JPAG
6/11/2020
## [1] 0.52
## [1] 0.05
## [1] 0.6
## [1] 0.4400000 0.5111111 0.5200000 0.5466667 0.5600000
## [1] 880
## [1] 0.1728
## [1] 0.53
## [1] 0.48
## [1] 0.205
## [1] 0.3284162
## [1] 0.1966667
## [1] 0.4666667
## [1] 0.04
## [1] 0.5
## [1] 1/64
## [1] 0.4
## [1] 0.8397228
## [1] 0.1584158
## [1] 0.01408451
## [1] 0.2922078
## [1] 0.4210526
## [1] 0.219554
## [1] 0.4
## [1] 0.6574394
## [1] 0.4
## [1] 0.4545455
## [1] 0.0956576
## [1] 0.4348589
## [1] 12.000000 3.000000 1.333333 0.750000
## [1] 60
dmultinom(c(0,2,2),4,c(.5,.3,.2))+dmultinom(c(0,1,3),4,c(.5,.3,.2))+
dmultinom(c(0,0,4),4,c(.5,.3,.2))+dmultinom(c(1,0,3),4,c(.5,.3,.2))## [1] 0.0488
## [1] 1/9
## [1] 0.46875
## [1] 0.1316872
## [1] 10255.9
## [1] 0.578125
## [1] 0.9245163
## [1] 0.3
## [1] 0.4691535
## [1] 0.2234204
## [1] 0.289792
## [1] 220
\[E(X)=\int_{-2}^0x\frac{-x}{10} \,\ dx+\int_0^4x\frac{x}{10}=-\frac{x^3}{30}\Bigg|_{-2}^0+\frac{x^3}{30} \Bigg|_0^4=\]
## [1] 28/15
## [1] 3.540251
## [1] 5644.227
## [1] 2694.4
## [1] 7231.302
## [1] 0.9342733
## [1] 0.03138686
## [1] 1.9
## [1] 0.3285073
## [1] 0.5
## [1] 0.562500 0.390625 0.250000 0.140625 0.062500
## [1] 5000
## [1] 10560
## [1] 93.05909
\[Var(1.2C)=(1.2)^2Var(C)=1.44(260)=\]
## [1] 374.4
## [1] 5/36
## [1] 1.706667
(20*.15+30*.1+40*.05+50*.2+60*.1+70*.1+80*.3)+c(
sqrt(20^2*.15+30^2*.1+40^2*.05+50^2*.2+60^2*.1+70^2*.1+80^2*.3-
(20*.15+30*.1+40*.05+50*.2+60*.1+70*.1+80*.3)^2),
-sqrt(20^2*.15+30^2*.1+40^2*.05+50^2*.2+60^2*.1+70^2*.1+80^2*.3-
(20*.15+30*.1+40*.05+50*.2+60*.1+70*.1+80*.3)^2))## [1] 76.79449 33.20551
Range includes the values \(40\), \(50\), \(60\) and \(70\) with probability \(0.05+0.2+0.1+0.1=0.45\)
sqrt(munif(2,0,1500)-levunif(250,0,1500,2)-
2*250*munif(1,0,1500)+2*250*levunif(250,0,1500,1)-
(munif(1,0,1500)-levunif(250,0,1500,1))^2)## [1] 403.4358
## [1] 698.8996
## [1] 173.2868
## [1] 0.4204482
By memorylessness,
## [1] 998.7197
\[F(y)=P(Y\leq y)=P\Big(T^2\leq y\Big)=P\Big(T\leq \sqrt{y}\Big)=F(\sqrt{y})\] \[\Rightarrow g(y)=F'(y)=F'\Big(\sqrt{y}\Big)=f\Big(\sqrt{y}\Big)\Big(\sqrt{y}\Big)'=\frac{8}{y^{3/2}}\cdot\frac{1}{2y^{1/2}}=\frac{4}{y^2}\]
\[F(v)=P(V\leq v)=P\Big(10000e^R\leq v\Big)=P\Big(R\leq \log{\frac{v}{10000}}\Big)\] \[\Rightarrow F\Big(\log{\frac{v}{10000}}\Big)= \frac{\log{\frac{v}{10000}}-.04}{.08-.04}=25\Big(\log{\frac{v}{10000}}-0.04\Big)\]
\[F(y)=P\Big(10X^{0.8}\leq y\Big)=P\Big[X\leq \Big(\frac{y}{10}\Big)^{1.25} \Big]\] \[\Rightarrow f(y)=F'(y)\Big(\Big(\frac{y}{10}\Big)^{1.25}\Big)'=.125\Big(\frac{y}{10}\Big)^{0.25}\exp{\Big[-\Big(\frac{y}{10}\Big)^{1.25}\Big]}\]
\[F(r)=P(R\leq r)=P(10/T\leq r)=P(10/r\leq T)=S_T\Big(\frac{10}{r}\Big)\] \[\Rightarrow f(r)=S_T'\Big(\frac{10}{r}\Big) \Big(\frac{10}{r}\Big)'=-\frac{1}{4}\Big(-\frac{10}{r^2}\Big)=\frac{5}{2r^2}\]
\[F_{II}(y)=P(2I\leq y)=P(I\leq y/2)=F_{I}\Big(\frac{y}{2}\Big)\] \[\Rightarrow g(y)=F_{II}'(y)=F_{I}'\Big(\frac{y}{2}\Big) \Big(\frac{y}{2}\Big)'=f_{I}\Big(\frac{y}{2}\Big) \Big(\frac{1}{2}\Big)\]
## [1] 2025
\[1-P(T_{XY}\geq 1)=1-\int_1^2\int_1^2 \frac{x+y}{8} \,\ dxdy=1-\int_1^2 \Big[\frac{x^2}{16}+\frac{xy}{8} \Big]_1^2dy=\] \[1-\int_1^2 \Big(\frac{2^2}{16}-\frac{1^2}{16}+\frac{2y}{8}-\frac{y}{8}\Big)dy = 1-\Big[\frac{3}{16}y+\frac{1}{16}y^2\Big]_1^2=\]
## [1] 0.625
\[1-P(T_{ST}\geq 0.5)=1-\int_{0.5}^1\int_{0.5}^1 f(s,t) \,\ dsdt=\int_0^{0.5} \int_{0.5}^1 f(s,t) \,\ dsdt + \int_0^1\int_0^{0.5} f(s,t) \,\ dsdt\]
## [1] 6342542
## [1] 0.2742531
## [1] 0.8185946
## [1] 34.52014 40.00369 51.05985 121.58978 150.17445
## [1] 0.8413447
## [1] 0.1586553
e1=.6*0+.4*.25*1+.4*.75*2;v1=.6*0^2+.4*.25*1^2+.4*.75*2^2-(e1)^2
pnorm((90+.5-100*e1)/sqrt(100*v1),0,1)## [1] 0.9886301
## [1] 0.7698607
\[P(G\leq 3)P(B\leq 2)=\Big(1-e^{-1/2}\Big)\Big(1-e^{-2/3}\Big)=1-e^{-1/2}-e^{-2/3}+e^{-7/6}\]
The region of integration goes from \(20\) to \(30\) in \(x\) and from \(20\) to \(50-x\) in \(y\), therefore the probability is
\[\frac{6}{125000}\int_{20}^{30}\int_{20}^{50-x}(50-x-y)dydx\]
\[P(B>D)=\int_0^{\infty}f_D(x)S_B(x)dx=\int_0^{\infty}\frac{e^{-x/3}}{3}e^{-x/2}dx=\int_0^{\infty}\frac{e^{-5x/6}}{3}dx=\] \[\frac{1}{3}\frac{6}{5}\int_0^{\infty}\frac{5e^{-5x/6}}{6}dx=\]
## [1] 0.4
\[P(T_{XY}\geq 1)=\int_0^1\int_{1-x}^2\frac{2x+2-y}{4}dydx=\int_0^1\Big[\frac{2xy+2y-0.5y^2}{4}\Big]_{1-x}^2dx=\] \[\int_0^1\Big(\frac{4x+4-2}{4}-\frac{2x(1-x)+2(1-x)-0.5(1-x)^2}{4}\Big)dx=\int_0^1\frac{3x+0.5+2.5x^2}{4}dx=\] \[\Big[\frac{1.5x^2+0.5x+2.5x^3/3}{4}\Big]_0^1=\]
## [1] 0.7083333
The required probability is
## [1] 0.19
The region is
and by symmetry
\[E(T_1+T_2)=2E(T_1)=\frac{2}{(4)(6)+(2)(4)+(2)(2)/2}\Big(\int_0^4\int_0^6t_1dt_2dt_1+\int_4^6\int_0^{10-t_1}t_1dt_2dt_1\Big)=\] \[\frac{2}{34}\Big(\int_0^4t_1t_2\Big|_0^6dt_2+\int_4^6t_1t_2\Big|_0^{10-t_1}dt_1\Big)=\frac{2}{34}\Big(\int_0^46t_1 \,\ dt_1+\int_4^6t_1(10-t_1)dt_1\Big)=\] \[\frac{2}{34}\Big(6\Big[\frac{t_1^2}{2}\Big]_0^4+\Big[5t_1^2-\frac{t_1^3}{3}\Big]_4^6\Big)=\]
## [1] 5.72549
\[X,Y\sim N.-0,1 \Rightarrow W,Z\sim N.-0,2 \Rightarrow E\Big(e^{t_1W+t_2Z}\Big)=E\Big(e^{t_1W}\Big)E\Big(e^{t_2Z}\Big)=e^{t_1^2}e^{t_2^2}=e^{t_1^2+t_2^2}\]
## [1] 984.5744
\[E(T_1^2+T_2^2)=\frac{2}{L^2}\int_0^L\int_0^{t_1}(t_1^2+t_2^2)dt_2dt_1=\frac{2}{L^2}\int_0^L\Big[(t_1^2t_2+\frac{t_2^3}{3}\Big]_0^{t_1}dt_1=\] \[\frac{2}{L^2}\int_0^L\Big(t_1^3+\frac{t_1^3}{3}\Big)dt_1=\frac{2}{L^2}\frac{t_1^4}{3}\Big|_0^{L}=\frac{2}{3}L^2\]
\[E\Big(e^{tY}\Big)=2^3/3^3e^t+1-2^3/3^3=19/27+8/27e^t\]
## [1] 19300
## [1] 0.5763889
## [1] 11
## [1] 200
## [1] 0.4137812
Since te region is rectangular,
\[f(x,y)=f(x)f(y) \Rightarrow E(X,Y)=E(X)E(Y) \Rightarrow Cov(X,Y)=0\]
Since the region is not rectangular,
\[E(X)=\int_0^1\int_x^{2x}\frac{8}{3}x^2ydydx=\frac{8}{3}\int_0^1\frac{x^2y^2}{2}\Big|_x^{2x}dx=\frac{8}{3}\int_0^1\frac{4x^4-x^4}{2}dx=\frac{8}{3}\Big[\frac{3x^5}{10}\Big]_0^1=\frac{4}{5}\] \[E(Y)=\int_0^1\int_x^{2x}\frac{8}{3}xy^2dydx=\frac{8}{3}\int_0^1\frac{xy^3}{3}\Big|_x^{2x}dx=\frac{8}{3}\int_0^1\frac{8x^4-x^4}{3}dx=\frac{8}{3}\Big[\frac{7x^4}{15}\Big]_0^1=\frac{56}{45}\] \[E(XY)=\int_0^1\int_x^{2x}\frac{8}{3}x^2y^2dydx=\frac{8}{3}\int_0^1\frac{x^2y^3}{3}\Big|_x^{2x}dx=\frac{8}{3}\int_0^1\frac{8x^5-x^5}{3}dx=\frac{8}{3}\Big[\frac{7x^5}{18}\Big]_0^1=\frac{28}{27}\] \[\Rightarrow Cov(X,Y)=\frac{28}{27}-\frac{4}{5}\frac{56}{45}=0.04148148\]
\[E(X)=\int_0^{12}\int_0^xx\frac{1}{12}\frac{1}{x}dydx=\frac{1}{12}\int_0^{12}y\Big|_0^xdx=\frac{1}{12}\int_0^{12}xdx=\frac{1}{12}\frac{x^2}{2}\Big|_0^{12}=6\] \[E(Y)=\int_0^{12}\int_0^xy\frac{1}{12}\frac{1}{x}dydx=\frac{1}{12}\int_0^{12}\frac{y^2}{2x}\Big|_0^xdx=\frac{1}{12}\int_0^{12}\frac{x}{2}dx=\frac{1}{12}\frac{x^2}{4}\Big|_0^{12}=3\] \[E(XY)=\int_0^{12}\int_0^xxy\frac{1}{12}\frac{1}{x}dydx=\frac{1}{12}\int_0^{12}\frac{y^2}{2}\Big|_0^xdx=\frac{1}{12}\int_0^{12}\frac{x^2}{2}dx=\frac{1}{12}\frac{x^3}{6}\Big|_0^{12}=24\] \[\Rightarrow Cov(X,Y)=\]
## [1] 6
## [1] 8.8
\[P(2T_1+T_2\leq x)=\int_0^x\int_0^{(x-t_2)/2}e^{-t_1}e^{-t_2}dt_1dt_2=\int_0^x\Big[-e^{-t_1}e^{-t_2}\Big]_0^{(x-t_2)/2}dt_2=\] \[\int_0^xe^{-t_2}(1-e^{-(x-t_2)/2})dt_2=\Big[-e^{-t_2}+2e^{-x/2}e^{-t_2/2}\Big]_0^x=e^{-x}+1-2e^{-x/2}\] \[\Rightarrow g(x)=(e^{-x}+1-2e^{-x/2})'=-e^{-x}+e^{-x/2}\]
\[F(x)=\int_0^{\infty}\int_0^{px}\frac{e^{-p/2}}{2}e^{-c}dcdp=\int_0^{\infty}\Big(\frac{e^{-p/2}}{2}-\frac{e^{-p/2}}{2}e^{-px}\Big)dp=\] \[\Bigg[-e^{-p/2}+\frac{e^{-p(x+1/2)}}{2x+1}\Bigg]_0^{\infty}=1-\frac{1}{2x+1} \Rightarrow f(x)=\frac{2}{(2x+1)^2}\]