NA              NA  13.47512             NA
## 4              NA              NA  15.88063             NA
## 5           55000           75000  18.78478          65000
## 6              NA              NA  20.60751             NA

warehouse worker:

warehouseWorker <- read.csv('./Alternate Jobs Each State Indeed/statesRates-warehouse worker.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
warehouseWorker$stateName <- states
warehouseWorker <- warehouseWorker[,c(1,10,2:9)]
head(warehouseWorker)
##   state  stateName jobsListed      jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        197 warehouse worker       11.497462        30.84944
## 2    AL    Alabama        225 warehouse worker        8.587778        18.31111
## 3    AR   Arkansas        223 warehouse worker        9.668161        21.58287
## 4    AZ    Arizona        242 warehouse worker       12.000000        23.63587
## 5    CA California        247 warehouse worker       12.165992        29.37652
## 6    CO   Colorado        234 warehouse worker       11.995726        21.53744
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        55000.00        80000.00  21.17345       67500.00
## 2        39289.47        43802.63  13.44944       41546.05
## 3              NA              NA  15.62552             NA
## 4        36113.55        53455.37  17.81793       44784.46
## 5        51952.24        79188.64  20.77126       65570.44
## 6        33444.44        54901.96  16.76658       44173.20

data scientist:

dataScientist <- read.csv('./Alternate Jobs Each State Indeed/statesRates-data scientist.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
dataScientist$stateName <- states
dataScientist <- dataScientist[,c(1,10,2:9)]
head(dataScientist)
##   state  stateName jobsListed    jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska         69 data scientist              NA              NA
## 2    AL    Alabama        136 data scientist              NA              NA
## 3    AR   Arkansas         96 data scientist              NA              NA
## 4    AZ    Arizona        190 data scientist        15.00000        50.00000
## 5    CA California        230 data scientist        35.76316        56.41447
## 6    CO   Colorado        215 data scientist              NA              NA
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        64078.67        162166.7        NA       113122.7
## 2        65000.00        128750.0        NA        96875.0
## 3        58203.44        160000.0        NA       109101.7
## 4        74605.26        136631.6  32.50000       105618.4
## 5        68239.13        132782.6  46.08882       100510.9
## 6        82906.98        139907.0        NA       111407.0

tutor:

tutor <- read.csv('./Alternate Jobs Each State Indeed/statesRates-tutor.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
tutor$stateName <- states
tutor <- tutor[,c(1,10,2:9)]
head(tutor)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        166       tutor        12.08946        28.01786
## 2    AL    Alabama        189       tutor        11.39090        24.36508
## 3    AR   Arkansas         88       tutor        10.20455        10.62500
## 4    AZ    Arizona        208       tutor        11.64423        43.94231
## 5    CA California        206       tutor        12.95340        69.10194
## 6    CO   Colorado        202       tutor        12.25842        34.29703
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  20.05366             NA
## 2        21623.00        38100.00  17.87799       29861.50
## 3              NA              NA  10.41477             NA
## 4        40937.93        74000.00  27.79327       57468.97
## 5        50000.00        90000.00  41.02767       70000.00
## 6        25000.00        34684.86  23.27772       29842.43

clerical:

clerical <- read.csv('./Alternate Jobs Each State Indeed/statesRates-clerical.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
clerical$stateName <- states
clerical <- clerical[,c(1,10,2:9)]
head(clerical)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        209    clerical       10.400622        30.47067
## 2    AL    Alabama        225    clerical        9.346667        31.99511
## 3    AR   Arkansas        222    clerical        9.380631        20.26577
## 4    AZ    Arizona        224    clerical       11.669643        25.00000
## 5    CA California        230    clerical       13.017391        30.92922
## 6    CO   Colorado        228    clerical       11.675439        32.70513
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        33396.37        59372.37  20.43565       46384.37
## 2        22642.12        64029.39  20.67089       43335.75
## 3        24693.51        55706.89  14.82320       40200.20
## 4        29842.89        51741.07  18.33482       40791.98
## 5        35950.50        81459.61  21.97330       58705.06
## 6        27341.20        61607.50  22.19029       44474.35

teacher:

teacher <- read.csv('./Alternate Jobs Each State Indeed/statesRates-teacher.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
teacher$stateName <- states
teacher <- teacher[,c(1,10,2:9)]
head(teacher)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        171     teacher       13.624561        38.27596
## 2    AL    Alabama        201     teacher        7.783333        29.59204
## 3    AR   Arkansas        166     teacher       11.602410        29.75301
## 4    AZ    Arizona        251     teacher       12.322709        53.06773
## 5    CA California        228     teacher       13.688596        69.86842
## 6    CO   Colorado        233     teacher       12.334764        56.22318
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        52999.00        78591.51  25.95026       65795.25
## 2        33907.38        75627.14  18.68769       54767.26
## 3        38047.96        68874.55  20.67771       53461.26
## 4        24581.32        94478.09  32.69522       59529.71
## 5        26820.18        80581.14  41.77851       53700.66
## 6        24283.26        85734.71  34.27897       55008.99

Lets get only the columns needed.

dataScientist2 <- dataScientist[,c(2,3,10)]
colnames(dataScientist2)[2:3] <- paste('dataScientist',colnames(dataScientist2)[2:3],sep='_')
dataScientist2$dataScientist_avgHourly <- (dataScientist2$dataScientist_avgAnualSalary/52)/40
dataScientist2 <- dataScientist2[,c(1,2,4,3)]
head(dataScientist2)
##    stateName dataScientist_jobsListed dataScientist_avgHourly
## 1     Alaska                       69                54.38590
## 2    Alabama                      136                46.57452
## 3   Arkansas                       96                52.45275
## 4    Arizona                      190                50.77809
## 5 California                      230                48.32253
## 6   Colorado                      215                53.56105
##   dataScientist_avgAnualSalary
## 1                     113122.7
## 2                      96875.0
## 3                     109101.7
## 4                     105618.4
## 5                     100510.9
## 6                     111407.0
warehouseWorker2 <- warehouseWorker[,c(2,3,9)]
colnames(warehouseWorker2)[2:3] <- paste('warehouse',colnames(warehouseWorker2)[2:3],
                                         sep='_')
warehouseWorker2$warehouse_avgAnnualSalary <- warehouseWorker2$warehouse_avgHourly*52*40
head(warehouseWorker2)
##    stateName warehouse_jobsListed warehouse_avgHourly warehouse_avgAnnualSalary
## 1     Alaska                  197            21.17345                  44040.78
## 2    Alabama                  225            13.44944                  27974.84
## 3   Arkansas                  223            15.62552                  32501.07
## 4    Arizona                  242            17.81793                  37061.30
## 5 California                  247            20.77126                  43204.21
## 6   Colorado                  234            16.76658                  34874.49
nanny2 <- nanny[,c(2,3,9)]
colnames(nanny2)[2:3] <- paste('nanny',colnames(nanny2)[2:3],
                                         sep='_')
nanny2$nanny_avgAnnualSalary <- nanny2$nanny_avgHourly*52*40
head(nanny2)
##    stateName nanny_jobsListed nanny_avgHourly nanny_avgAnnualSalary
## 1     Alaska               26        12.78261              26587.83
## 2    Alabama               48        14.53125              30225.00
## 3   Arkansas               83        12.98101              27000.51
## 4    Arizona              182        17.03297              35428.57
## 5 California              206        24.34466              50636.89
## 6   Colorado              183        18.07377              37593.44
personalTrainer2 <- personalTrainer[,c(2,3,9)]
colnames(personalTrainer2)[2:3] <- paste('personalTrainer',colnames(personalTrainer2)[2:3],
                                         sep='_')
personalTrainer2$personalTrainer_avgAnnualSalary <-
                          personalTrainer2$personalTrainer_avgHourly*52*40
head(personalTrainer2)
##    stateName personalTrainer_jobsListed personalTrainer_avgHourly
## 1     Alaska                         47                        NA
## 2    Alabama                         87                  28.38462
## 3   Arkansas                         57                  22.10417
## 4    Arizona                        153                  22.36601
## 5 California                        220                  37.20455
## 6   Colorado                        197                  29.39086
##   personalTrainer_avgAnnualSalary
## 1                              NA
## 2                        59040.00
## 3                        45976.67
## 4                        46521.31
## 5                        77385.45
## 6                        61132.99
security2 <- security[,c(2,3,9)]
colnames(security2)[2:3] <- paste('security',colnames(security2)[2:3],
                                         sep='_')
security2$security_avgAnnualSalary <- security2$security_avgHourly*52*40
head(security2)
##    stateName security_jobsListed security_avgHourly security_avgAnnualSalary
## 1     Alaska                 165           14.73759                 30654.18
## 2    Alabama                 202           14.74272                 30664.86
## 3   Arkansas                 207           12.71498                 26447.15
## 4    Arizona                 227           19.43998                 40435.15
## 5 California                 239           19.67992                 40934.23
## 6   Colorado                 229           23.11179                 48072.52
houseCleaner2 <- houseCleaner[,c(2,3,9)]
colnames(houseCleaner2)[2:3] <- paste('houseCleaner',colnames(houseCleaner2)[2:3],
                                         sep='_')
houseCleaner2$houseCleaner_avgAnnualSalary <- houseCleaner2$houseCleaner_avgHourly*52*40
head(houseCleaner2)
##    stateName houseCleaner_jobsListed houseCleaner_avgHourly
## 1     Alaska                       4                     NA
## 2    Alabama                      67               9.380952
## 3   Arkansas                      27              12.000000
## 4    Arizona                     170              16.940000
## 5 California                     211              18.684716
## 6   Colorado                     211              22.166445
##   houseCleaner_avgAnnualSalary
## 1                           NA
## 2                     19512.38
## 3                     24960.00
## 4                     35235.20
## 5                     38864.21
## 6                     46106.21
server2 <- server[,c(2,3,9)]
colnames(server2)[2:3] <- paste('server',colnames(server2)[2:3],
                                         sep='_')
server2$server_avgAnnualSalary <- server2$server_avgHourly*52*40
head(server2)
##    stateName server_jobsListed server_avgHourly server_avgAnnualSalary
## 1     Alaska                73         10.08781               20982.64
## 2    Alabama               220         15.68750               32630.00
## 3   Arkansas               201         13.47512               28028.26
## 4    Arizona               222         15.88063               33031.71
## 5 California               230         18.78478               39072.35
## 6   Colorado               217         20.60751               42863.62
cashier2 <- cashier[,c(2,3,9)]
colnames(cashier2)[2:3] <- paste('cashier',colnames(cashier2)[2:3],
                                         sep='_')
cashier2$cashier_avgAnnualSalary <- cashier2$cashier_avgHourly*52*40
head(cashier2)
##    stateName cashier_jobsListed cashier_avgHourly cashier_avgAnnualSalary
## 1     Alaska                121         12.331776                25650.09
## 2    Alabama                185         10.669595                22192.76
## 3   Arkansas                190          9.891447                20574.21
## 4    Arizona                223         12.051009                25066.10
## 5 California                225         17.013333                35387.73
## 6   Colorado                214         14.199766                29535.51
tutor2 <- tutor[,c(2,3,9)]
colnames(tutor2)[2:3] <- paste('tutor',colnames(tutor2)[2:3],
                                         sep='_')
tutor2$tutor_avgAnnualSalary <- tutor2$tutor_avgHourly*52*40
head(tutor2)
##    stateName tutor_jobsListed tutor_avgHourly tutor_avgAnnualSalary
## 1     Alaska              166        20.05366              41711.61
## 2    Alabama              189        17.87799              37186.22
## 3   Arkansas               88        10.41477              21662.73
## 4    Arizona              208        27.79327              57810.00
## 5 California              206        41.02767              85337.55
## 6   Colorado              202        23.27772              48417.66
clerical2 <- clerical[,c(2,3,9)]
colnames(clerical2)[2:3] <- paste('clerical',colnames(clerical2)[2:3],
                                         sep='_')
clerical2$clerical_avgAnnualSalary <- clerical2$clerical_avgHourly*52*40
head(clerical2)
##    stateName clerical_jobsListed clerical_avgHourly clerical_avgAnnualSalary
## 1     Alaska                 209           20.43565                 42506.14
## 2    Alabama                 225           20.67089                 42995.45
## 3   Arkansas                 222           14.82320                 30832.25
## 4    Arizona                 224           18.33482                 38136.43
## 5 California                 230           21.97330                 45704.47
## 6   Colorado                 228           22.19029                 46155.79
teacher2 <- teacher[,c(2,3,10)]
colnames(teacher2)[2:3] <- paste('teacher',colnames(teacher2)[2:3],sep='_')
teacher2$teacher_avgHourly <- (teacher2$teacher_avgAnualSalary/52)/40
teacher2 <- teacher2[,c(1,2,4,3)]
head(teacher2)
##    stateName teacher_jobsListed teacher_avgHourly teacher_avgAnualSalary
## 1     Alaska                171          31.63233               65795.25
## 2    Alabama                201          26.33041               54767.26
## 3   Arkansas                166          25.70253               53461.26
## 4    Arizona                251          28.62005               59529.71
## 5 California                228          25.81762               53700.66
## 6   Colorado                233          26.44663               55008.99

Lets add these new columns to our data table StateLicensing one at a time.

slr <- merge(StateLicensing,cashier2, by.x='state', by.y='stateName')
slr <- merge(slr, server2, by.x='state', by.y='stateName')
slr <- merge(slr, personalTrainer2, by.x='state', by.y='stateName')
slr <- merge(slr, houseCleaner2, by.x='state', by.y='stateName')
slr <- merge(slr, warehouseWorker2, by.x='state', by.y='stateName')
slr <- merge(slr, security2, by.x='state', by.y='stateName')
slr <- merge(slr, nanny2, by.x='state', by.y='stateName')
slr <- merge(slr, clerical2, by.x='state', by.y='stateName')
slr <- merge(slr, tutor2, by.x='state', by.y='stateName')
slr <- merge(slr, teacher2, by.x='state', by.y='stateName')
slr <- merge(slr, dataScientist2, by.x='state', by.y='stateName')


colnames(slr)
##  [1] "state"                                 
##  [2] "massageBoard"                          
##  [3] "licenseByReciprocity"                  
##  [4] "proofOtherOrAllStateLicense"           
##  [5] "stateResidencyProof"                   
##  [6] "passportSizePhoto"                     
##  [7] "driversLicensePhotoCopy"               
##  [8] "nameChangeProof"                       
##  [9] "socialSecurityCopy"                    
## [10] "Hours"                                 
## [11] "MBLEX_or_NCBTMB"                       
## [12] "goodHealthClearance"                   
## [13] "BoardBackgroundCheckFee"               
## [14] "stateApplyingBackgroundCheck"          
## [15] "DOJ_backgroundCheck"                   
## [16] "applicationCost"                       
## [17] "licensingCost"                         
## [18] "licenseRenewalFee"                     
## [19] "CPR_certification"                     
## [20] "licensingETA"                          
## [21] "healthReferences"                      
## [22] "CEU"                                   
## [23] "timeLicenseValidYears"                 
## [24] "liabilityInsurance"                    
## [25] "schoolTranscripts"                     
## [26] "MBLEX_transcript"                      
## [27] "notes"                                 
## [28] "notes2"                                
## [29] "notes3"                                
## [30] "notes4"                                
## [31] "citiesGreaterThan300k_orTop3"          
## [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
## [34] "LMT_AnualAvgPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityAverageHomeValue"      
## [36] "median2018IncomeByState"               
## [37] "total_state_population"                
## [38] "percent_black"                         
## [39] "percent_white"                         
## [40] "percent_two_or_more"                   
## [41] "percent_Native_American"               
## [42] "percent_Asian"                         
## [43] "percent_Pacific_Islander"              
## [44] "percent_Latino"                        
## [45] "cashier_jobsListed"                    
## [46] "cashier_avgHourly"                     
## [47] "cashier_avgAnnualSalary"               
## [48] "server_jobsListed"                     
## [49] "server_avgHourly"                      
## [50] "server_avgAnnualSalary"                
## [51] "personalTrainer_jobsListed"            
## [52] "personalTrainer_avgHourly"             
## [53] "personalTrainer_avgAnnualSalary"       
## [54] "houseCleaner_jobsListed"               
## [55] "houseCleaner_avgHourly"                
## [56] "houseCleaner_avgAnnualSalary"          
## [57] "warehouse_jobsListed"                  
## [58] "warehouse_avgHourly"                   
## [59] "warehouse_avgAnnualSalary"             
## [60] "security_jobsListed"                   
## [61] "security_avgHourly"                    
## [62] "security_avgAnnualSalary"              
## [63] "nanny_jobsListed"                      
## [64] "nanny_avgHourly"                       
## [65] "nanny_avgAnnualSalary"                 
## [66] "clerical_jobsListed"                   
## [67] "clerical_avgHourly"                    
## [68] "clerical_avgAnnualSalary"              
## [69] "tutor_jobsListed"                      
## [70] "tutor_avgHourly"                       
## [71] "tutor_avgAnnualSalary"                 
## [72] "teacher_jobsListed"                    
## [73] "teacher_avgHourly"                     
## [74] "teacher_avgAnualSalary"                
## [75] "dataScientist_jobsListed"              
## [76] "dataScientist_avgHourly"               
## [77] "dataScientist_avgAnualSalary"

Lets now write this data table out to csv.

write.csv(slr,'stateLicensingDemographicsAddedAndUpdated.csv', row.names=FALSE)

Lets plot some of this data to get a good sense of what the job outlook is like compared to massage therapy for other professions.

numberOfJobs <- slr[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
numberOfJobs
##             state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 1         Alabama                                  64                185
## 2          Alaska                                  28                121
## 3         Arizona                                 225                223
## 4        Arkansas                                  63                190
## 5      California                                 206                225
## 6        Colorado                                 237                214
## 7     Connecticut                                 208                201
## 8        Delaware                                 176                199
## 9         Florida                                 229                220
## 10        Georgia                                  92                205
## 11         Hawaii                                  82                124
## 12          Idaho                                 162                216
## 13       Illinois                                 231                223
## 14        Indiana                                 110                203
## 15           Iowa                                 125                203
## 16         Kansas                                 156                211
## 17       Kentucky                                 133                214
## 18      Louisiana                                  87                207
## 19          Maine                                  63                138
## 20       Maryland                                 219                210
## 21  Massachusetts                                 227                208
## 22       Michigan                                 221                228
## 23      Minnesota                                 176                211
## 24    Mississippi                                  71                201
## 25       Missouri                                 170                209
## 26        Montana                                  32                208
## 27       Nebraska                                 183                202
## 28         Nevada                                 203                224
## 29  New Hampshire                                 134                215
## 30     New Jersey                                 236                228
## 31     New Mexico                                 157                200
## 32       New York                                 196                209
## 33 North Carolina                                 194                225
## 34   North Dakota                                  38                195
## 35           Ohio                                 207                221
## 36       Oklahoma                                 166                201
## 37         Oregon                                 142                203
## 38   Pennsylvania                                 248                222
## 39   Rhode Island                                 207                211
## 40 South Carolina                                 177                221
## 41   South Dakota                                  43                144
## 42      Tennessee                                 172                226
## 43          Texas                                 237                217
## 44           Utah                                 237                227
## 45        Vermont                                  62                172
## 46       Virginia                                 233                219
## 47     Washington                                 224                213
## 48  West Virginia                                  62                188
## 49      Wisconsin                                 171                204
## 50        Wyoming                                  26                179
##    server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 1                220                         87                      67
## 2                 73                         47                       4
## 3                222                        153                     170
## 4                201                         57                      27
## 5                230                        220                     211
## 6                217                        197                     211
## 7                206                        207                     137
## 8                210                        158                     206
## 9                223                        191                     206
## 10               204                         89                     152
## 11               137                         38                      16
## 12               200                         72                     202
## 13               227                        200                     216
## 14               217                         95                      98
## 15               202                         76                      92
## 16               223                        184                     168
## 17               213                         86                      84
## 18               223                         92                      92
## 19               124                         28                     115
## 20               224                        222                     216
## 21               209                        198                     160
## 22               248                        180                     185
## 23               217                        161                     161
## 24               208                         96                      86
## 25               238                        133                     152
## 26               199                         18                      22
## 27               211                        146                     136
## 28               220                        193                     203
## 29               211                        180                     197
## 30               235                        245                     214
## 31               198                        105                      62
## 32               226                        134                     193
## 33               217                        161                     196
## 34               214                         32                     111
## 35               233                        217                     208
## 36               221                        134                     100
## 37               210                        119                     146
## 38               225                        219                     218
## 39               228                        203                     197
## 40               244                        205                     215
## 41               148                         42                      35
## 42               219                        158                     200
## 43               228                        211                     212
## 44               214                        158                     173
## 45               162                          4                     105
## 46               241                        193                     186
## 47               202                        142                     176
## 48               215                         47                      27
## 49               223                        155                      75
## 50               136                         17                      14
##    warehouse_jobsListed security_jobsListed nanny_jobsListed
## 1                   225                 202               48
## 2                   197                 165               26
## 3                   242                 227              182
## 4                   223                 207               83
## 5                   247                 239              206
## 6                   234                 229              183
## 7                   228                 225              174
## 8                   236                 225              132
## 9                   224                 226              186
## 10                  221                 210              113
## 11                  193                 210               43
## 12                  236                 195              100
## 13                  252                 225              183
## 14                  234                 213               55
## 15                  230                 211               37
## 16                  238                 219               93
## 17                  228                 209              101
## 18                  204                 215               33
## 19                  155                 138               26
## 20                  234                 227              202
## 21                  245                 227              167
## 22                  233                 224              107
## 23                  243                 219              146
## 24                  221                 214               58
## 25                  232                 220               97
## 26                  219                 171               17
## 27                  240                 203               58
## 28                  222                 225              108
## 29                  232                 223              107
## 30                  233                 239              221
## 31                  230                 221               62
## 32                  229                 211               86
## 33                  233                 220              159
## 34                  196                 202               22
## 35                  242                 234              100
## 36                  229                 212               81
## 37                  216                 217               79
## 38                  243                 232              155
## 39                  240                 232              159
## 40                  225                 221               94
## 41                  221                 148               17
## 42                  239                 227              108
## 43                  222                 233              183
## 44                  231                 214              125
## 45                  220                 192               25
## 46                  233                 233              127
## 47                  235                 217              145
## 48                  201                 211               23
## 49                  229                 206               72
## 50                  157                 147               14
##    clerical_jobsListed tutor_jobsListed teacher_jobsListed
## 1                  225              189                201
## 2                  209              166                171
## 3                  224              208                251
## 4                  222               88                166
## 5                  230              206                228
## 6                  228              202                233
## 7                  227              214                232
## 8                  223              161                223
## 9                  224              220                235
## 10                 222              152                211
## 11                 225              183                194
## 12                 232              193                223
## 13                 230              224                245
## 14                 229              182                230
## 15                 230              144                208
## 16                 230              194                223
## 17                 225              163                220
## 18                 223              188                232
## 19                 156               92                149
## 20                 224              225                239
## 21                 232              221                235
## 22                 226              205                247
## 23                 223              226                230
## 24                 214              137                221
## 25                 227              208                218
## 26                 212              131                188
## 27                 227              195                226
## 28                 221              203                223
## 29                 226              202                227
## 30                 223              223                245
## 31                 210              163                204
## 32                 232              209                234
## 33                 221              209                235
## 34                 227              162                210
## 35                 225              202                239
## 36                 228              206                228
## 37                 226              173                224
## 38                 226              221                234
## 39                 230              203                225
## 40                 223              213                225
## 41                 219              124                170
## 42                 221              196                229
## 43                 227              210                232
## 44                 233              206                205
## 45                 217              103                222
## 46                 222              176                234
## 47                 237              198                240
## 48                 228              141                192
## 49                 235              210                228
## 50                 214              111                155
##    dataScientist_jobsListed
## 1                       136
## 2                        69
## 3                       190
## 4                        96
## 5                       230
## 6                       215
## 7                       220
## 8                       162
## 9                       190
## 10                      114
## 11                      171
## 12                      114
## 13                      214
## 14                      119
## 15                      114
## 16                      150
## 17                      109
## 18                       58
## 19                       58
## 20                      246
## 21                      217
## 22                      180
## 23                      155
## 24                       56
## 25                      149
## 26                       65
## 27                      116
## 28                      100
## 29                      185
## 30                      227
## 31                      168
## 32                      184
## 33                      176
## 34                       70
## 35                      213
## 36                      131
## 37                      117
## 38                      179
## 39                      205
## 40                       67
## 41                       63
## 42                      188
## 43                      211
## 44                      209
## 45                       95
## 46                      210
## 47                      179
## 48                       69
## 49                      151
## 50                       81
gg <- ggplot(numberOfJobs, aes(x=numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages))
gg <- gg + geom_histogram(binwidth=2, colour="black", 
                          aes(y=..density.., fill=..count..))
gg <- gg + stat_function(fun=dnorm,
                         color="red",
                         args=list(mean=mean(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages), 
                                  sd=sd(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)))

gg

avg <- mean(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)
m <- min(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)
M <- max(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)

ggplot(data = numberOfJobs, aes(y=numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages, x=numberOfJobs$state)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_y_continuous(breaks=c(m,avg,M),labels=c(m,avg,M))+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('LMT Average Job Listings in the US Top 3 Cities of each State')+
  ylab(NULL)+
  xlab(NULL)

Lets look at those states whose job listings on Indeed are more than the US average job listings for licensed massage therapists.

moreThanAvgLMT <- subset(numberOfJobs, numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages>avg)
moreThanAvgLMT$state
##  [1] Arizona        California     Colorado       Connecticut    Delaware      
##  [6] Florida        Idaho          Illinois       Kansas         Maryland      
## [11] Massachusetts  Michigan       Minnesota      Missouri       Nebraska      
## [16] Nevada         New Jersey     New Mexico     New York       North Carolina
## [21] Ohio           Oklahoma       Pennsylvania   Rhode Island   South Carolina
## [26] Tennessee      Texas          Utah           Virginia       Washington    
## [31] Wisconsin     
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

The above list of 31 states look like heavily populated states, such as CA, CO, NY, and TX.

Now, lets see which states have fewer than the US average number of job listings for LMT on Indeed.

lessThanAvgLMT <- subset(numberOfJobs, numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages<avg)
lessThanAvgLMT$state
##  [1] Alabama       Alaska        Arkansas      Georgia       Hawaii       
##  [6] Indiana       Iowa          Kentucky      Louisiana     Maine        
## [11] Mississippi   Montana       New Hampshire North Dakota  Oregon       
## [16] South Dakota  Vermont       West Virginia Wyoming      
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

From the above, Alaska and many southern and sierra mountain range north mid-western states as well as Hawaii don’t have as many job listings for massage therapists as the more city or urban states do. Surprising Georgia is on this list, as that state has a large somewhat urban population and high pay for LMTs on average compared to other states. Lets look at the pay visually for the 50 states to see this claim just made as true or false.

payRates <- slr[,c(1,33,46,49,52,55,58,61,64,67,70,73,76)]
payRates
##             state LMT_HourlyAvgPayRangeAdvertised_Indeed cashier_avgHourly
## 1         Alabama                               29.66667         10.669595
## 2          Alaska                               15.00000         12.331776
## 3         Arizona                               43.79556         12.051009
## 4        Arkansas                               21.50000          9.891447
## 5      California                               43.22269         17.013333
## 6        Colorado                               44.33700         14.199766
## 7     Connecticut                               43.00000         13.604478
## 8        Delaware                               33.10828         11.713568
## 9         Florida                               41.08952         11.497727
## 10        Georgia                               72.50000         10.010366
## 11         Hawaii                               38.50000         14.419355
## 12          Idaho                               37.50000         11.084491
## 13       Illinois                               37.50000         13.250561
## 14        Indiana                               33.24545         10.477217
## 15           Iowa                               26.85200         11.012586
## 16         Kansas                               32.50000         11.113744
## 17       Kentucky                               37.99624         13.819743
## 18      Louisiana                               38.47701         11.303744
## 19          Maine                               38.61111         13.632246
## 20       Maryland                               52.63014         14.000000
## 21  Massachusetts                               34.45815         15.009615
## 22       Michigan                               45.57296         11.337719
## 23      Minnesota                               37.14489         12.482820
## 24    Mississippi                               56.50000         14.500622
## 25       Missouri                               37.07941         11.472368
## 26        Montana                               30.00000         10.875000
## 27       Nebraska                               43.42077         10.708540
## 28         Nevada                               56.34483         14.445312
## 29  New Hampshire                               29.07463         12.769767
## 30     New Jersey                               70.16525         14.704496
## 31     New Mexico                               40.92994         11.428125
## 32       New York                               45.44388         14.750718
## 33 North Carolina                               47.91237         10.713889
## 34   North Dakota                               24.00000         11.130769
## 35           Ohio                               49.26812         12.253733
## 36       Oklahoma                               44.07530         10.997512
## 37         Oregon                               35.38028         14.119951
## 38   Pennsylvania                               41.53069         11.372815
## 39   Rhode Island                               42.62500         13.816351
## 40 South Carolina                               41.90960         10.326357
## 41   South Dakota                               26.76744         10.020000
## 42      Tennessee                               35.38372         14.397124
## 43          Texas                               34.68987         13.161290
## 44           Utah                               35.18354         12.598018
## 45        Vermont                               20.88710         13.501453
## 46       Virginia                               42.83476         10.125000
## 47     Washington                               39.73661         14.404930
## 48  West Virginia                               22.85484         10.152261
## 49      Wisconsin                               35.90543         12.046569
## 50        Wyoming                               39.54545         12.015866
##    server_avgHourly personalTrainer_avgHourly houseCleaner_avgHourly
## 1         15.687500                  28.38462               9.380952
## 2         10.087808                        NA                     NA
## 3         15.880631                  22.36601              16.940000
## 4         13.475124                  22.10417              12.000000
## 5         18.784783                  37.20455              18.684716
## 6         20.607512                  29.39086              22.166445
## 7         20.127670                  45.88406              23.372263
## 8         13.758278                  39.65108              16.135922
## 9         17.008969                  36.10348              15.417476
## 10        14.220588                  25.33529              16.657895
## 11        18.587226                        NA              14.250000
## 12        17.837500                  21.50000              15.500000
## 13        22.806167                  42.64750              18.805556
## 14        14.833525                  36.72093              14.685393
## 15        15.721535                  25.15789              12.831522
## 16        21.895964                  14.66304              14.427083
## 17        16.707746                  29.70779              14.250000
## 18        10.565436                  22.75543              13.842466
## 19        15.564516                  23.00000              15.786957
## 20        14.825893                  40.38739              20.847222
## 21        19.327751                  39.04040              16.823438
## 22        19.000000                  32.32353              18.448649
## 23        16.685714                  32.25776              16.884211
## 24        10.715144                  22.06250              11.244186
## 25        14.440126                  17.55263              14.320888
## 26        12.448492                        NA              12.861111
## 27        23.559242                  28.44178              12.013787
## 28        15.586705                  45.36010              18.421182
## 29        19.706161                  28.65556              16.357868
## 30        20.342553                  48.14286              19.483645
## 31        11.483268                  22.11429              11.100000
## 32        16.587611                  27.00373              17.619171
## 33        13.452189                  29.73913              14.897959
## 34        13.133178                        NA              12.833333
## 35        15.351931                  30.95622              14.882212
## 36        12.540158                  17.42910              14.665000
## 37        14.008333                  30.05042              18.210959
## 38        18.415000                  38.81963              18.866972
## 39        23.960526                  18.29433              15.000000
## 40        14.911885                  41.82927              16.009302
## 41         9.510719                  15.63158              13.885714
## 42        14.114155                  20.51424              14.400000
## 43        15.250000                  38.77014              17.948113
## 44        18.078855                  33.85918              17.910405
## 45        15.000000                  20.50000              13.250000
## 46        13.116701                  23.34197              14.000000
## 47        17.315545                  51.75352              17.719460
## 48        13.206395                  12.00000              13.000000
## 49        14.507287                  27.03226              13.000000
## 50        12.580000                        NA              15.750000
##    warehouse_avgHourly security_avgHourly nanny_avgHourly clerical_avgHourly
## 1             13.44944           14.74272        14.53125           20.67089
## 2             21.17345           14.73759        12.78261           20.43565
## 3             17.81793           19.43998        17.03297           18.33482
## 4             15.62552           12.71498        12.98101           14.82320
## 5             20.77126           19.67992        24.34466           21.97330
## 6             16.76658           23.11179        18.07377           22.19029
## 7             21.53000           23.45778        27.87931           25.00696
## 8             17.52966           17.00222        16.70455           28.12332
## 9             16.95815           17.10509        19.12903           18.32714
## 10            15.81493           24.04524        16.58407           17.20833
## 11            22.87184           14.55238        12.00000           19.61333
## 12            15.35701           11.09000        22.25000           17.45905
## 13            20.66667           14.87833        17.89344           20.10326
## 14            18.04427           11.98005        13.40909           14.02183
## 15            16.50370           13.99408        13.72348           18.58935
## 16            16.81092           19.01765        14.69355           19.52165
## 17            18.28947           15.63077        15.61198           17.74722
## 18            15.06556           18.31628        12.06897           15.20740
## 19            18.74839           14.22826        13.61538           20.53205
## 20            18.25137           20.67621        20.47030           27.46429
## 21            21.58053           21.62974        21.05240           21.92571
## 22            23.29614           16.94205        14.59813           17.17845
## 23            18.11677           18.10333        19.52055           19.72296
## 24            15.25281           11.22304        12.11207           18.11040
## 25            17.60345           17.18891        15.40206           18.36617
## 26            15.92728           13.07018        10.00000           19.12679
## 27            17.19792           16.99015        16.33621           17.54396
## 28            16.43806           14.67111        13.43981           18.41629
## 29            14.79849           24.99552        16.92056           17.53670
## 30            18.67597           30.98117        25.00000           31.94843
## 31            16.26691           14.42308        12.33871           16.40000
## 32            21.73952           33.00618        21.60465           30.13955
## 33            18.55313           14.90909        18.29874           16.50000
## 34            17.10459           21.22525         9.00000           18.58150
## 35            21.01240           13.35470        14.42000           19.74167
## 36            18.74655           23.13915        12.59259           22.26279
## 37            18.39988           19.23931        17.98101           18.33982
## 38            20.54224           14.98448        16.90323           18.45905
## 39            22.09062           17.92241        18.50000           19.06207
## 40            15.34889           15.76357        14.71277           19.49327
## 41            17.41176           18.01351        12.50000           21.35639
## 42            16.10033           14.13097        14.93519           16.46502
## 43            15.92550           19.03043        16.22814           19.01101
## 44            17.48431           18.27103        14.88000           18.91326
## 45            20.00909           15.48281        17.12000           16.26498
## 46            17.81974           13.11820        14.56299           15.70833
## 47            21.21064           23.77212        22.48276           35.44565
## 48            17.31592           11.52370        10.65789           28.99342
## 49            28.73799           14.68602        15.01389           20.60366
## 50            18.02459           14.42000        17.50000           14.20266
##    tutor_avgHourly teacher_avgHourly dataScientist_avgHourly
## 1         17.87799          26.33041                46.57452
## 2         20.05366          31.63233                54.38590
## 3         27.79327          28.62005                50.77809
## 4         10.41477          25.70253                52.45275
## 5         41.02767          25.81762                48.32253
## 6         23.27772          26.44663                53.56105
## 7         45.08762          32.78831                54.08654
## 8         24.40497          30.63664                47.62435
## 9         23.55600          22.44976                51.42966
## 10        19.36331          30.00453                55.38335
## 11        22.50000          26.75019                54.08654
## 12        21.00000          23.09525                54.08654
## 13        24.50112          24.28327                49.71117
## 14        17.07212          26.74928                54.08654
## 15        22.68939          25.23745                53.36960
## 16        19.82832          27.12709                54.53965
## 17        20.65031          22.23657                47.48542
## 18        21.75000          20.63527                54.26775
## 19        28.47283          26.04121                54.08654
## 20        23.83144          33.29518                65.84041
## 21        39.35747          27.58374                58.98436
## 22        18.07341          23.07400                52.09001
## 23        21.10000          27.84308                35.87159
## 24        18.38686          25.80312                54.08654
## 25        27.13942          21.60048                52.04207
## 26              NA          25.87083                54.08654
## 27        20.00000          18.01104                55.01906
## 28        21.75862          23.06734                54.08654
## 29        23.31683          27.61987                54.08654
## 30        50.33632          29.73824                64.48556
## 31        34.00000          28.78618                54.08654
## 32        42.02344          27.13316                64.49885
## 33        24.66746          21.71370                54.00049
## 34        21.50000          28.18751                54.08654
## 35        21.79084          16.86567                46.79600
## 36        29.56796          18.15075                54.08654
## 37        17.18216          27.24574                54.08654
## 38        25.93665          20.89115                45.68326
## 39        21.88793          37.97486                47.50821
## 40        19.82864          20.33660                50.99349
## 41              NA          27.11851                54.08654
## 42        19.50255          20.15372                54.08654
## 43        24.97857          25.91388                53.44821
## 44        19.74636          20.26853                51.29164
## 45              NA          25.76034                54.08654
## 46        22.34759          16.85300                54.08654
## 47        26.04545          31.91402                56.70171
## 48              NA          28.59943                48.16402
## 49        20.03333          22.38619                53.40996
## 50        10.97000          30.90962                52.68911
avgPay <- mean(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed)
mPay <- min(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed)
MPay <- max(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed)

ggplot(data = numberOfJobs, aes(y=payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed, x=payRates$state)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_y_continuous(breaks=c(mPay,avgPay,MPay),labels=c(mPay,avgPay,MPay))+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('LMT Average Hourly Pay in the US Top 3 Cities of each State')+
  ylab(NULL)+
  xlab(NULL)

Lets see what states are paying their massage therapists more than the US average. Visually, above we can see Georgia does, and that GA is also in the list of the states with less than the average number of LMT job listings in the US per state. This logically indicates there is a demand for massage therapists in these states, and that the businesses offering massage therapy need LMTs and are willing to offer them more pay.

morePayThanAvgLMT <- subset(payRates, payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed>avgPay)
morePayThanAvgLMT$state
##  [1] Arizona        California     Colorado       Connecticut    Florida       
##  [6] Georgia        Maryland       Michigan       Mississippi    Nebraska      
## [11] Nevada         New Jersey     New Mexico     New York       North Carolina
## [16] Ohio           Oklahoma       Pennsylvania   Rhode Island   South Carolina
## [21] Virginia       Washington     Wyoming       
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

Lets see which states offer more than the national LMT average hourly pay and are also in the list of states with less than the national average number of LMT job listings.

fewListings <- lessThanAvgLMT$state
morePayAdvertised <- morePayThanAvgLMT$state

demandStatesLMT <- fewListings %in% morePayAdvertised
demanded <- fewListings[demandStatesLMT]
demanded
## [1] Georgia     Mississippi Wyoming    
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

The above states have a demand for massage therapists because they have fewer listings advertised on Indeed, but are willing to pay more than the national average for massage therapists. Those states are Georgia, Mississippi, and Wyoming.

Using this same logic, it is fair to say those states that have a higher than average demand for massage therapists and also more pay than average for massage therapists must also be states where the cost of living is higher than normal. Lets look at those states and compare their home values for a two bedroom Zillow listed price from our larger data table called slr.

moreListings <- moreThanAvgLMT$state

highCostStates <- moreListings %in% morePayAdvertised
highLivingCost <- moreListings[highCostStates]
highLivingCost
##  [1] Arizona        California     Colorado       Connecticut    Florida       
##  [6] Maryland       Michigan       Nebraska       Nevada         New Jersey    
## [11] New Mexico     New York       North Carolina Ohio           Oklahoma      
## [16] Pennsylvania   Rhode Island   South Carolina Virginia       Washington    
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

There are 20 states that are listed as possible high cost of living states because we are making the assumption that those states with higher than average pay for LMTs and higher than average job listings for LMT are in high cost of living states. We can verify this by looking at the two bedroom homes for sale in all states and get the average to compare to these 20 states.

avgHomePrice <- mean(slr$Zillow_2BR_3cityAverageHomeValue)
mHomePrice <- min(slr$Zillow_2BR_3cityAverageHomeValue)
MHomePrice <- max(slr$Zillow_2BR_3cityAverageHomeValue)

ggplot(data = numberOfJobs, aes(y=slr$Zillow_2BR_3cityAverageHomeValue, x=slr$state)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_y_continuous(breaks=c(mHomePrice,avgHomePrice,MHomePrice),
                     labels=c(mHomePrice,avgHomePrice,MHomePrice))+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=avgHomePrice, linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('Zillow 2 Bedroom Home Value in the US Top 3 Cities of each State')+
  ylab(NULL)+
  xlab(NULL)

Lets see exactly which states have higher priced homes than the national average.

expensiveHomes <- subset(slr,slr$Zillow_2BR_3cityAverageHomeValue>avgHomePrice)
e <- expensiveHomes$state
e
##  [1] Alaska        Arizona       California    Colorado      Connecticut  
##  [6] Florida       Hawaii        Idaho         Illinois      Maryland     
## [11] Massachusetts Minnesota     Montana       Nevada        New Hampshire
## [16] New Jersey    Oregon        Rhode Island  Tennessee     Utah         
## [21] Vermont       Washington   
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

There are 22 states with higher priced homes than the national average from the list produced above.

Lets see if those states are also in the list of states with high living costs.

expensive <- expensiveHomes$state %in% highLivingCost
expensiveHomes <- e[expensive]
expensiveHomes
##  [1] Arizona      California   Colorado     Connecticut  Florida     
##  [6] Maryland     Nevada       New Jersey   Rhode Island Washington  
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

There are 10 states with expensive homes compared to the national average home price, and that also have higher pay advertised for LMTs and more advertised job listings for LMTs in the three most populated cities in each state according to the first five web pages of Indeed.

Lets see which states have lower priced homes than the national average but also have higher pay advertised for LMTs and more job listings advertised for LMTs.

inexpensiveHomes <- subset(slr,slr$Zillow_2BR_3cityAverageHomeValue < avgHomePrice)
inexpensive <- inexpensiveHomes$state 

notExpensive <- inexpensive %in% highLivingCost
affordable <- inexpensive[notExpensive]
affordable
##  [1] Michigan       Nebraska       New Mexico     New York       North Carolina
##  [6] Ohio           Oklahoma       Pennsylvania   South Carolina Virginia      
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

We have a couple lists we generated, one for the higher priced states that also pay more for LMTs and have more jobs available called ‘expensiveHomes’, and another list that is the list of states that aren’t as expensive but also pay more for LMTs and have more jobs available for LMTs called ‘affordable’ that we can compare other factors in our large dataset called slr. We also have a third list called ‘demanded’ that lists those states that don’t have as many jobs available as the national average for LMTs but pays more than the national average. Lets see if those states are in our list of states with a higher than national average home according to Zillow’s two bedroom home values that was named ‘e’ for expensive homes by state.

demanded
## [1] Georgia     Mississippi Wyoming    
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming
demanded %in% e
## [1] FALSE FALSE FALSE

We can see none of the demand for LMT states are in the list of states with expensive homes or homes with higher than average two bedroom home values.

So, we actually have four lists: e is the list of states with expensive homes, demanded is our list of states with demand has influenced LMT pay to higher for LMTs than the national average, expensiveHomes is our list of states with high cost of living based on higher home values and that also pay more and have more jobs available for LMTs, and our 4th list is the affordable list of lower cost of living by home price less than national average but also that has higher pay and more jobs available for LMTs than the national average.

Lets look at the demographics of the states that are in our affordable list and compare to the demographics or our expensiveHomes list to get an idea of the diversity.

demographics <- subset(slr, slr$state %in% affordable)
demographics2 <- demographics[,c(1,37:44)]
demographics2
##             state total_state_population percent_black percent_white
## 22       Michigan                9995915          13.8          78.3
## 27       Nebraska                1929268           4.7          86.4
## 31     New Mexico                2095428           2.2          76.4
## 32       New York               19542209          15.7          63.3
## 33 North Carolina               10383620          21.4          68.4
## 35           Ohio               11689442          12.4          81.0
## 36       Oklahoma                3943079           7.3          72.2
## 38   Pennsylvania               12807060          11.2          80.1
## 40 South Carolina                5084127          26.6          67.0
## 46       Virginia                8517685          19.2          67.4
##    percent_two_or_more percent_Native_American percent_Asian
## 22                 2.9                     0.5           3.3
## 27                 3.1                     1.0           2.4
## 31                 3.2                     9.6           1.6
## 32                 3.3                     0.4           8.5
## 33                 2.9                     1.2           3.0
## 35                 3.1                     0.2           2.3
## 36                 7.7                     7.8           2.1
## 38                 2.6                     0.2           3.6
## 40                 2.4                     0.5           1.6
## 46                 4.1                     0.3           6.5
##    percent_Pacific_Islander percent_Latino
## 22                      0.0            5.2
## 27                      0.1           11.1
## 31                      0.1           49.1
## 32                      0.0           19.2
## 33                      0.1            9.6
## 35                      0.0            3.9
## 36                      0.1           10.9
## 38                      0.0            7.6
## 40                      0.1            5.8
## 46                      0.1            9.5

Lets look at this above chart of affordable states for LMTs compared to the demographics of CA.

CA_demog <- subset(slr, slr$state=='California')
CA_demog2 <- CA_demog[,c(1,37:44)]
CA_demog2
##        state total_state_population percent_black percent_white
## 5 California               39557045           5.8          59.5
##   percent_two_or_more percent_Native_American percent_Asian
## 5                 5.1                     0.8          14.7
##   percent_Pacific_Islander percent_Latino
## 5                      0.4           39.3

When comparing demographics of percent race to population, it could be similar in fashion to looking for an alternate planet similar to Earth in a vast universe. But we can see the state with a closer distribution of the population by Asian, Latino, Black, and two or more races is New York. The other states that are affordable in our list of 10 when compared to CA, a high cost of living state, don’t really compare similarly as far as race distribution goes. Lets look at how a few of our alternate jobs from these 10 states compare to CA next.

altjobs_aff <- demographics[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
CA_altjobs <- CA_demog[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
altjobs_aff
##             state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 22       Michigan                                 221                228
## 27       Nebraska                                 183                202
## 31     New Mexico                                 157                200
## 32       New York                                 196                209
## 33 North Carolina                                 194                225
## 35           Ohio                                 207                221
## 36       Oklahoma                                 166                201
## 38   Pennsylvania                                 248                222
## 40 South Carolina                                 177                221
## 46       Virginia                                 233                219
##    server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 22               248                        180                     185
## 27               211                        146                     136
## 31               198                        105                      62
## 32               226                        134                     193
## 33               217                        161                     196
## 35               233                        217                     208
## 36               221                        134                     100
## 38               225                        219                     218
## 40               244                        205                     215
## 46               241                        193                     186
##    warehouse_jobsListed security_jobsListed nanny_jobsListed
## 22                  233                 224              107
## 27                  240                 203               58
## 31                  230                 221               62
## 32                  229                 211               86
## 33                  233                 220              159
## 35                  242                 234              100
## 36                  229                 212               81
## 38                  243                 232              155
## 40                  225                 221               94
## 46                  233                 233              127
##    clerical_jobsListed tutor_jobsListed teacher_jobsListed
## 22                 226              205                247
## 27                 227              195                226
## 31                 210              163                204
## 32                 232              209                234
## 33                 221              209                235
## 35                 225              202                239
## 36                 228              206                228
## 38                 226              221                234
## 40                 223              213                225
## 46                 222              176                234
##    dataScientist_jobsListed
## 22                      180
## 27                      116
## 31                      168
## 32                      184
## 33                      176
## 35                      213
## 36                      131
## 38                      179
## 40                       67
## 46                      210

There are less nanny, personal training, house cleaning, and data science jobs in the affordable states than in CA. While there are more cashier, server, and teaching jobs in the affordable states than in CA. The number of tutoring, clerical, warehouse, and security jobs are similar in available jobs.

CA_altjobs
##        state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 5 California                                 206                225
##   server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 5               230                        220                     211
##   warehouse_jobsListed security_jobsListed nanny_jobsListed clerical_jobsListed
## 5                  247                 239              206                 230
##   tutor_jobsListed teacher_jobsListed dataScientist_jobsListed
## 5              206                228                      230

Now, lets compare CA to our list of expensive states for demographics and alternate jobs available. CA is in our list of expensive states, so we don’t have to do separate table chart comparisons.

expensiveDemog <- subset(slr, slr$state %in% expensiveHomes)
expensiveDemog2 <- expensiveDemog[,c(1,37:44)]
expensiveDemog2
##           state total_state_population percent_black percent_white
## 3       Arizona                7171646           4.7          78.0
## 5    California               39557045           5.8          59.5
## 6      Colorado                5695564           4.2          84.1
## 7   Connecticut                3572665          11.0          75.2
## 9       Florida               21299325          16.0          74.6
## 20     Maryland                6042718          30.0          54.7
## 28       Nevada                3034392           9.2          63.4
## 30   New Jersey                8908520          13.6          66.9
## 39 Rhode Island                1057315           6.7          80.7
## 47   Washington                7535591           3.9          74.8
##    percent_two_or_more percent_Native_American percent_Asian
## 3                  4.0                     4.6           3.3
## 5                  5.1                     0.8          14.7
## 6                  4.0                     1.0           3.2
## 7                  3.4                     0.3           4.6
## 9                  2.9                     0.3           2.8
## 20                 3.7                     0.2           6.3
## 28                 5.1                     1.5           8.2
## 30                 2.8                     0.2           9.7
## 39                 3.1                     0.4           3.4
## 47                 6.0                     1.3           8.8
##    percent_Pacific_Islander percent_Latino
## 3                       0.2           31.6
## 5                       0.4           39.3
## 6                       0.1           21.7
## 7                       0.0           16.5
## 9                       0.1           26.1
## 20                      0.1           10.4
## 28                      0.6           29.0
## 30                      0.0           20.6
## 39                      0.1           15.9
## 47                      0.7           12.9

From the above data, the closest state in comparison to diversity to CA is NV or Nevada. The next state would be Colorado or Washington.

Now, we will compare the alternate jobs available in our list of expensive states that includes CA.

altJobs_expStates <- expensiveDemog[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
altJobs_expStates
##           state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 3       Arizona                                 225                223
## 5    California                                 206                225
## 6      Colorado                                 237                214
## 7   Connecticut                                 208                201
## 9       Florida                                 229                220
## 20     Maryland                                 219                210
## 28       Nevada                                 203                224
## 30   New Jersey                                 236                228
## 39 Rhode Island                                 207                211
## 47   Washington                                 224                213
##    server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 3                222                        153                     170
## 5                230                        220                     211
## 6                217                        197                     211
## 7                206                        207                     137
## 9                223                        191                     206
## 20               224                        222                     216
## 28               220                        193                     203
## 30               235                        245                     214
## 39               228                        203                     197
## 47               202                        142                     176
##    warehouse_jobsListed security_jobsListed nanny_jobsListed
## 3                   242                 227              182
## 5                   247                 239              206
## 6                   234                 229              183
## 7                   228                 225              174
## 9                   224                 226              186
## 20                  234                 227              202
## 28                  222                 225              108
## 30                  233                 239              221
## 39                  240                 232              159
## 47                  235                 217              145
##    clerical_jobsListed tutor_jobsListed teacher_jobsListed
## 3                  224              208                251
## 5                  230              206                228
## 6                  228              202                233
## 7                  227              214                232
## 9                  224              220                235
## 20                 224              225                239
## 28                 221              203                223
## 30                 223              223                245
## 39                 230              203                225
## 47                 237              198                240
##    dataScientist_jobsListed
## 3                       190
## 5                       230
## 6                       215
## 7                       220
## 9                       190
## 20                      246
## 28                      100
## 30                      227
## 39                      205
## 47                      179

For the most part, the expensive states have about the same distribution of available jobs alternative to LMT work, except some states have noticeably less nanny and personal training jobs. Arizona and Washington have less personal training jobs, while Nevada, Rhode Island, and Washington have less nanny jobs. And there are far less house cleaning jobs in Connecticut than any other state that is expensive. Also, there are not as many data science jobs available in Nevada as any other expensive state.

Lets now plot the number of available jobs by category in CA compared to Arizona and New York. Arizona is an expensive state and New York is not so expensive compared to the average home value of the three top populated cities in each state.

NY_altJobs <- subset(altjobs_aff, altjobs_aff$state=='New York')
CA_altJobs <- subset(altJobs_expStates, altJobs_expStates$state=='California')
AZ_altJobs <- subset(altJobs_expStates, altJobs_expStates$state=='Arizona')

NY_tidyJobs <- gather(NY_altJobs,key="jobTitle", value="jobsListed",2:13, na.rm=TRUE)
NY_tidyJobs$jobTitle <- gsub('_.*$','',NY_tidyJobs$jobTitle, perl=TRUE)

CA_tidyJobs <- gather(CA_altJobs,key="jobTitle", value="jobsListed",2:13, na.rm=TRUE)
CA_tidyJobs$jobTitle <- gsub('_.*$','',CA_tidyJobs$jobTitle, perl=TRUE)

AZ_tidyJobs <- gather(AZ_altJobs,key="jobTitle", value="jobsListed",2:13, na.rm=TRUE)
AZ_tidyJobs$jobTitle <- gsub('_.*$','',AZ_tidyJobs$jobTitle, perl=TRUE)
ggplot(data = CA_tidyJobs, aes(y=CA_tidyJobs$jobsListed, x=CA_tidyJobs$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Alternate and LMT Jobs Advertised')+
  ylab(NULL)+
  xlab(NULL)

There are more warehouse and security jobs available on Indeed than the other listed jobs in CA. In comparison to other job categories available in CA, there are less tutor, nanny, and LMT jobs available than other comparative jobs.

ggplot(data = NY_tidyJobs, aes(y=NY_tidyJobs$jobsListed, x=NY_tidyJobs$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('NY Alternate and LMT Jobs Advertised')+
  ylab(NULL)+
  xlab(NULL)

New York has more clerical, teaching, and warehouse jobs available than other jobs in NY, but has far less personal training and nanny jobs available than CA did.

ggplot(data = AZ_tidyJobs, aes(y=AZ_tidyJobs$jobsListed, x=AZ_tidyJobs$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('AZ Alternate and LMT Jobs Advertised')+
  ylab(NULL)+
  xlab(NULL)

AZ has more teacher and warehouse jobs available just like NY than other jobs in the state from our categories of alternate jobs to LMT. There are as many LMT jobs available as there are security, clerical, cashier, and server.

Now, lets compare the pay to each of these states of CA, NY, and NV. To see how LMTs get paid compared to these alternative jobs in those states.

NY_pay <- subset(slr, slr$state=='New York')
NY_pay2 <- NY_pay[,c(1,34,47,50,53,56,59,62,65,68,71,74,77)]
CA_pay <- subset(slr, slr$state=='California')
CA_pay2 <- CA_pay[,c(1,34,47,50,53,56,59,62,65,68,71,74,77)]
AZ_pay <- subset(slr, slr$state=='Arizona')
AZ_pay2 <- AZ_pay[,c(1,34,47,50,53,56,59,62,65,68,71,74,77)]

NY_PAY <- gather(NY_pay2,key='jobTitle',value='AnnualPay',2:13)
NY_PAY$jobTitle <- gsub('_.*$','',NY_PAY$jobTitle)
CA_PAY <- gather(CA_pay2,key='jobTitle',value='AnnualPay',2:13)
CA_PAY$jobTitle <- gsub('_.*$','',CA_PAY$jobTitle)
AZ_PAY <- gather(AZ_pay2, key='jobTitle',value='AnnualPay',2:13)
AZ_PAY$jobTitle <- gsub('_.*$','',AZ_PAY$jobTitle)
ggplot(data = CA_PAY, aes(y=CA_PAY$AnnualPay, x=CA_PAY$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(CA_pay$median2018IncomeByState), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Alternate and LMT Jobs Advertised Annual Pay with Median CA pay')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = NY_PAY, aes(y=NY_PAY$AnnualPay, x=NY_PAY$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(NY_pay$median2018IncomeByState), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('NY Alternate and LMT Jobs Advertised Annual Pay')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = AZ_PAY, aes(y=AZ_PAY$AnnualPay, x=AZ_PAY$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(AZ_pay$median2018IncomeByState), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('AZ Alternate and LMT Jobs Advertised Annual Pay')+
  ylab(NULL)+
  xlab(NULL)

Lets summarize the pay for each comparative job to that of the number of jobs available. In each state, there were more warehouse jobs available than most other jobs in our categories selected, but this role is on the low end of the annual pay scale compared to those other jobs available. In all jobs, data scientist pays the most in CA, AZ, and NY. LMT pays more than clerical in AZ or CA but not in NY. In CA, nannys get paid more than LMTs and so do personal trainers. In NY, security pays more than LMTs but not in CA or AZ. Also, tutors get paid more than teachers in NY and CA, but almost the same but less than in AZ.

Those are interesting findings for those three states. Data hasn’t been analyzed on the actual requirements to get licensed as a massage therapist in each state, because the table hasn’t been filled in. Each state has to be handled separately by finding each requirement from their massage board website of each state, and if not available or not intuitively navigated to from their home page, then emailed and asked about each specific requirements on cost, hours required, continuing education, time to process, distribution of hours, license by endorsement or reciprocity available, etc. It is being added to as time and desire permits on a motivational need. I haven’t found a table of these requirements on any internet search, but did find something close with American Massage Therapy Association’s listing of schools and state requirements that lacked a date updated or sources to validate and the other variables sought.

It would now be interesting to separately use our function from another script to pull in the jobs in our same wellness market of licensed massage therapists. Such as chiropractors, physical therapists, keep the personal trainer data, and add estheticians or skin care or medical spa jobs maybe by just searching for those jobs, as well as resort spas. This would add value to how effective our decision would be to move to a state to earn more, live better, or even open up a business in massage therapy that would do well based on evidence gathered from other top cities in each state and home values alongside the diversity indicated by percent race in population of the state. finding and replacing the job search sought in the scripts that are similar in file name to ‘copy-indeed-webscrape-function-Alt-jobs-dataScientist.Rmd’ in the github repository mentioned at the beginning of this script will get you the information you need in about 10-15 minutes. As it goes through the first five web page job listings on Indeed for 150 cities or the three most populated cities in each of the 50 US states.


Lets look at some other salaries from other professions, that reflect the state of our economy. I have ran the function to pull the wage information and number of jobs listed for nurses, medical doctors, chiropractors, physical therapists, estheticians, medical spa technicians, and personal assistants. Lets see what our data tells us in a state by state comparison.

nurses <- read.csv('./Alternate Jobs Each State Indeed/statesRates-nurse.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
personalAssistants <- read.csv('./Alternate Jobs Each State Indeed/statesRates-personal assistant.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
chiropractor <- read.csv('./Alternate Jobs Each State Indeed/statesRates-chiropractor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
physicalTherapist <- read.csv('./Alternate Jobs Each State Indeed/statesRates-physical therapist.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
esthetician <- read.csv('./Alternate Jobs Each State Indeed/statesRates-esthetician.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
medicalSpaEsthetician <- read.csv('./Alternate Jobs Each State Indeed/statesRates-medical spa technician.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
medicalDoctor <- read.csv('./Alternate Jobs Each State Indeed/statesRates-medical doctor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
yogaInstructor <- read.csv('./Alternate Jobs Each State Indeed/statesRates-yoga Instructor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
pilatesInstructor <- read.csv('./Alternate Jobs Each State Indeed/statesRates-pilates Instructor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
nurses$stateName <- states
nurses <- nurses[,c(1,10,2:9)]
head(nurses)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        218       nurse        27.17431        67.38532
## 2    AL    Alabama        247       nurse        15.75709        43.88664
## 3    AR   Arkansas        240       nurse        16.72500        45.00000
## 4    AZ    Arizona        238       nurse        18.36134        74.68067
## 5    CA California        248       nurse        18.70565        80.84677
## 6    CO   Colorado        237       nurse        19.32911        98.49789
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        41630.94        152417.4  47.27982       97024.19
## 2        51433.21        126543.5  29.82186       88988.35
## 3        53303.38        140360.8  30.86250       96832.07
## 4        43014.59        145134.4  46.52101       94074.49
## 5        68310.48        163399.8  49.77621      115855.15
## 6        44579.30        126146.2  58.91350       85362.74
personalAssistants$stateName <- states
personalAssistants <- personalAssistants[,c(1,10,2:9)]
head(personalAssistants)
##   state  stateName jobsListed        jobSearched MinHourlySalary
## 1    AK     Alaska         88 personal assistant       11.375000
## 2    AL    Alabama        160 personal assistant        7.873437
## 3    AR   Arkansas        144 personal assistant        9.138889
## 4    AZ    Arizona        219 personal assistant       11.342466
## 5    CA California        222 personal assistant       12.333333
## 6    CO   Colorado        221 personal assistant       11.856335
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        26.00000        32262.00        71832.50  18.68750       52047.25
## 2        19.23750        29351.96        57523.98  13.55547       43437.97
## 3        15.74097        26652.78        71594.72  12.43993       49123.75
## 4        27.47945        31438.36       111136.38  19.41096       71287.37
## 5        44.66667        32561.33       166766.00  28.50000       99663.67
## 6        24.43439        29957.82       122422.65  18.14536       76190.23
chiropractor$stateName <- states
chiropractor <- chiropractor[,c(1,10,2:9)]
head(chiropractor)
##   state  stateName jobsListed  jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska         21 chiropractor              NA              NA
## 2    AL    Alabama         36 chiropractor        15.75000        52.50000
## 3    AR   Arkansas         25 chiropractor        12.00000        14.00000
## 4    AZ    Arizona        150 chiropractor        12.11765        37.35294
## 5    CA California        216 chiropractor        14.74074        41.82870
## 6    CO   Colorado        190 chiropractor        14.76842        68.42105
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1       100000.00        175000.0        NA      137500.00
## 2              NA              NA  34.12500             NA
## 3              NA              NA  13.00000             NA
## 4        60000.00        225000.0  24.73529      142500.00
## 5        46435.19        131851.2  28.28472       89143.17
## 6        31936.84        123789.5  41.59474       77863.16
physicalTherapist$stateName <- states
physicalTherapist <- physicalTherapist[,c(1,10,2:9)]
head(physicalTherapist)
##   state  stateName jobsListed        jobSearched MinHourlySalary
## 1    AK     Alaska        112 physical therapist        45.00000
## 2    AL    Alabama        215 physical therapist        35.16313
## 3    AR   Arkansas        177 physical therapist        41.97260
## 4    AZ    Arizona        228 physical therapist        21.69737
## 5    CA California        218 physical therapist        32.88073
## 6    CO   Colorado        241 physical therapist        33.02905
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        45.00000        45627.00       115000.00  45.00000       80313.50
## 2        47.15027        62941.00       102606.00  41.15670       82773.50
## 3        60.00000              NA              NA  50.98630             NA
## 4        66.07408        45403.51        85140.35  43.88572       65271.93
## 5        80.14037        50111.80       131466.14  56.51055       90788.97
## 6        67.21992        48448.13       106493.78  50.12448       77470.95
esthetician$stateName <- states
esthetician <- esthetician[,c(1,10,2:9)]
head(esthetician)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska         28 esthetician        20.00000        25.00000
## 2    AL    Alabama         67 esthetician        16.00000        48.88679
## 3    AR   Arkansas         52 esthetician        15.00000        21.00000
## 4    AZ    Arizona        189 esthetician        14.62963        54.81481
## 5    CA California        212 esthetician        13.26415       115.68396
## 6    CO   Colorado        160 esthetician        12.09062        56.17500
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  22.50000             NA
## 2              NA              NA  32.44340             NA
## 3         30000.0        45000.00  18.00000       37500.00
## 4         17250.0        72750.00  34.72222       45000.00
## 5         21471.7        79316.04  64.47406       50393.87
## 6         35000.0        61029.41  34.13281       48014.71
medicalSpaEsthetician$stateName <- states
medicalSpaEsthetician <- medicalSpaEsthetician[,c(1,10,2:9)]
head(medicalSpaEsthetician)
##   state  stateName jobsListed            jobSearched MinHourlySalary
## 1    AK     Alaska         12 medical spa technician        25.00000
## 2    AL    Alabama         31 medical spa technician        17.03226
## 3    AR   Arkansas         35 medical spa technician        25.00000
## 4    AZ    Arizona        168 medical spa technician        14.83333
## 5    CA California         77 medical spa technician        16.68831
## 6    CO   Colorado        148 medical spa technician        15.18919
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        38.00000              NA              NA  31.50000             NA
## 2        38.00000           40914           69430  27.51613          55172
## 3        38.00000           45000          120000  31.50000          82500
## 4        38.00000              NA              NA  26.41667             NA
## 5        38.00000              NA              NA  27.34416             NA
## 6        36.01351              NA              NA  25.60135             NA
medicalDoctor$stateName <- states
medicalDoctor <- medicalDoctor[,c(1,10,2:9)]
head(medicalDoctor)
##   state  stateName jobsListed    jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska        199 medical doctor       46.733668        53.26633
## 2    AL    Alabama        210 medical doctor        8.985714        64.85714
## 3    AR   Arkansas        225 medical doctor       11.000000        30.19556
## 4    AZ    Arizona        231 medical doctor       11.675325        31.07792
## 5    CA California        226 medical doctor       13.331858       147.12389
## 6    CO   Colorado        229 medical doctor       12.000000        30.00000
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        55239.42        432914.6  50.00000      244077.00
## 2        68067.53        500000.0  36.92143      284033.76
## 3        37955.26        383777.8  20.59778      210866.52
## 4        36984.96        129455.6  21.37662       83220.29
## 5        48407.08        173227.8  80.22788      110817.46
## 6        38220.45        237217.0  21.00000      137718.70
yogaInstructor$stateName <- states
yogaInstructor <- yogaInstructor[,c(1,10,2:9)]
yogaInstructor$avgAnualSalary <- yogaInstructor$avgHourly*40*52
head(yogaInstructor)
##   state  stateName jobsListed     jobSearched MinHourlySalary MaxHourlySalary
## 1    AK     Alaska          4 yoga instructor              NA              NA
## 2    AL    Alabama         22 yoga instructor        25.00000        84.44444
## 3    AR   Arkansas         26 yoga instructor        10.00000       100.00000
## 4    AZ    Arizona        131 yoga instructor        20.53435        93.89313
## 5    CA California        204 yoga instructor        15.00000       100.00000
## 6    CO   Colorado        164 yoga instructor        15.09146       100.00000
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA        NA             NA
## 2              NA              NA  54.72222       113822.2
## 3           32000           50000  55.00000       114400.0
## 4              NA              NA  57.21374       119004.6
## 5           36000           55000  57.50000       119600.0
## 6              NA              NA  57.54573       119695.1
pilatesInstructor$stateName <- states[2:50]
pilatesInstructor <- pilatesInstructor[,c(1,10,2:9)]
head(pilatesInstructor)
##   state   stateName jobsListed        jobSearched MinHourlySalary
## 1    AL     Alabama         37 pilates instructor        25.00000
## 2    AR    Arkansas          9 pilates instructor        25.00000
## 3    AZ     Arizona        133 pilates instructor        12.00000
## 4    CA  California        177 pilates instructor        15.06780
## 5    CO    Colorado        145 pilates instructor        20.53441
## 6    CT Connecticut        135 pilates instructor        21.08889
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1             100              NA              NA  62.50000             NA
## 2             100              NA              NA  62.50000             NA
## 3             100              NA              NA  56.00000             NA
## 4             100           36000           55000  57.53390          45500
## 5             100              NA              NA  60.26721             NA
## 6             100              NA              NA  60.54444             NA

Lets combine these jobs to the slr dataset.

nurses2 <- nurses[,c(2,3,9,10)]
personalAssistants2 <- personalAssistants[,c(2,3,9,10)]
chiropractor2 <- chiropractor[,c(2,3,9,10)]
physicalTherapist2 <- physicalTherapist[,c(2,3,9,10)]
esthetician2 <- esthetician[,c(2,3,9,10)]
medicalSpaEsthetician2 <- medicalSpaEsthetician[,c(2,3,9,10)]
medicalDoctor2 <- medicalDoctor[,c(2,3,9,10)]
yogaInstructor2 <- yogaInstructor[,c(2,3,9,10)]
pilatesInstructor2 <- pilatesInstructor[,c(2,3,9,10)]
nurses2$avgAnualSalary <- ifelse(nurses2$avgAnualSalary,nurses2$avgAnualSalary,
                                 nurses2$avgHourly*40*52)
colnames(nurses2)[2:4] <- paste('nurses',colnames(nurses2)[2:4])

personalAssistants2$avgAnualSalary <- ifelse(personalAssistants2$avgAnualSalary,
                                             personalAssistants2$avgAnualSalary,
                                             personalAssistants2$avgHourly*40*52)
colnames(personalAssistants2)[2:4] <- paste('personalAssistant',colnames(personalAssistants2)[2:4])

chiropractor2$avgAnualSalary <- chiropractor2$avgHourly*40*52
colnames(chiropractor2)[2:4] <- paste('chiropractor',colnames(chiropractor2)[2:4])

physicalTherapist2$avgAnualSalary <- physicalTherapist2$avgHourly*40*52
colnames(physicalTherapist2)[2:4] <- paste('physicalTherapist',colnames(physicalTherapist2)[2:4])

esthetician2$avgAnualSalary <- esthetician2$avgHourly*40*52
colnames(esthetician2)[2:4] <- paste('esthetician',colnames(esthetician2)[2:4])

medicalSpaEsthetician2$avgAnualSalary <- medicalSpaEsthetician2$avgHourly*40*52
colnames(medicalSpaEsthetician2)[2:4] <- paste('medicalSpaEsthetician',colnames(medicalSpaEsthetician2)[2:4])

medicalDoctor2$avgAnualSalary <- ifelse(medicalDoctor2$avgAnualSalary,
                                        medicalDoctor2$avgAnualSalary,
                                        medicalDoctor2$avgHourly*40*52)
colnames(medicalDoctor2)[2:4] <- paste('medicalDoctor',colnames(medicalDoctor2)[2:4])
colnames(yogaInstructor2)[2:4] <- paste('yogaInstructor',colnames(yogaInstructor2)[2:4])
pilatesInstructor2$avgAnualSalary <- pilatesInstructor2$avgHourly*40*52
colnames(pilatesInstructor2)[2:4] <- paste('pilatesInstructor',colnames(pilatesInstructor2)[2:4])

Combine these other jobs into a table with the slr data table.

slr2 <- merge(slr, nurses2, by.x='state',by.y='stateName')
slr2 <- merge(slr2,personalAssistants2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, chiropractor2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, physicalTherapist2, by.x='state', by.y='stateName')
slr2 <- merge(slr2, esthetician2, by.x='state', by.y='stateName')
slr2 <- merge(slr2, medicalSpaEsthetician2, by.x='state', by.y='stateName')
slr2 <- merge(slr2, medicalDoctor2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, yogaInstructor2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, pilatesInstructor2, by.x='state', by.y='stateName',all.x=TRUE)
write.csv(slr2,'stateLicensingDemographicsAddedAndUpdated.csv', row.names=FALSE)

Number of jobs listed and average annual salary in each category by state’s top three populated cities:

jbl <- grep('jobsListed',colnames(slr2))
listedJobsAll <- slr2[,c(1,32,jbl)]

ansy <- grep('avgAn',colnames(slr2))
avgSalaryAll <- slr2[,c(1,34,ansy)]
colnames(listedJobsAll) <- gsub('_.*$','',colnames(listedJobsAll),perl=TRUE)
colnames(listedJobsAll) <- gsub(' jobsListed','',colnames(listedJobsAll))
listedJobsAll
##             state LMT cashier server personalTrainer houseCleaner warehouse
## 1         Alabama  64     185    220              87           67       225
## 2          Alaska  28     121     73              47            4       197
## 3         Arizona 225     223    222             153          170       242
## 4        Arkansas  63     190    201              57           27       223
## 5      California 206     225    230             220          211       247
## 6        Colorado 237     214    217             197          211       234
## 7     Connecticut 208     201    206             207          137       228
## 8        Delaware 176     199    210             158          206       236
## 9         Florida 229     220    223             191          206       224
## 10        Georgia  92     205    204              89          152       221
## 11         Hawaii  82     124    137              38           16       193
## 12          Idaho 162     216    200              72          202       236
## 13       Illinois 231     223    227             200          216       252
## 14        Indiana 110     203    217              95           98       234
## 15           Iowa 125     203    202              76           92       230
## 16         Kansas 156     211    223             184          168       238
## 17       Kentucky 133     214    213              86           84       228
## 18      Louisiana  87     207    223              92           92       204
## 19          Maine  63     138    124              28          115       155
## 20       Maryland 219     210    224             222          216       234
## 21  Massachusetts 227     208    209             198          160       245
## 22       Michigan 221     228    248             180          185       233
## 23      Minnesota 176     211    217             161          161       243
## 24    Mississippi  71     201    208              96           86       221
## 25       Missouri 170     209    238             133          152       232
## 26        Montana  32     208    199              18           22       219
## 27       Nebraska 183     202    211             146          136       240
## 28         Nevada 203     224    220             193          203       222
## 29  New Hampshire 134     215    211             180          197       232
## 30     New Jersey 236     228    235             245          214       233
## 31     New Mexico 157     200    198             105           62       230
## 32       New York 196     209    226             134          193       229
## 33 North Carolina 194     225    217             161          196       233
## 34   North Dakota  38     195    214              32          111       196
## 35           Ohio 207     221    233             217          208       242
## 36       Oklahoma 166     201    221             134          100       229
## 37         Oregon 142     203    210             119          146       216
## 38   Pennsylvania 248     222    225             219          218       243
## 39   Rhode Island 207     211    228             203          197       240
## 40 South Carolina 177     221    244             205          215       225
## 41   South Dakota  43     144    148              42           35       221
## 42      Tennessee 172     226    219             158          200       239
## 43          Texas 237     217    228             211          212       222
## 44           Utah 237     227    214             158          173       231
## 45        Vermont  62     172    162               4          105       220
## 46       Virginia 233     219    241             193          186       233
## 47     Washington 224     213    202             142          176       235
## 48  West Virginia  62     188    215              47           27       201
## 49      Wisconsin 171     204    223             155           75       229
## 50        Wyoming  26     179    136              17           14       157
##    security nanny clerical tutor teacher dataScientist nurses personalAssistant
## 1       202    48      225   189     201           136    247               160
## 2       165    26      209   166     171            69    218                88
## 3       227   182      224   208     251           190    238               219
## 4       207    83      222    88     166            96    240               144
## 5       239   206      230   206     228           230    248               222
## 6       229   183      228   202     233           215    237               221
## 7       225   174      227   214     232           220    249               225
## 8       225   132      223   161     223           162    242               171
## 9       226   186      224   220     235           190    234               215
## 10      210   113      222   152     211           114    247               146
## 11      210    43      225   183     194           171    237               168
## 12      195   100      232   193     223           114    250               182
## 13      225   183      230   224     245           214    247               221
## 14      213    55      229   182     230           119    243               167
## 15      211    37      230   144     208           114    241               141
## 16      219    93      230   194     223           150    238               154
## 17      209   101      225   163     220           109    244               170
## 18      215    33      223   188     232            58    261               133
## 19      138    26      156    92     149            58    159               114
## 20      227   202      224   225     239           246    240               228
## 21      227   167      232   221     235           217    236               220
## 22      224   107      226   205     247           180    233               229
## 23      219   146      223   226     230           155    248               198
## 24      214    58      214   137     221            56    237               150
## 25      220    97      227   208     218           149    252               192
## 26      171    17      212   131     188            65    249               124
## 27      203    58      227   195     226           116    250               187
## 28      225   108      221   203     223           100    248               181
## 29      223   107      226   202     227           185    249               186
## 30      239   221      223   223     245           227    249               230
## 31      221    62      210   163     204           168    240               194
## 32      211    86      232   209     234           184    245               198
## 33      220   159      221   209     235           176    255               216
## 34      202    22      227   162     210            70    235                94
## 35      234   100      225   202     239           213    247               223
## 36      212    81      228   206     228           131    256               216
## 37      217    79      226   173     224           117    255               176
## 38      232   155      226   221     234           179    232               219
## 39      232   159      230   203     225           205    251               201
## 40      221    94      223   213     225            67    242               206
## 41      148    17      219   124     170            63    232                97
## 42      227   108      221   196     229           188    256               221
## 43      233   183      227   210     232           211    233               221
## 44      214   125      233   206     205           209    247               211
## 45      192    25      217   103     222            95    242               135
## 46      233   127      222   176     234           210    254               200
## 47      217   145      237   198     240           179    236               218
## 48      211    23      228   141     192            69    234               127
## 49      206    72      235   210     228           151    242               181
## 50      147    14      214   111     155            81    226                94
##    chiropractor physicalTherapist esthetician medicalSpaEsthetician
## 1            36               215          67                    31
## 2            21               112          28                    12
## 3           150               228         189                   168
## 4            25               177          52                    35
## 5           216               218         212                    77
## 6           190               241         160                   148
## 7           119               236         207                    40
## 8            97               213         144                    31
## 9           169               209         195                   125
## 10           90               204          87                    73
## 11           18               191          58                    20
## 12          132               207          63                    47
## 13          199               216         227                   150
## 14           73               159          94                    46
## 15           67               155          47                    17
## 16           82               216         181                   112
## 17           61               198          52                    19
## 18           22               213         123                    27
## 19           18                72          61                     7
## 20          208               235         198                   173
## 21           82               239         199                    61
## 22          202               224         157                   115
## 23          151               199         143                   123
## 24           13               196         141                    39
## 25          135               227         173                    83
## 26            8               137           4                    28
## 27           27               141          56                    28
## 28          107               216         177                   135
## 29           47               198         141                    50
## 30          212               235         242                   163
## 31           38               206          52                    53
## 32           33               220         189                    69
## 33          131               222         184                    63
## 34            9               117          27                    12
## 35          142               211         199                    44
## 36           82               209         112                    75
## 37          134               209          88                    48
## 38          156               208         188                    56
## 39           27               224         178                    40
## 40           42               210         183                    92
## 41            4               119           9                    47
## 42          107               193         194                   124
## 43          196               224         212                   179
## 44          126               164         189                    75
## 45           18               141          22                    29
## 46          112               224         210                   154
## 47          166               199         170                   110
## 48            4                87          19                    26
## 49           88               164         121                    48
## 50            8               121          42                    26
##    medicalDoctor yogaInstructor pilatesInstructor
## 1            210             22                37
## 2            199              4                NA
## 3            231            131               133
## 4            225             26                 9
## 5            226            204               177
## 6            229            164               145
## 7            241            158               135
## 8            226             76                38
## 9            234            161               116
## 10           218             84                83
## 11           209             58                38
## 12           219            117                81
## 13           229            195               173
## 14           233             62                56
## 15           230             22                12
## 16           233            147               102
## 17           228             21                33
## 18           213             42                12
## 19           139             18                13
## 20           241            183               163
## 21           235            134               105
## 22           216            144                87
## 23           230            118               111
## 24           219             36                15
## 25           220            132                77
## 26           222              8                 7
## 27           229            106                48
## 28           224             47                22
## 29           221             61                52
## 30           242            185               185
## 31           225             83                72
## 32           237             92                91
## 33           225            125               121
## 34           187             13                 3
## 35           231            113               139
## 36           229            137               128
## 37           223             82                71
## 38           228            119               127
## 39           230            139                67
## 40           223            112                41
## 41           194             19                 4
## 42           227             67                23
## 43           230            188               190
## 44           226             75                62
## 45           188             32                 7
## 46           225             97                99
## 47           240            151               117
## 48           198             12                 8
## 49           217             41                46
## 50           186              8                 7
colnames(avgSalaryAll) <- gsub('_.*$','',colnames(avgSalaryAll))
colnames(avgSalaryAll) <- gsub(' .*$','',colnames(avgSalaryAll))
avgSalaryAll
##             state      LMT  cashier   server personalTrainer houseCleaner
## 1         Alabama 37500.00 22192.76 32630.00        59040.00     19512.38
## 2          Alaska 45000.00 25650.09 20982.64              NA           NA
## 3         Arizona 50748.89 25066.10 33031.71        46521.31     35235.20
## 4        Arkansas 42500.00 20574.21 28028.26        45976.67     24960.00
## 5      California 48820.89 35387.73 39072.35        77385.45     38864.21
## 6        Colorado 43500.00 29535.51 42863.62        61132.99     46106.21
## 7     Connecticut 46562.50 28297.31 41865.55        95438.84     48614.31
## 8        Delaware 46515.92 24364.22 28617.22        82474.24     33562.72
## 9         Florida 54032.75 23915.27 35378.65        75095.23     32068.35
## 10        Georgia 42500.00 20821.56 29578.82        52697.41     34648.42
## 11         Hawaii       NA 29992.26 38661.43              NA     29640.00
## 12          Idaho       NA 23055.74 37102.00        44720.00     32240.00
## 13       Illinois 52865.80 27561.17 47436.83        88706.80     39115.56
## 14        Indiana 42473.96 21792.61 30853.73        76379.53     30545.62
## 15           Iowa 42139.53 22906.18 32700.79        52328.42     26689.57
## 16         Kansas 47382.52 23116.59 45543.61        30499.13     30008.33
## 17       Kentucky 53101.50 28745.07 34752.11        61792.21     29640.00
## 18      Louisiana       NA 23511.79 21976.11        47331.30     28792.33
## 19          Maine       NA 28355.07 32374.19        47840.00     32836.87
## 20       Maryland 62643.84 29120.00 30837.86        84005.77     43362.22
## 21  Massachusetts 43314.98 31220.00 40201.72        81204.04     34992.75
## 22       Michigan 54133.48 23582.46 39520.00        67232.94     38373.19
## 23      Minnesota 49247.55 25964.27 34706.29        67096.15     35119.16
## 24    Mississippi 47651.89 30161.29 22287.50        45890.00     23387.91
## 25       Missouri 45687.94 23862.53 30035.46        36509.47     29787.45
## 26        Montana       NA 22620.00 25892.86              NA     26751.11
## 27       Nebraska 46046.15 22273.76 49003.22        59158.90     24988.68
## 28         Nevada 43064.04 30046.25 32420.35        94349.02     38316.06
## 29  New Hampshire 47313.43 26561.12 40988.82        59603.56     34024.37
## 30     New Jersey 66000.00 30585.35 42312.51       100137.14     40525.98
## 31     New Mexico 42542.50 23770.50 23885.20        45997.71     23088.00
## 32       New York 48979.59 30681.49 34502.23        56167.76     36647.88
## 33 North Carolina 41365.98 22284.89 27980.55        61857.39     30987.76
## 34   North Dakota 47000.00 23152.00 27317.01              NA     26693.33
## 35           Ohio 46742.97 25487.76 31932.02        64388.94     30955.00
## 36       Oklahoma 37672.57 22874.83 26083.53        36252.54     30503.20
## 37         Oregon 48000.00 29369.50 29137.33        62504.87     37878.79
## 38   Pennsylvania 41920.48 23655.46 38303.20        80744.84     39243.30
## 39   Rhode Island 43753.50 28738.01 49837.89        38052.22     31200.00
## 40 South Carolina       NA 21478.82 31016.72        87004.88     33299.35
## 41   South Dakota       NA 20841.60 19782.30        32513.68     28882.29
## 42      Tennessee 45297.97 29946.02 29357.44        42669.62     29952.00
## 43          Texas 52348.10 27375.48 31720.00        80641.90     37332.08
## 44           Utah 38565.40 26203.88 37604.02        70427.09     37253.64
## 45        Vermont       NA 28083.02 31200.00        42640.00     27560.00
## 46       Virginia 41524.00 21060.00 27282.74        48551.30     29120.00
## 47     Washington 50000.00 29962.25 36016.33       107647.32     36856.48
## 48  West Virginia       NA 21116.70 27469.30        24960.00     27040.00
## 49      Wisconsin 50657.89 25056.86 30175.16        56227.10     27040.00
## 50        Wyoming       NA 24993.00 26166.40              NA     32760.00
##    warehouse security    nanny clerical     tutor  teacher dataScientist
## 1   27974.84 30664.86 30225.00 42995.45  37186.22 54767.26      96875.00
## 2   44040.78 30654.18 26587.83 42506.14  41711.61 65795.25     113122.67
## 3   37061.30 40435.15 35428.57 38136.43  57810.00 59529.71     105618.42
## 4   32501.07 26447.15 27000.51 30832.25  21662.73 53461.26     109101.72
## 5   43204.21 40934.23 50636.89 45704.47  85337.55 53700.66     100510.87
## 6   34874.49 48072.52 37593.44 46155.79  48417.66 55008.99     111406.98
## 7   44782.40 48792.18 57988.97 52014.48  93782.24 68199.69     112500.00
## 8   36461.69 35364.62 34745.45 58496.50  50762.34 63724.22      99058.64
## 9   35272.95 35578.58 39788.39 38120.46  48996.48 46695.49     106973.68
## 10  32895.06 50014.10 34494.87 35793.33  40275.68 62409.42     115197.37
## 11  47573.43 30268.95 24960.00 40795.73  46800.00 55640.39     112500.00
## 12  31942.59 23067.20 46280.00 36314.83  43680.00 48038.12     112500.00
## 13  42986.67 30946.93 37218.36 41814.78  50962.32 50509.20     103399.24
## 14  37532.09 24918.50 27890.91 29165.41  35510.00 55638.51     112500.00
## 15  34327.69 29107.68 28544.85 38665.84  47193.94 52493.89     111008.77
## 16  34966.72 39556.71 30562.58 40605.04  41242.92 56424.35     113442.47
## 17  38042.11 32511.99 32472.92 36914.22  42952.64 46252.07      98769.67
## 18  31336.37 38097.86 25103.45 31631.39  45240.00 42921.36     112876.91
## 19  38996.65 29594.78 28320.00 42706.67  59223.48 54165.71     112500.00
## 20  37962.84 43006.52 42578.22 57125.71  49569.40 69253.96     136948.06
## 21  44887.50 44989.85 43788.98 45605.48  81863.53 57374.18     122687.46
## 22  48455.97 35239.47 30364.11 35731.18  37592.70 47993.93     108347.22
## 23  37682.88 37654.93 40602.74 41023.76  43888.00 57913.60      74612.90
## 24  31725.84 23343.92 25193.10 37669.63  38244.67 53670.49     112500.00
## 25  36615.17 35752.93 32036.29 38201.63  56450.00 44929.00     108247.50
## 26  33128.75 27185.96 20800.00 39783.73        NA 53811.32     112500.00
## 27  35771.67 35339.51 33979.31 36491.45  41600.00 37462.96     114439.66
## 28  34191.17 30515.91 27954.81 38305.88  45257.93 47980.06     112500.00
## 29  30780.86 51990.67 35194.77 36476.34  48499.01 57449.32     112500.00
## 30  38846.01 64440.84 52000.00 66452.74 104699.55 61855.55     134129.96
## 31  33835.18 30000.00 25664.52 34112.00  70720.00 59875.25     112500.00
## 32  45218.20 68652.86 44937.67 62690.26  87408.77 56436.97     134157.61
## 33  38590.52 31010.91 38061.38 34320.00  51308.33 45164.49     112321.02
## 34  35577.55 44148.51 18720.00 38649.52  44720.00 58630.03     112500.00
## 35  43705.79 27777.78 29993.60 41062.67  45324.95 35080.59      97335.68
## 36  38992.82 48129.43 26192.59 46306.59  61501.36 37753.55     112500.00
## 37  38271.76 40017.76 37400.51 38146.83  35738.89 56671.15     112500.00
## 38  42727.87 31167.72 35158.71 38394.82  53948.24 43453.60      95021.19
## 39  45948.50 37278.62 38480.00 39649.10  45526.90 78987.71      98817.07
## 40  31925.69 32788.24 30602.55 40546.01  41243.57 42300.13     106066.46
## 41  36216.47 37468.11 26000.00 44421.30        NA 56406.50     112500.00
## 42  33488.70 29392.42 31065.19 34247.25  40565.31 41919.73     112500.00
## 43  33125.03 39583.29 33754.54 39542.91  51955.43 53900.86     111172.27
## 44  36367.36 38003.74 30950.40 39339.58  41072.43 42158.54     106686.60
## 45  41618.91 32204.25 35609.60 33831.15        NA 53581.50     112500.00
## 46  37065.06 27285.85 30291.02 32673.33  46482.98 35054.24     112500.00
## 47  44118.13 49446.01 46764.14 73726.96  54174.55 66381.17     117939.56
## 48  36017.11 23969.29 22168.42 60306.32        NA 59486.82     100181.16
## 49  59775.02 30546.92 31228.89 42855.61  41669.33 46563.28     111092.72
## 50  37491.14 29993.60 36400.00 29541.54  22817.60 64292.00     109593.35
##       nurses personalAssistant chiropractor physicalTherapist esthetician
## 1   88988.35          43437.97     70980.00          85605.94    67482.26
## 2   97024.19          52047.25           NA          93600.00    46800.00
## 3   94074.49          71287.37     51449.41          91282.31    72222.22
## 4   96832.07          49123.75     27040.00         106051.51    37440.00
## 5  115855.15          99663.67     58832.22         117541.94   134106.04
## 6   85362.74          76190.23     86517.05         104258.92    70996.25
## 7   85913.03          70033.33     89964.37          85509.15    68695.27
## 8  135345.77          93740.81     56277.94          95222.61    74048.00
## 9   93570.12          50702.48     42467.69         121560.57    86813.33
## 10  89813.25          75320.01     63544.00                NA   159997.11
## 11  79599.02          69418.35     67600.00          95680.00    73840.00
## 12  79204.04          48531.01     47840.00          74880.00    34006.35
## 13  85449.30          61605.43     48733.67         124400.37    79360.70
## 14 113251.30          51041.00     40576.25         107968.23    53040.00
## 15  83596.70          67818.60     43990.45          29494.40    38480.00
## 16  74365.19          68886.51     34954.15          98800.00    42036.69
## 17  75581.41          50152.95     84200.00         109200.00    49140.00
## 18  87146.67          89180.88     44960.00          93155.36    37363.90
## 19  78132.79          32500.00     93600.00                NA    43680.00
## 20 100379.20          78496.95     46680.00          64732.26    63700.00
## 21  88965.46          64795.42     70765.88         134764.85    60644.02
## 22  94430.06          69196.03    112367.88         114400.00    68794.59
## 23  93044.52          63722.41     58460.40          82056.00   158872.73
## 24 100447.81          71274.99           NA                NA    35640.28
## 25  70808.85          42388.42    168364.44          95008.31    46466.36
## 26  85452.51          40000.00     62400.00          81120.00          NA
## 27  80564.72         120194.43     31200.00          91520.00    37440.00
## 28  93087.17          66939.32     41600.00          91520.00    82524.29
## 29  96590.39          75787.35     29120.00          85434.59    36786.67
## 30  92293.90          76832.57     75920.00         158673.02    91030.08
## 31  76357.83          90825.40           NA          91459.42    31200.00
## 32  81871.06          53035.57     49636.36         104793.05    54261.59
## 33  79281.65          54036.06     51150.53         135200.00    59732.17
## 34 107494.04          45062.50           NA          88786.77    38480.00
## 35  88519.34          47699.55     52124.51          74150.52    44996.98
## 36  83324.61          60940.34     41397.07          92958.09    31200.00
## 37 102196.50          66951.22     63812.54         102960.00    73480.95
## 38  83324.75          62271.17     61286.67         107124.70   125302.02
## 39  55004.76          91970.06           NA          63115.00    89440.00
## 40  85291.16          52213.99     80723.81          19760.00    51113.44
## 41  91151.97          39000.00           NA          91520.00          NA
## 42  88255.52          54095.52     34756.13                NA    42312.99
## 43  90291.58          61665.09     57539.59          96873.21    73261.13
## 44  86013.92          49882.45     53271.11                NA    57365.08
## 45  64653.24                NA     31200.00                NA   130000.00
## 46 100088.76          81252.99     47840.00                NA    69680.00
## 47  89003.48          66949.62    107965.78          95868.14    87916.71
## 48  55659.46          54948.49           NA                NA    33280.00
## 49  77554.45          41225.17     31967.62          93600.00    60200.24
## 50  99613.61          42500.00           NA          74457.50    31200.00
##    medicalSpaEsthetician medicalDoctor yogaInstructor pilatesInstructor
## 1               57233.55     284033.76      113822.22         130000.00
## 2               65520.00     244077.00             NA                NA
## 3               54946.67      83220.29      119004.58         116480.00
## 4               65520.00     210866.52      114400.00         130000.00
## 5               56875.84     110817.46      119600.00         119670.51
## 6               53250.81     137718.70      119695.12         125355.79
## 7               59800.00     142441.04      119356.46         125932.44
## 8               65520.00     193101.73      121622.22         130000.00
## 9               55918.72      98504.68      125542.86         125454.48
## 10              50261.92     189325.69       99455.20         116480.00
## 11              65520.00     211190.10      182000.00         182000.00
## 12              65520.00     253287.67      121648.80         121648.80
## 13              51930.67      64687.32       73706.67          55643.01
## 14              58466.09     198016.38      111296.77         119600.00
## 15              65520.00     200858.70      130000.00          93392.00
## 16              65520.00      96448.35      130000.00         130000.00
## 17              47785.26     201052.28      102160.00         130000.00
## 18              55640.00     284262.91      120640.00         130000.00
## 19              65520.00     159712.23      130000.00         130000.00
## 20              56586.82     149124.12      117383.61         118569.57
## 21              58188.85      96023.74       98000.60         106129.52
## 22              56386.09     177037.04      130000.00         115607.36
## 23              52625.69     128201.03      119600.00         116480.00
## 24              65520.00     220787.67       50844.44          92114.29
## 25              65520.00     125169.52      125206.25         124867.53
## 26              56605.71     196130.63      130000.00         130000.00
## 27              54377.14     176529.69      113360.00         130000.00
## 28              54087.70     163281.25      130000.00         130000.00
## 29              65520.00     135681.04      130000.00         130000.00
## 30              65520.00      78484.70      120640.00         115440.00
## 31              54433.21     164177.78      130000.00         130000.00
## 32              53024.93     199115.89      114996.47         121755.18
## 33              54440.86     212266.65      120604.14         124800.00
## 34              65520.00     189914.92      119600.00         130000.00
## 35              49920.00     163774.89      108976.20          91243.17
## 36              62025.60     151317.26      126070.09         106786.88
## 37              57915.00     169854.71      130000.00         120640.00
## 38              55008.57     167752.41       82291.09          86148.03
## 39              53040.00      98294.77      124800.00         124800.00
## 40              53582.61     246332.77      106228.57         130000.00
## 41              56536.17     255645.67      130000.00         130000.00
## 42              54658.71     135976.46       72800.00         130000.00
## 43              57746.15     151631.95      113691.91         116989.05
## 44              57158.40     136954.42      123760.00         115607.74
## 45              59495.17     269175.53      130000.00         130000.00
## 46              54505.45     214951.79      130000.00         130000.00
## 47              54169.82     161832.27      114716.82         119191.56
## 48              59760.00     257207.53      130000.00         130000.00
## 49              51198.33     155277.42      105461.62         122794.29
## 50              55440.00     236986.88      130000.00         130000.00

Lets take a look at the health and wellness number of jobs available by using the listedJobsAll columns for LMT, personalTrainer, chiropractor, physicalTherapist, esthetician, and medicalSpaEsthetician.

wellnessJobs <- listedJobsAll[,c(1,2,5,16,17,21,22)]
wellnessSalary <- avgSalaryAll[,c(1,2,5,16,17,21,22)]
wellnessJobs
##             state LMT personalTrainer chiropractor physicalTherapist
## 1         Alabama  64              87           36               215
## 2          Alaska  28              47           21               112
## 3         Arizona 225             153          150               228
## 4        Arkansas  63              57           25               177
## 5      California 206             220          216               218
## 6        Colorado 237             197          190               241
## 7     Connecticut 208             207          119               236
## 8        Delaware 176             158           97               213
## 9         Florida 229             191          169               209
## 10        Georgia  92              89           90               204
## 11         Hawaii  82              38           18               191
## 12          Idaho 162              72          132               207
## 13       Illinois 231             200          199               216
## 14        Indiana 110              95           73               159
## 15           Iowa 125              76           67               155
## 16         Kansas 156             184           82               216
## 17       Kentucky 133              86           61               198
## 18      Louisiana  87              92           22               213
## 19          Maine  63              28           18                72
## 20       Maryland 219             222          208               235
## 21  Massachusetts 227             198           82               239
## 22       Michigan 221             180          202               224
## 23      Minnesota 176             161          151               199
## 24    Mississippi  71              96           13               196
## 25       Missouri 170             133          135               227
## 26        Montana  32              18            8               137
## 27       Nebraska 183             146           27               141
## 28         Nevada 203             193          107               216
## 29  New Hampshire 134             180           47               198
## 30     New Jersey 236             245          212               235
## 31     New Mexico 157             105           38               206
## 32       New York 196             134           33               220
## 33 North Carolina 194             161          131               222
## 34   North Dakota  38              32            9               117
## 35           Ohio 207             217          142               211
## 36       Oklahoma 166             134           82               209
## 37         Oregon 142             119          134               209
## 38   Pennsylvania 248             219          156               208
## 39   Rhode Island 207             203           27               224
## 40 South Carolina 177             205           42               210
## 41   South Dakota  43              42            4               119
## 42      Tennessee 172             158          107               193
## 43          Texas 237             211          196               224
## 44           Utah 237             158          126               164
## 45        Vermont  62               4           18               141
## 46       Virginia 233             193          112               224
## 47     Washington 224             142          166               199
## 48  West Virginia  62              47            4                87
## 49      Wisconsin 171             155           88               164
## 50        Wyoming  26              17            8               121
##    yogaInstructor pilatesInstructor
## 1              22                37
## 2               4                NA
## 3             131               133
## 4              26                 9
## 5             204               177
## 6             164               145
## 7             158               135
## 8              76                38
## 9             161               116
## 10             84                83
## 11             58                38
## 12            117                81
## 13            195               173
## 14             62                56
## 15             22                12
## 16            147               102
## 17             21                33
## 18             42                12
## 19             18                13
## 20            183               163
## 21            134               105
## 22            144                87
## 23            118               111
## 24             36                15
## 25            132                77
## 26              8                 7
## 27            106                48
## 28             47                22
## 29             61                52
## 30            185               185
## 31             83                72
## 32             92                91
## 33            125               121
## 34             13                 3
## 35            113               139
## 36            137               128
## 37             82                71
## 38            119               127
## 39            139                67
## 40            112                41
## 41             19                 4
## 42             67                23
## 43            188               190
## 44             75                62
## 45             32                 7
## 46             97                99
## 47            151               117
## 48             12                 8
## 49             41                46
## 50              8                 7

Now look at the LMT with esthetician and medical spa esthetician jobs available.Nurses are needed in medical spas that are also estheticians, so we will add that class of jobs listed to our spaJobs data table.

spaJobs <- listedJobsAll[,c(1,2,14,18,19)]
spaSalary <- avgSalaryAll[,c(1,2,14,18,19)]
spaJobs
##             state LMT nurses esthetician medicalSpaEsthetician
## 1         Alabama  64    247          67                    31
## 2          Alaska  28    218          28                    12
## 3         Arizona 225    238         189                   168
## 4        Arkansas  63    240          52                    35
## 5      California 206    248         212                    77
## 6        Colorado 237    237         160                   148
## 7     Connecticut 208    249         207                    40
## 8        Delaware 176    242         144                    31
## 9         Florida 229    234         195                   125
## 10        Georgia  92    247          87                    73
## 11         Hawaii  82    237          58                    20
## 12          Idaho 162    250          63                    47
## 13       Illinois 231    247         227                   150
## 14        Indiana 110    243          94                    46
## 15           Iowa 125    241          47                    17
## 16         Kansas 156    238         181                   112
## 17       Kentucky 133    244          52                    19
## 18      Louisiana  87    261         123                    27
## 19          Maine  63    159          61                     7
## 20       Maryland 219    240         198                   173
## 21  Massachusetts 227    236         199                    61
## 22       Michigan 221    233         157                   115
## 23      Minnesota 176    248         143                   123
## 24    Mississippi  71    237         141                    39
## 25       Missouri 170    252         173                    83
## 26        Montana  32    249           4                    28
## 27       Nebraska 183    250          56                    28
## 28         Nevada 203    248         177                   135
## 29  New Hampshire 134    249         141                    50
## 30     New Jersey 236    249         242                   163
## 31     New Mexico 157    240          52                    53
## 32       New York 196    245         189                    69
## 33 North Carolina 194    255         184                    63
## 34   North Dakota  38    235          27                    12
## 35           Ohio 207    247         199                    44
## 36       Oklahoma 166    256         112                    75
## 37         Oregon 142    255          88                    48
## 38   Pennsylvania 248    232         188                    56
## 39   Rhode Island 207    251         178                    40
## 40 South Carolina 177    242         183                    92
## 41   South Dakota  43    232           9                    47
## 42      Tennessee 172    256         194                   124
## 43          Texas 237    233         212                   179
## 44           Utah 237    247         189                    75
## 45        Vermont  62    242          22                    29
## 46       Virginia 233    254         210                   154
## 47     Washington 224    236         170                   110
## 48  West Virginia  62    234          19                    26
## 49      Wisconsin 171    242         121                    48
## 50        Wyoming  26    226          42                    26

Lets used our list of demanded LMT states where there weren’t as many jobs available for LMT, but the pay was higher for LMT than the national LMT average pay.

demanded
## [1] Georgia     Mississippi Wyoming    
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

Lets look at Georgia and see how the jobs available in the wellness and the spa industries compare by plotting the wellness jobs available in GA, then the salary of those jobs in GA against the median income for GA and the median two bedroom home value.

GA <- subset(slr2, slr2=='Georgia')
GA_2BR <- GA$Zillow_2BR_3cityAverageHomeValue
GA_medIncome <- GA$median2018IncomeByState

GA_wellness <- subset(wellnessJobs, wellnessJobs$state=='Georgia')
GA_wellnessSalary <- subset(wellnessSalary,wellnessSalary$state=='Georgia')

GA_wellness2 <- gather(GA_wellness, key='jobTitle',value='jobsListed',2:7)
GA_wellnessSalary2 <- gather(GA_wellnessSalary, key='jobTitle', value='annualSalary',2:7)
ggplot(data = GA_wellness2, aes(y=GA_wellness2$jobsListed, x=GA_wellness2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Wellness Jobs Available')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = GA_wellnessSalary2, aes(y=GA_wellnessSalary2$annualSalary, x=GA_wellnessSalary2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  geom_hline(yintercept=GA_medIncome, linetype="dashed", color = "red")+
  geom_hline(yintercept=GA_2BR, linetype='dashed',color='blue')+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Wellness Jobs Annual Salary')+
  ylab(NULL)+
  xlab(NULL)
## Warning: Removed 1 rows containing missing values (geom_bar).

The blue line is the May 2020 Zillow average home value for the top 3 populated cities in GA for a two bedroom home, and the red line is the 2018 median income in GA, according to the data.census.gov data. There wasn’t any salary data for physical therapists in GA, so it doesn’t have a bar for salary information. But chiropractors’ annual salary is above the GA 2018 median income and the average 2020 two bedroom home value. Also, personal trainers make more than LMTs and have slightly less personal training jobs available than LMTs, but both have pay below the median income of GA. The available jobs for chiropractors, LMTs, and personal trainers is roughly the same in GA, while the demand for physical therapists is high with more than twice as many jobs available for physical therapists as any one other wellness category jobs available.Pilates and Yoga Instuctors get paid more annually than chiropractors, LMTs, or personal trainers. But their salary was approximated as full time at the average hourly rate. Many yoga and Pilates intructors might only work 20-32 hours a week. But then again, a great yoga or pilates instructor brings in clients who pay an average of $20 per class three times a week, with bargains on Groupon. Many physical therapists prescribe or recommend yoga and pilates to athletes or trauma patients with tendon injuries who need structural re-alignment.

Now, lets look at the chart of the medical spas jobs available and annual salary in GA with the same home value and median income values for GA used in the wellness jobs above.

GA_spa <- subset(spaJobs, spaJobs$state=='Georgia')
GA_spaSalary <- subset(spaSalary,spaSalary$state=='Georgia')

GA_spa2 <- gather(GA_spa, key='jobTitle',value='jobsListed',2:5)
GA_spaSalary2 <- gather(GA_spaSalary, key='jobTitle', value='annualSalary',2:5)
ggplot(data = GA_spa2, aes(y=GA_spa2$jobsListed, x=GA_spa2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Spa and Medical Spa Jobs Available')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = GA_spaSalary2, aes(y=GA_spaSalary2$annualSalary, 
                                 x=GA_spaSalary2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  geom_hline(yintercept=GA_medIncome, linetype="dashed", color = "red")+
  geom_hline(yintercept=GA_2BR, linetype='dashed',color='blue')+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Spa and Medical Spa Jobs Annual Salary')+
  ylab(NULL)+
  xlab(NULL)

The blue line above is the same two bedroom Zillow average home value for GA and the red line is the 2018 median income for GA from data.census.gov data. The above medical spa information for GA, shows that medical spa estheticians don’t make as much annually as estheticians or nurses. And that estheticians make more than nurses in GA. A medical spa esthetician is supposed to be an esthetician and a nurse to be able to give botox injections. But there could be some differences in state to state requirements and regulations for estheticians. Estheticians call it ‘lancing’ when they can drain a white head with a needle. Logically, on the surface the above doesn’t make sense, but it is possible that estheticians do make 150,000 USD a year. It is not unlikely that nurse make close to 100,000 USD a year either. The demand of nurses in GA is more than double that of the other medical spa jobs available and nearly triple it at around 250 available nursing jobs in GA’s top three populated cities.


There is now a script that did similar to what the indeed function did but for yellowpages.com. This script takes the first five webpages of yellowpages.com for the business searched in the city and state and returns a table of the number of businesses of that type in the same three top populated cities per state used in this program. The script is called ‘yellowPages-number-of-businesses.Rmd’ and it was used to get the number of businesses in those three cities per state for coffee, massage, gym, tanning, hair salon, tanning, yoga, chiropractic, wellness, and health food businesses. Lets add these counts to our table slr2 of all features used so far.

ypChiro <- read.csv('./number of businesses/statesRates- chiropractor .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypWellness <- read.csv('./number of businesses/statesRates- wellness clinic .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypMassage <- read.csv('./number of businesses/statesRates- massage .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypYoga <- read.csv('./number of businesses/statesRates- yoga .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypGym <- read.csv('./number of businesses/statesRates- gym .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypCoffee <- read.csv('./number of businesses/statesRates- coffee .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypHealthFood <- read.csv('./number of businesses/statesRates- health food .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypHairSalon <- read.csv('./number of businesses/statesRates- hair salon .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypTanning <- read.csv('./number of businesses/statesRates- tanning .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypChiro$states <- states
ypWellness$states <- states
ypMassage$states <- states
ypYoga$states <- states
ypGym$states <- states
ypCoffee$states <- states
ypHealthFood$states <- states
ypHairSalon$states <- states
ypTanning$states <- states
ypChiro <- ypChiro[,-1]
ypWellness <- ypWellness[,-1]
ypMassage <- ypMassage[,-1]
ypYoga <- ypYoga[,-1]
ypGym <- ypGym[,-1]
ypCoffee <- ypCoffee[,-1]
ypHealthFood <- ypHealthFood[,-1]
ypHairSalon <- ypHairSalon[,-1]
ypTanning <- ypTanning[,-1]
slr3 <- merge(slr2,ypChiro, by.x='state', by.y='states')
slr3 <- merge(slr3,ypWellness,by.x='state', by.y='states')
slr3 <- merge(slr3,ypMassage,by.x='state', by.y='states')
slr3 <- merge(slr3,ypYoga,by.x='state', by.y='states')
slr3 <- merge(slr3,ypGym,by.x='state', by.y='states')
slr3 <- merge(slr3,ypCoffee,by.x='state', by.y='states')
slr3 <- merge(slr3,ypHealthFood,by.x='state', by.y='states')
slr3 <- merge(slr3,ypHairSalon,by.x='state', by.y='states')
slr3 <- merge(slr3,ypTanning,by.x='state', by.y='states')
colnames(slr3)
##   [1] "state"                                 
##   [2] "massageBoard"                          
##   [3] "licenseByReciprocity"                  
##   [4] "proofOtherOrAllStateLicense"           
##   [5] "stateResidencyProof"                   
##   [6] "passportSizePhoto"                     
##   [7] "driversLicensePhotoCopy"               
##   [8] "nameChangeProof"                       
##   [9] "socialSecurityCopy"                    
##  [10] "Hours"                                 
##  [11] "MBLEX_or_NCBTMB"                       
##  [12] "goodHealthClearance"                   
##  [13] "BoardBackgroundCheckFee"               
##  [14] "stateApplyingBackgroundCheck"          
##  [15] "DOJ_backgroundCheck"                   
##  [16] "applicationCost"                       
##  [17] "licensingCost"                         
##  [18] "licenseRenewalFee"                     
##  [19] "CPR_certification"                     
##  [20] "licensingETA"                          
##  [21] "healthReferences"                      
##  [22] "CEU"                                   
##  [23] "timeLicenseValidYears"                 
##  [24] "liabilityInsurance"                    
##  [25] "schoolTranscripts"                     
##  [26] "MBLEX_transcript"                      
##  [27] "notes"                                 
##  [28] "notes2"                                
##  [29] "notes3"                                
##  [30] "notes4"                                
##  [31] "citiesGreaterThan300k_orTop3"          
##  [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
##  [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
##  [34] "LMT_AnualAvgPayAdvertised_Indeed"      
##  [35] "Zillow_2BR_3cityAverageHomeValue"      
##  [36] "median2018IncomeByState"               
##  [37] "total_state_population"                
##  [38] "percent_black"                         
##  [39] "percent_white"                         
##  [40] "percent_two_or_more"                   
##  [41] "percent_Native_American"               
##  [42] "percent_Asian"                         
##  [43] "percent_Pacific_Islander"              
##  [44] "percent_Latino"                        
##  [45] "cashier_jobsListed"                    
##  [46] "cashier_avgHourly"                     
##  [47] "cashier_avgAnnualSalary"               
##  [48] "server_jobsListed"                     
##  [49] "server_avgHourly"                      
##  [50] "server_avgAnnualSalary"                
##  [51] "personalTrainer_jobsListed"            
##  [52] "personalTrainer_avgHourly"             
##  [53] "personalTrainer_avgAnnualSalary"       
##  [54] "houseCleaner_jobsListed"               
##  [55] "houseCleaner_avgHourly"                
##  [56] "houseCleaner_avgAnnualSalary"          
##  [57] "warehouse_jobsListed"                  
##  [58] "warehouse_avgHourly"                   
##  [59] "warehouse_avgAnnualSalary"             
##  [60] "security_jobsListed"                   
##  [61] "security_avgHourly"                    
##  [62] "security_avgAnnualSalary"              
##  [63] "nanny_jobsListed"                      
##  [64] "nanny_avgHourly"                       
##  [65] "nanny_avgAnnualSalary"                 
##  [66] "clerical_jobsListed"                   
##  [67] "clerical_avgHourly"                    
##  [68] "clerical_avgAnnualSalary"              
##  [69] "tutor_jobsListed"                      
##  [70] "tutor_avgHourly"                       
##  [71] "tutor_avgAnnualSalary"                 
##  [72] "teacher_jobsListed"                    
##  [73] "teacher_avgHourly"                     
##  [74] "teacher_avgAnualSalary"                
##  [75] "dataScientist_jobsListed"              
##  [76] "dataScientist_avgHourly"               
##  [77] "dataScientist_avgAnualSalary"          
##  [78] "nurses jobsListed"                     
##  [79] "nurses avgHourly"                      
##  [80] "nurses avgAnualSalary"                 
##  [81] "personalAssistant jobsListed"          
##  [82] "personalAssistant avgHourly"           
##  [83] "personalAssistant avgAnualSalary"      
##  [84] "chiropractor jobsListed"               
##  [85] "chiropractor avgHourly"                
##  [86] "chiropractor avgAnualSalary"           
##  [87] "physicalTherapist jobsListed"          
##  [88] "physicalTherapist avgHourly"           
##  [89] "physicalTherapist avgAnualSalary"      
##  [90] "esthetician jobsListed"                
##  [91] "esthetician avgHourly"                 
##  [92] "esthetician avgAnualSalary"            
##  [93] "medicalSpaEsthetician jobsListed"      
##  [94] "medicalSpaEsthetician avgHourly"       
##  [95] "medicalSpaEsthetician avgAnualSalary"  
##  [96] "medicalDoctor jobsListed"              
##  [97] "medicalDoctor avgHourly"               
##  [98] "medicalDoctor avgAnualSalary"          
##  [99] "yogaInstructor jobsListed"             
## [100] "yogaInstructor avgHourly"              
## [101] "yogaInstructor avgAnualSalary"         
## [102] "pilatesInstructor jobsListed"          
## [103] "pilatesInstructor avgHourly"           
## [104] "pilatesInstructor avgAnualSalary"      
## [105] "chiropractor_businessListings"         
## [106] "wellness.clinic_businessListings"      
## [107] "massage_businessListings"              
## [108] "yoga_businessListings"                 
## [109] "gym_businessListings"                  
## [110] "coffee_businessListings"               
## [111] "health.food_businessListings"          
## [112] "hair.salon_businessListings"           
## [113] "tanning_businessListings"
write.csv(slr3, 'stateLicensingDemographicsAddedAndUpdated.csv', row.names=FALSE)

We currently have the price of 2 bedroom homes using Zillow data, but now we can add in apartments.com data for rental apartments of 2-3 bedroom, 2 bathroom, dog/cat friendly pricing to our data set to compare rental prices in the three top populated cities in each state. It didn’t happen by magic either, there is a script for it very similar to the indeed and yellowpages web scraping scripts. Originally, I was going to use rent.com, but wouldn’t you know they have a web scraping blocker in place that makes sure their terms of use aren’t violated for ‘not downloading their data.’ I did download apartments.com data, but only to share the aggregate results. Each individual file is downloaded for the date pulled but not added to githu. The script is ‘aps-com-2BR-2BA.Rmd’ in github with all these other shared files. It will produce this table in csv format, ‘apts_2BR2BA_prices.csv’ to add to our updated and added state licensing requirements csv table of data to compare state by state.

apt2and2 <- read.csv('./apartments Dot Com/apts_2BR2BA_prices.csv',sep=',',
                     header=TRUE, na.strings=c('',' ','NA'))
head(apt2and2,10)
##    state TwoBedroomApartment_Listings Rent2BR2BA_MinPrice Rent2BR2BA_MaxPrice
## 1     AK                           42            1395.205            1754.000
## 2     AL                          214            1066.152            1462.062
## 3     AR                          128             918.776            1251.989
## 4     AZ                          328            1254.911            1811.504
## 5     CA                          355            3032.312            4765.331
## 6     CO                          322            1746.339            2774.106
## 7     CT                           62            2572.695            3916.827
## 8     DE                           75            1374.111            1783.767
## 9     FL                          353            1635.474            2303.913
## 10    GA                          203            1418.345            2419.888
##    Rent2BR2BA_AvgPrice
## 1             1457.013
## 2             1207.891
## 3             1023.376
## 4             1488.532
## 5             3829.224
## 6             2205.166
## 7             3168.025
## 8             1543.938
## 9             1931.713
## 10            1844.138

The above information takes the price of each listing in those 50 states’ three most populated cities, and gets the minimum, maximum, and average prices of a 2 bedroom, 2 bath dog/cat friendly apartment for rent. The average minimum is the average of all minimum price boundaries of all three cities for each state, and the average maximum is the average of all maximum boundaries of the price range in all three cities of each state, and the average is the average price of all prices listed in each state.

Now lets add these new data columns to our table of 50 states.

colnames(apt2and2)[1] <- 'stateAbbreviation'
apt2and2$stateName <- states
slr4 <- merge(slr3,apt2and2, by.x='state',by.y='stateName')
colnames(slr4)
##   [1] "state"                                 
##   [2] "massageBoard"                          
##   [3] "licenseByReciprocity"                  
##   [4] "proofOtherOrAllStateLicense"           
##   [5] "stateResidencyProof"                   
##   [6] "passportSizePhoto"                     
##   [7] "driversLicensePhotoCopy"               
##   [8] "nameChangeProof"                       
##   [9] "socialSecurityCopy"                    
##  [10] "Hours"                                 
##  [11] "MBLEX_or_NCBTMB"                       
##  [12] "goodHealthClearance"                   
##  [13] "BoardBackgroundCheckFee"               
##  [14] "stateApplyingBackgroundCheck"          
##  [15] "DOJ_backgroundCheck"                   
##  [16] "applicationCost"                       
##  [17] "licensingCost"                         
##  [18] "licenseRenewalFee"                     
##  [19] "CPR_certification"                     
##  [20] "licensingETA"                          
##  [21] "healthReferences"                      
##  [22] "CEU"                                   
##  [23] "timeLicenseValidYears"                 
##  [24] "liabilityInsurance"                    
##  [25] "schoolTranscripts"                     
##  [26] "MBLEX_transcript"                      
##  [27] "notes"                                 
##  [28] "notes2"                                
##  [29] "notes3"                                
##  [30] "notes4"                                
##  [31] "citiesGreaterThan300k_orTop3"          
##  [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
##  [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
##  [34] "LMT_AnualAvgPayAdvertised_Indeed"      
##  [35] "Zillow_2BR_3cityAverageHomeValue"      
##  [36] "median2018IncomeByState"               
##  [37] "total_state_population"                
##  [38] "percent_black"                         
##  [39] "percent_white"                         
##  [40] "percent_two_or_more"                   
##  [41] "percent_Native_American"               
##  [42] "percent_Asian"                         
##  [43] "percent_Pacific_Islander"              
##  [44] "percent_Latino"                        
##  [45] "cashier_jobsListed"                    
##  [46] "cashier_avgHourly"                     
##  [47] "cashier_avgAnnualSalary"               
##  [48] "server_jobsListed"                     
##  [49] "server_avgHourly"                      
##  [50] "server_avgAnnualSalary"                
##  [51] "personalTrainer_jobsListed"            
##  [52] "personalTrainer_avgHourly"             
##  [53] "personalTrainer_avgAnnualSalary"       
##  [54] "houseCleaner_jobsListed"               
##  [55] "houseCleaner_avgHourly"                
##  [56] "houseCleaner_avgAnnualSalary"          
##  [57] "warehouse_jobsListed"                  
##  [58] "warehouse_avgHourly"                   
##  [59] "warehouse_avgAnnualSalary"             
##  [60] "security_jobsListed"                   
##  [61] "security_avgHourly"                    
##  [62] "security_avgAnnualSalary"              
##  [63] "nanny_jobsListed"                      
##  [64] "nanny_avgHourly"                       
##  [65] "nanny_avgAnnualSalary"                 
##  [66] "clerical_jobsListed"                   
##  [67] "clerical_avgHourly"                    
##  [68] "clerical_avgAnnualSalary"              
##  [69] "tutor_jobsListed"                      
##  [70] "tutor_avgHourly"                       
##  [71] "tutor_avgAnnualSalary"                 
##  [72] "teacher_jobsListed"                    
##  [73] "teacher_avgHourly"                     
##  [74] "teacher_avgAnualSalary"                
##  [75] "dataScientist_jobsListed"              
##  [76] "dataScientist_avgHourly"               
##  [77] "dataScientist_avgAnualSalary"          
##  [78] "nurses jobsListed"                     
##  [79] "nurses avgHourly"                      
##  [80] "nurses avgAnualSalary"                 
##  [81] "personalAssistant jobsListed"          
##  [82] "personalAssistant avgHourly"           
##  [83] "personalAssistant avgAnualSalary"      
##  [84] "chiropractor jobsListed"               
##  [85] "chiropractor avgHourly"                
##  [86] "chiropractor avgAnualSalary"           
##  [87] "physicalTherapist jobsListed"          
##  [88] "physicalTherapist avgHourly"           
##  [89] "physicalTherapist avgAnualSalary"      
##  [90] "esthetician jobsListed"                
##  [91] "esthetician avgHourly"                 
##  [92] "esthetician avgAnualSalary"            
##  [93] "medicalSpaEsthetician jobsListed"      
##  [94] "medicalSpaEsthetician avgHourly"       
##  [95] "medicalSpaEsthetician avgAnualSalary"  
##  [96] "medicalDoctor jobsListed"              
##  [97] "medicalDoctor avgHourly"               
##  [98] "medicalDoctor avgAnualSalary"          
##  [99] "yogaInstructor jobsListed"             
## [100] "yogaInstructor avgHourly"              
## [101] "yogaInstructor avgAnualSalary"         
## [102] "pilatesInstructor jobsListed"          
## [103] "pilatesInstructor avgHourly"           
## [104] "pilatesInstructor avgAnualSalary"      
## [105] "chiropractor_businessListings"         
## [106] "wellness.clinic_businessListings"      
## [107] "massage_businessListings"              
## [108] "yoga_businessListings"                 
## [109] "gym_businessListings"                  
## [110] "coffee_businessListings"               
## [111] "health.food_businessListings"          
## [112] "hair.salon_businessListings"           
## [113] "tanning_businessListings"              
## [114] "stateAbbreviation"                     
## [115] "TwoBedroomApartment_Listings"          
## [116] "Rent2BR2BA_MinPrice"                   
## [117] "Rent2BR2BA_MaxPrice"                   
## [118] "Rent2BR2BA_AvgPrice"
slr5 <- slr4[,c(114,1:113,115:118)]
write.csv(slr5,'stateLicensingDemographicsAddedAndUpdated.csv',row.names=FALSE)

Remember to update the stateLicensingRequirements.csv file with the actual massage board licensing requirements of each state, then adding the additional updated and added features with this script, after using those helper script files to update information as needed.


Getting back to the motivation for this project, comparing TN to CA, to satisfy some gamey choices in moving from CA to TN as a massage therapist to make my youngest and greatly adored neice’s life easier and happier, Lets compare TN to CA in demographics, number of data science and massage therapist jobs, annual salary on average for those jobs, and for alternate jobs, how many health food stores, salons, spas, chiropractors, and coffee shops in each state’s top three most populated cities, what the average and average minimum price range for a two bedroom, two bathroom and pet friendly apartment is, the median income from 2018 data for each state, and see how compromisable the effects of moving from CA to TN would be.

Lets first get all the fields used for this comparison.

comparing_TN_CA <- slr5[,c(1,11,12,17,18,19,23,33,35,37:45,55,57,58,60,
                           64,66,67,69,70,72,76,78,82,84,108:118)]
colnames(comparing_TN_CA)
##  [1] "stateAbbreviation"                   "Hours"                              
##  [3] "MBLEX_or_NCBTMB"                     "applicationCost"                    
##  [5] "licensingCost"                       "licenseRenewalFee"                  
##  [7] "CEU"                                 "LMT_AvgJobsListed_IndeedFirst5pages"
##  [9] "LMT_AnualAvgPayAdvertised_Indeed"    "median2018IncomeByState"            
## [11] "total_state_population"              "percent_black"                      
## [13] "percent_white"                       "percent_two_or_more"                
## [15] "percent_Native_American"             "percent_Asian"                      
## [17] "percent_Pacific_Islander"            "percent_Latino"                     
## [19] "houseCleaner_jobsListed"             "houseCleaner_avgAnnualSalary"       
## [21] "warehouse_jobsListed"                "warehouse_avgAnnualSalary"          
## [23] "nanny_jobsListed"                    "nanny_avgAnnualSalary"              
## [25] "clerical_jobsListed"                 "clerical_avgAnnualSalary"           
## [27] "tutor_jobsListed"                    "tutor_avgAnnualSalary"              
## [29] "dataScientist_jobsListed"            "dataScientist_avgAnualSalary"       
## [31] "personalAssistant jobsListed"        "personalAssistant avgAnualSalary"   
## [33] "massage_businessListings"            "yoga_businessListings"              
## [35] "gym_businessListings"                "coffee_businessListings"            
## [37] "health.food_businessListings"        "hair.salon_businessListings"        
## [39] "tanning_businessListings"            "TwoBedroomApartment_Listings"       
## [41] "Rent2BR2BA_MinPrice"                 "Rent2BR2BA_MaxPrice"                
## [43] "Rent2BR2BA_AvgPrice"

Lets compare demographics of each state by the states’ three most populated cities. This is important as it skews necessary information if the cities most populated aren’t near the place planning to live. For CA, the cities were San Diego, Los Angeles, and San Jose. The distance between San Diego and Los Angeles is about 120 miles, and from San Jose to Los Angeles it is more than 400 miles. San Jose is also a popularly expensive high rent city due to silicon valley. For TN, the cities most populated are Nashville, Memphis, and knoxville. The idea is that the pricing will be similar as an average across the state’s three most populated cities.

CA <- subset(comparing_TN_CA, comparing_TN_CA$stateAbbreviation=='CA')
TN <- subset(comparing_TN_CA, comparing_TN_CA$stateAbbreviation=='TN')

Lets look at demographics from 2018 state only data using data.census.gov.

CA_demographics <- CA[,c(1,11:18)]
TN_demographics <- TN[,c(1,11:18)]
CA_demoTidy <- gather(CA_demographics, key='race', value='TotalPopulationPercent',
                      3:9)
## Warning: attributes are not identical across measure variables;
## they will be dropped
CA_demoTidy$TotalPopulationPercent <- as.numeric(CA_demoTidy$TotalPopulationPercent)
CA_pop <- CA_demographics$total_state_population

gg1 <- ggplot(data = CA_demoTidy,
              aes(y=CA_demoTidy$TotalPopulationPercent,
                  x=CA_demoTidy$race)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0, 100))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA demographics, Percent of: ',CA_pop)+
  ylab(NULL)+
  xlab(NULL)

gg1

TN_demoTidy <- gather(TN_demographics, key='race', value='TotalPopulationPercent',
                      3:9)
## Warning: attributes are not identical across measure variables;
## they will be dropped
TN_demoTidy$TotalPopulationPercent <- as.numeric(TN_demoTidy$TotalPopulationPercent)
TN_pop <- TN_demographics$total_state_population

gg2 <- ggplot(data = TN_demoTidy,
              aes(y=TN_demoTidy$TotalPopulationPercent,
                  x=TN_demoTidy$race)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0, 100))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN demographics, Percent of: ',TN_pop)+
  ylab(NULL)+
  xlab(NULL)

gg2

CA_TN_demographics <- rbind(CA_demographics,TN_demographics)
CA_TN_demographics
##    stateAbbreviation total_state_population percent_black percent_white
## 5                 CA               39557045           5.8          59.5
## 42                TN                6770010          16.8          77.3
##    percent_two_or_more percent_Native_American percent_Asian
## 5                  5.1                     0.8          14.7
## 42                 2.2                     0.3           1.8
##    percent_Pacific_Islander percent_Latino
## 5                       0.4           39.3
## 42                      0.1            5.5
grid.arrange(gg1, gg2, ncol = 2)

Now lets look at the two bedroom, two bath, pet friendly apartments for rent in CA and TN.

CA_2BR <- CA[,c(1,40:43)]
TN_2BR <- TN[,c(1,40:43)]
CA_listings <- CA_2BR$TwoBedroomApartment_Listings

CA_2BR_tidy <- gather(CA_2BR, key='range',value='price',3:5)
CA_2BR_tidy$range <- gsub('Rent2BR2BA_','',CA_2BR_tidy$range)
gg3 <- ggplot(data = CA_2BR_tidy,
              aes(y=CA_2BR_tidy$price,
                  x=CA_2BR_tidy$range)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(500, 5000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA 2 Bedroom/2 Bath: ',CA_listings)+
  ylab(NULL)+
  xlab('San Diego, San Jose, and Los Angeles Prices Averaged')


TN_listings <- TN_2BR$TwoBedroomApartment_Listings

TN_2BR_tidy <- gather(TN_2BR, key='range', value='price', 3:5)
TN_2BR_tidy$range <- gsub('Rent2BR2BA_','',TN_2BR_tidy$range)
gg4 <- ggplot(data = TN_2BR_tidy,
              aes(y=TN_2BR_tidy$price,
                  x=TN_2BR_tidy$range)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(500, 5000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN 2 Bedroom/2 Bath: ',TN_listings)+
  ylab(NULL)+
  xlab('Nashville,Memphis, and Knoxville Prices Averaged')
CA_TN_2BR <- rbind(CA_2BR,TN_2BR)
CA_TN_2BR
##    stateAbbreviation TwoBedroomApartment_Listings Rent2BR2BA_MinPrice
## 5                 CA                          355            3032.312
## 42                TN                          272            1325.305
##    Rent2BR2BA_MaxPrice Rent2BR2BA_AvgPrice
## 5             4765.331            3829.224
## 42            2081.261            1607.292
grid.arrange(gg3, gg4, ncol = 2)

Lets now look at the number of massage and alternate jobs in CA and TN to compare their annual salaries against number of jobs available.

CA_jobsAvailable <- CA[,c(1,8,19,21,23,25,27,29,31)]
TN_jobsAvailable <- TN[,c(1,8,19,21,23,25,27,29,31)]

colnames(CA_jobsAvailable) <- gsub('_.*$','',colnames(CA_jobsAvailable))
colnames(TN_jobsAvailable) <- gsub('_.*$','',colnames(TN_jobsAvailable))

colnames(CA_jobsAvailable) <- gsub('jobsListed','',colnames(CA_jobsAvailable))
colnames(TN_jobsAvailable) <- gsub('jobsListed','',colnames(TN_jobsAvailable))

CA_jobsAvailable_tidy <- gather(CA_jobsAvailable, key='job',value='listings', 2:9)
TN_jobsAvailable_tidy <- gather(TN_jobsAvailable, key='job',value='listings', 2:9)
gg5 <- ggplot(data = CA_jobsAvailable_tidy,
              aes(y=CA_jobsAvailable_tidy$listings,
                  x=CA_jobsAvailable_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0,300))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Number of Advertised Jobs: ')+
  ylab(NULL)+
  xlab('San Diego, San Jose, and Los Angeles')

gg6 <- ggplot(data = TN_jobsAvailable_tidy,
              aes(y=TN_jobsAvailable_tidy$listings,
                  x=TN_jobsAvailable_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0,300))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN Number of Advertised Jobs: ')+
  ylab(NULL)+
  xlab('Nashville, Memphis, and Knoxville')
CA_TN_jobsAvailable <- rbind(CA_jobsAvailable,TN_jobsAvailable)
CA_TN_jobsAvailable
##    stateAbbreviation LMT houseCleaner warehouse nanny clerical tutor
## 5                 CA 206          211       247   206      230   206
## 42                TN 172          200       239   108      221   196
##    dataScientist personalAssistant 
## 5            230                222
## 42           188                221
grid.arrange(gg5,gg6,ncol=2)

Now, lets look at the average annual salary for those jobs available in CA and TN.

CA_salary <- CA[,c(1,9,20,22,24,26,28,30,32)]
TN_salary <- TN[,c(1,9,20,22,24,26,28,30,32)]

colnames(CA_salary) <- gsub('_.*$','',colnames(CA_salary))
colnames(CA_salary) <- gsub(' avgAnualSalary', '',colnames(CA_salary))
colnames(TN_salary) <- gsub('_.*$','',colnames(TN_salary))
colnames(TN_salary) <- gsub(' avgAnualSalary', '',colnames(TN_salary))

CA_salary_tidy <- gather(CA_salary, key='job',value='salary',2:9)
TN_salary_tidy <- gather(TN_salary, key='job', value='salary',2:9)
CA_medianIncome <- CA$median2018IncomeByState
TN_medianIncome <- TN$median2018IncomeByState

gg7 <- ggplot(data = CA_salary_tidy,
              aes(y=CA_salary_tidy$salary,
                  x=CA_salary_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  geom_hline(yintercept=CA_medianIncome, linetype="dashed", color = "red")+
  coord_cartesian(ylim = c(10000, 120000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Advertised Salaries: ')+
  ylab(NULL)+
  xlab('San Diego, San Jose, and Los Angeles')

gg8 <- ggplot(data = TN_salary_tidy,
              aes(y=TN_salary_tidy$salary,
                  x=TN_salary_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  geom_hline(yintercept=TN_medianIncome, linetype="dashed", color = "red")+
  coord_cartesian(ylim = c(10000,120000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN Advertised Salaries: ')+
  ylab(NULL)+
  xlab('Nashville, Memphis, and Knoxville')
CA_TN_salaries <- rbind(CA_salary,TN_salary)
CA_TN_salaries
##    stateAbbreviation      LMT houseCleaner warehouse    nanny clerical    tutor
## 5                 CA 48820.89     38864.21  43204.21 50636.89 45704.47 85337.55
## 42                TN 45297.97     29952.00  33488.70 31065.19 34247.25 40565.31
##    dataScientist personalAssistant
## 5       100510.9          99663.67
## 42      112500.0          54095.52

The red dashed line across the CA and TN advertised salaries is the state’s respective 2018 median income.

grid.arrange(gg7,gg8, ncol=2)

We notice a larger gap in LMT annual pay in the CA advertised pay ranges for jobs selected when compared to the gap of the TN median income and annual salaries of jobs selected.