Skewness & Kurtosis

Output

# check skewness and kurtosis
library(psych)
sk1 <- describe(efadf[2:28], na.rm = TRUE, skew = TRUE, ranges = TRUE, check = TRUE)
sk2 <- subset(sk1, select=-c(trimmed,mad,min,max,range))
sk_hist_items <- sk1$vars[sk1$kurtosis > 2]

library(DT)
datatable(sk2, options = list(pageLength = 10), rownames = T, class = "cell-border stripe") %>%
  formatRound(c("mean","sd","skew","kurtosis","se"), 2) %>%
  formatStyle("skew", target="row", backgroundColor = styleInterval(-2, c('yellow','none'))) %>%
  formatStyle("kurtosis", target="row", backgroundColor = styleInterval(2, c('none','yellow')))

Plots

sk_hist <- subset(df, select=c(sk_hist_items))
sk_hist_n <- colnames(sk_hist)
plots <- mapply(hist, sk_hist, main=sk_hist_n)

Correlations

Matrix

# correlation plots
idcors <- cor(efadf[2:14], use = "pairwise.complete.obs")
salgcors <- cor(efadf[15:37], use = "pairwise.complete.obs")
idcors2 <- round(idcors, digits = 2)
colnames(idcors2) <- abbreviate(colnames(idcors2))
rownames(idcors2) <- abbreviate(rownames(idcors2))
salgcors2 <- round(salgcors, digits = 2)
colnames(salgcors2) <- abbreviate(colnames(salgcors2))
rownames(salgcors2) <- abbreviate(rownames(salgcors2))

datatable(idcors2, options = list(pageLength = 10), rownames = T, class = "cell-border stripe")
datatable(salgcors2, options = list(pageLength = 10), rownames = T, class = "cell-border stripe")

Plots

library(corrplot)
## corrplot 0.84 loaded
corrplot(idcors, order = "hclust")

corrplot(salgcors, order = "hclust")

Items

items <- read.csv(file="items.csv",header=F)
datatable(items, options = list(pageLength = 50), rownames = T, class = "cell-border stripe")

EFAs

PCIR

issue caused by two-item factor (interest), wants to split across rec/pc factors. good loadings when 3-factor solution imposed

library(nFactors)
## Loading required package: lattice
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
d <- na.omit(efadf[2:13])
ev <- eigen(cor(d)) # get eigenvalues
ap <- parallel(subject=nrow(d),var=ncol(d),rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

EFA3 <- factanal(d, factors = 3, rotation = "promax", cutoff = 0.3)
print(EFA3, digits=3, cutoff=.3, sort=TRUE)
## 
## Call:
## factanal(x = d, factors = 3, rotation = "promax", cutoff = 0.3)
## 
## Uniquenesses:
##      pre_FeltLikeSciencePerson     pre_SeeMyselfSciencePerson 
##                          0.396                          0.277 
##     pre_FamilySeeSciencePerson pre_InstructorSeeSciencePerson 
##                          0.416                          0.379 
##       pre_PeerSeeSciencePerson               pre_EnjoyScience 
##                          0.313                          0.152 
##          pre_InterestedScience  pre_UnderstandPreviousScience 
##                          0.170                          0.434 
##       pre_UnderstandNewScience           pre_OvercomeSetbacks 
##                          0.291                          0.410 
##      pre_ConfidentOutsideClass             pre_ConfidentExams 
##                          0.224                          0.450 
## 
## Loadings:
##                                Factor1 Factor2 Factor3
## pre_FeltLikeSciencePerson       0.718                 
## pre_SeeMyselfSciencePerson      0.785                 
## pre_FamilySeeSciencePerson      0.788                 
## pre_InstructorSeeSciencePerson  0.805                 
## pre_PeerSeeSciencePerson        0.865                 
## pre_UnderstandPreviousScience           0.582         
## pre_UnderstandNewScience                0.795         
## pre_OvercomeSetbacks                    0.801         
## pre_ConfidentOutsideClass               0.880         
## pre_ConfidentExams                      0.779         
## pre_EnjoyScience                                0.876 
## pre_InterestedScience                           0.830 
## 
##                Factor1 Factor2 Factor3
## SS loadings      3.172   3.023   1.523
## Proportion Var   0.264   0.252   0.127
## Cumulative Var   0.264   0.516   0.643
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3
## Factor1   1.000   0.556   0.676
## Factor2   0.556   1.000   0.637
## Factor3   0.676   0.637   1.000
## 
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 108.75 on 33 degrees of freedom.
## The p-value is 5.13e-10

SALG

four-factor solution is best. group of most recently dropped items (enjoy, interest, real world, connected, applying) seem to be spinning off into their own factor or two, but it’s not clear what it is/they are

# efas
library(nFactors)

d <- na.omit(efadf[15:37])

names(d)
##  [1] "pre_OutsideClassInSubject1"    "pre_OutsideClassInSubject2"   
##  [3] "pre_RealWorldIssues"           "pre_FindArticles"             
##  [5] "pre_CriticallyRead"            "pre_IdentifyPatterns"         
##  [7] "pre_RecognizeArgument"         "pre_DevelopArgument"          
##  [9] "pre_WriteDocuments"            "pre_WorkWithOthers"           
## [11] "pre_OralPresentation"          "pre_Enthusiastic"             
## [13] "pre_DiscussWithFriends"        "pre_PlanningAdditionalClasses"
## [15] "pre_PursuringCareer"           "pre_UnderstandSubject"        
## [17] "pre_SucceedSubject"            "pre_ComplexIdeas"             
## [19] "pre_AskingForHelp"             "pre_ConnectIdeas"             
## [21] "pre_ApplyingOutsideClass"      "pre_SystematicReasoning"      
## [23] "pre_AnalyzingData"
ev <- eigen(cor(d)) # get eigenvalues
ap <- parallel(subject=nrow(d),var=ncol(d),rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

EFA4 <- factanal(d, factors = 4, rotation = "promax", cutoff = 0.3)
print(EFA4, digits=3, cutoff=.29, sort=TRUE) 
## 
## Call:
## factanal(x = d, factors = 4, rotation = "promax", cutoff = 0.3)
## 
## Uniquenesses:
##    pre_OutsideClassInSubject1    pre_OutsideClassInSubject2 
##                         0.423                         0.267 
##           pre_RealWorldIssues              pre_FindArticles 
##                         0.640                         0.522 
##            pre_CriticallyRead          pre_IdentifyPatterns 
##                         0.457                         0.491 
##         pre_RecognizeArgument           pre_DevelopArgument 
##                         0.275                         0.485 
##            pre_WriteDocuments            pre_WorkWithOthers 
##                         0.474                         0.722 
##          pre_OralPresentation              pre_Enthusiastic 
##                         0.733                         0.462 
##        pre_DiscussWithFriends pre_PlanningAdditionalClasses 
##                         0.534                         0.436 
##           pre_PursuringCareer         pre_UnderstandSubject 
##                         0.568                         0.357 
##            pre_SucceedSubject              pre_ComplexIdeas 
##                         0.376                         0.408 
##             pre_AskingForHelp              pre_ConnectIdeas 
##                         0.828                         0.380 
##      pre_ApplyingOutsideClass       pre_SystematicReasoning 
##                         0.347                         0.236 
##             pre_AnalyzingData 
##                         0.263 
## 
## Loadings:
##                               Factor1 Factor2 Factor3 Factor4
## pre_Enthusiastic               0.708                         
## pre_DiscussWithFriends         0.644                         
## pre_PlanningAdditionalClasses  0.748                         
## pre_PursuringCareer            0.783                         
## pre_UnderstandSubject          0.802                         
## pre_SucceedSubject             0.825                         
## pre_ComplexIdeas               0.700                         
## pre_FindArticles                       0.701                 
## pre_CriticallyRead                     0.741                 
## pre_IdentifyPatterns                   0.698                 
## pre_RecognizeArgument                  0.800                 
## pre_DevelopArgument                    0.688                 
## pre_WriteDocuments                     0.731                 
## pre_ConnectIdeas               0.305           0.570         
## pre_ApplyingOutsideClass                       0.675         
## pre_SystematicReasoning                        0.863         
## pre_AnalyzingData                              0.809         
## pre_OutsideClassInSubject1                             0.719 
## pre_OutsideClassInSubject2                             0.923 
## pre_RealWorldIssues                                    0.574 
## pre_WorkWithOthers                     0.303                 
## pre_OralPresentation                   0.439                 
## pre_AskingForHelp                                            
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings      4.113   3.560   2.344   1.863
## Proportion Var   0.179   0.155   0.102   0.081
## Cumulative Var   0.179   0.334   0.436   0.517
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1   1.000   0.499   0.661   0.612
## Factor2   0.499   1.000   0.523   0.483
## Factor3   0.661   0.523   1.000   0.675
## Factor4   0.612   0.483   0.675   1.000
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 554.82 on 167 degrees of freedom.
## The p-value is 3.95e-43
d <- subset(d, select=-c(10,11,16,17,18,19))
ev <- eigen(cor(d)) # get eigenvalues
ap <- parallel(subject=nrow(d),var=ncol(d),rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

EFA4 <- factanal(d, factors = 4, rotation = "promax", cutoff = 0.3)
print(EFA4, digits=3, cutoff=.29, sort=TRUE) 
## 
## Call:
## factanal(x = d, factors = 4, rotation = "promax", cutoff = 0.3)
## 
## Uniquenesses:
##    pre_OutsideClassInSubject1    pre_OutsideClassInSubject2 
##                         0.490                         0.137 
##           pre_RealWorldIssues              pre_FindArticles 
##                         0.660                         0.508 
##            pre_CriticallyRead          pre_IdentifyPatterns 
##                         0.432                         0.480 
##         pre_RecognizeArgument           pre_DevelopArgument 
##                         0.274                         0.496 
##            pre_WriteDocuments              pre_Enthusiastic 
##                         0.495                         0.433 
##        pre_DiscussWithFriends pre_PlanningAdditionalClasses 
##                         0.364                         0.318 
##           pre_PursuringCareer              pre_ConnectIdeas 
##                         0.596                         0.405 
##      pre_ApplyingOutsideClass       pre_SystematicReasoning 
##                         0.353                         0.224 
##             pre_AnalyzingData 
##                         0.260 
## 
## Loadings:
##                               Factor1 Factor2 Factor3 Factor4
## pre_FindArticles               0.728                         
## pre_CriticallyRead             0.763                         
## pre_IdentifyPatterns           0.714                         
## pre_RecognizeArgument          0.796                         
## pre_DevelopArgument            0.659                         
## pre_WriteDocuments             0.701                         
## pre_Enthusiastic                       0.708                 
## pre_DiscussWithFriends                 0.844                 
## pre_PlanningAdditionalClasses          0.853                 
## pre_PursuringCareer                    0.693                 
## pre_ConnectIdeas                               0.603         
## pre_ApplyingOutsideClass                       0.685         
## pre_SystematicReasoning                        0.906         
## pre_AnalyzingData                              0.828         
## pre_OutsideClassInSubject1                             0.612 
## pre_OutsideClassInSubject2                             0.994 
## pre_RealWorldIssues                                    0.483 
## 
##                Factor1 Factor2 Factor3 Factor4
## SS loadings      3.232   2.587   2.436   1.637
## Proportion Var   0.190   0.152   0.143   0.096
## Cumulative Var   0.190   0.342   0.486   0.582
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4
## Factor1   1.000  -0.524   0.599  -0.636
## Factor2  -0.524   1.000  -0.422   0.449
## Factor3   0.599  -0.422   1.000  -0.618
## Factor4  -0.636   0.449  -0.618   1.000
## 
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 236.64 on 74 degrees of freedom.
## The p-value is 6.75e-19

CFAs

PCIR

df <- read.csv(file="fa_data.csv", header=T)
names(df)
##  [1] "ID"                             "pre_FeltLikeSciencePerson"     
##  [3] "pre_SeeMyselfSciencePerson"     "pre_FamilySeeSciencePerson"    
##  [5] "pre_InstructorSeeSciencePerson" "pre_PeerSeeSciencePerson"      
##  [7] "pre_EnjoyScience"               "pre_InterestedScience"         
##  [9] "pre_UnderstandPreviousScience"  "pre_UnderstandNewScience"      
## [11] "pre_OvercomeSetbacks"           "pre_ConfidentOutsideClass"     
## [13] "pre_ConfidentExams"             "pre_OthersAskHelp"             
## [15] "pre_OutsideClassInSubject1"     "pre_OutsideClassInSubject2"    
## [17] "pre_RealWorldIssues"            "pre_FindArticles"              
## [19] "pre_CriticallyRead"             "pre_IdentifyPatterns"          
## [21] "pre_RecognizeArgument"          "pre_DevelopArgument"           
## [23] "pre_WriteDocuments"             "pre_WorkWithOthers"            
## [25] "pre_OralPresentation"           "pre_Enthusiastic"              
## [27] "pre_DiscussWithFriends"         "pre_PlanningAdditionalClasses" 
## [29] "pre_PursuringCareer"            "pre_UnderstandSubject"         
## [31] "pre_SucceedSubject"             "pre_ComplexIdeas"              
## [33] "pre_AskingForHelp"              "pre_ConnectIdeas"              
## [35] "pre_ApplyingOutsideClass"       "pre_SystematicReasoning"       
## [37] "pre_AnalyzingData"              "pre_Course"                    
## [39] "pre_Ethnicity"                  "freq"
df3 <- subset(df, select=c(2:13,15:23,26:29,34:37))
names(df3)
##  [1] "pre_FeltLikeSciencePerson"      "pre_SeeMyselfSciencePerson"    
##  [3] "pre_FamilySeeSciencePerson"     "pre_InstructorSeeSciencePerson"
##  [5] "pre_PeerSeeSciencePerson"       "pre_EnjoyScience"              
##  [7] "pre_InterestedScience"          "pre_UnderstandPreviousScience" 
##  [9] "pre_UnderstandNewScience"       "pre_OvercomeSetbacks"          
## [11] "pre_ConfidentOutsideClass"      "pre_ConfidentExams"            
## [13] "pre_OutsideClassInSubject1"     "pre_OutsideClassInSubject2"    
## [15] "pre_RealWorldIssues"            "pre_FindArticles"              
## [17] "pre_CriticallyRead"             "pre_IdentifyPatterns"          
## [19] "pre_RecognizeArgument"          "pre_DevelopArgument"           
## [21] "pre_WriteDocuments"             "pre_Enthusiastic"              
## [23] "pre_DiscussWithFriends"         "pre_PlanningAdditionalClasses" 
## [25] "pre_PursuringCareer"            "pre_ConnectIdeas"              
## [27] "pre_ApplyingOutsideClass"       "pre_SystematicReasoning"       
## [29] "pre_AnalyzingData"
set.seed(7)
ss <- sample(1:2,size=nrow(df3),replace=TRUE,prob=c(0.5,0.5))
d <- df3[ss==2,]

rename_vars <- c(
  paste("rec",1:5,sep=""),
  paste("gen_int",1:2,sep=""),
  paste("subj_pc",1:5,sep=""),
  paste("rw_int",1:3,sep=""),
  paste("verb_pc",1:6,sep=""),
  paste("car_int",1:4,sep=""),
  paste("sci",1:4,sep="")
  )

colnames(d) <- rename_vars

library(lavaan)
## This is lavaan 0.6-6
## lavaan is BETA software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
pcir3 <- 'recognition =~ rec1 + rec2 + rec3 + rec4 + rec5
          subject_pc =~ subj_pc1 + subj_pc3 + subj_pc5'
fit3 <- cfa(pcir3, data=d, std.lv=T,missing="fiml")
summary(fit3, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-6 ended normally after 40 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         25
##                                                       
##   Number of observations                           430
##   Number of missing patterns                         5
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                83.660
##   Degrees of freedom                                19
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1923.416
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.966
##   Tucker-Lewis Index (TLI)                       0.950
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3997.265
##   Loglikelihood unrestricted model (H1)      -3955.434
##                                                       
##   Akaike (AIC)                                8044.529
##   Bayesian (BIC)                              8146.124
##   Sample-size adjusted Bayesian (BIC)         8066.789
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.089
##   90 Percent confidence interval - lower         0.070
##   90 Percent confidence interval - upper         0.109
##   P-value RMSEA <= 0.05                          0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.039
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   recognition =~                                                        
##     rec1              0.803    0.047   17.027    0.000    0.803    0.729
##     rec2              0.977    0.043   22.579    0.000    0.977    0.882
##     rec3              0.980    0.051   19.156    0.000    0.980    0.792
##     rec4              0.768    0.041   18.518    0.000    0.768    0.774
##     rec5              0.949    0.044   21.696    0.000    0.949    0.862
##   subject_pc =~                                                         
##     subj_pc1          0.675    0.040   16.937    0.000    0.675    0.787
##     subj_pc3          0.537    0.040   13.534    0.000    0.537    0.645
##     subj_pc5          0.772    0.044   17.514    0.000    0.772    0.807
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   recognition ~~                                                        
##     subject_pc        0.619    0.039   15.760    0.000    0.619    0.619
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rec1              3.447    0.053   64.849    0.000    3.447    3.127
##    .rec2              3.502    0.053   65.525    0.000    3.502    3.161
##    .rec3              3.297    0.060   55.149    0.000    3.297    2.662
##    .rec4              3.230    0.048   67.411    0.000    3.230    3.256
##    .rec5              3.289    0.053   61.852    0.000    3.289    2.989
##    .subj_pc1          3.779    0.041   91.412    0.000    3.779    4.408
##    .subj_pc3          3.940    0.040   98.060    0.000    3.940    4.729
##    .subj_pc5          3.560    0.046   77.138    0.000    3.560    3.720
##     recognition       0.000                               0.000    0.000
##     subject_pc        0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .rec1              0.569    0.044   13.058    0.000    0.569    0.469
##    .rec2              0.273    0.029    9.501    0.000    0.273    0.223
##    .rec3              0.573    0.046   12.359    0.000    0.573    0.373
##    .rec4              0.394    0.032   12.427    0.000    0.394    0.400
##    .rec5              0.311    0.030   10.228    0.000    0.311    0.257
##    .subj_pc1          0.280    0.033    8.418    0.000    0.280    0.381
##    .subj_pc3          0.405    0.033   12.183    0.000    0.405    0.584
##    .subj_pc5          0.320    0.041    7.797    0.000    0.320    0.349
##     recognition       1.000                               1.000    1.000
##     subject_pc        1.000                               1.000    1.000
parameterEstimates(fit3, standardized=T)
##            lhs op         rhs   est    se      z pvalue ci.lower ci.upper
## 1  recognition =~        rec1 0.803 0.047 17.027      0    0.711    0.896
## 2  recognition =~        rec2 0.977 0.043 22.579      0    0.892    1.061
## 3  recognition =~        rec3 0.980 0.051 19.156      0    0.880    1.081
## 4  recognition =~        rec4 0.768 0.041 18.518      0    0.687    0.849
## 5  recognition =~        rec5 0.949 0.044 21.696      0    0.863    1.034
## 6   subject_pc =~    subj_pc1 0.675 0.040 16.937      0    0.597    0.753
## 7   subject_pc =~    subj_pc3 0.537 0.040 13.534      0    0.459    0.615
## 8   subject_pc =~    subj_pc5 0.772 0.044 17.514      0    0.686    0.859
## 9         rec1 ~~        rec1 0.569 0.044 13.058      0    0.484    0.655
## 10        rec2 ~~        rec2 0.273 0.029  9.501      0    0.217    0.330
## 11        rec3 ~~        rec3 0.573 0.046 12.359      0    0.482    0.664
## 12        rec4 ~~        rec4 0.394 0.032 12.427      0    0.332    0.456
## 13        rec5 ~~        rec5 0.311 0.030 10.228      0    0.251    0.370
## 14    subj_pc1 ~~    subj_pc1 0.280 0.033  8.418      0    0.215    0.345
## 15    subj_pc3 ~~    subj_pc3 0.405 0.033 12.183      0    0.340    0.471
## 16    subj_pc5 ~~    subj_pc5 0.320 0.041  7.797      0    0.240    0.400
## 17 recognition ~~ recognition 1.000 0.000     NA     NA    1.000    1.000
## 18  subject_pc ~~  subject_pc 1.000 0.000     NA     NA    1.000    1.000
## 19 recognition ~~  subject_pc 0.619 0.039 15.760      0    0.542    0.696
## 20        rec1 ~1             3.447 0.053 64.849      0    3.342    3.551
## 21        rec2 ~1             3.502 0.053 65.525      0    3.397    3.607
## 22        rec3 ~1             3.297 0.060 55.149      0    3.180    3.414
## 23        rec4 ~1             3.230 0.048 67.411      0    3.136    3.324
## 24        rec5 ~1             3.289 0.053 61.852      0    3.184    3.393
## 25    subj_pc1 ~1             3.779 0.041 91.412      0    3.698    3.860
## 26    subj_pc3 ~1             3.940 0.040 98.060      0    3.861    4.018
## 27    subj_pc5 ~1             3.560 0.046 77.138      0    3.470    3.651
## 28 recognition ~1             0.000 0.000     NA     NA    0.000    0.000
## 29  subject_pc ~1             0.000 0.000     NA     NA    0.000    0.000
##    std.lv std.all std.nox
## 1   0.803   0.729   0.729
## 2   0.977   0.882   0.882
## 3   0.980   0.792   0.792
## 4   0.768   0.774   0.774
## 5   0.949   0.862   0.862
## 6   0.675   0.787   0.787
## 7   0.537   0.645   0.645
## 8   0.772   0.807   0.807
## 9   0.569   0.469   0.469
## 10  0.273   0.223   0.223
## 11  0.573   0.373   0.373
## 12  0.394   0.400   0.400
## 13  0.311   0.257   0.257
## 14  0.280   0.381   0.381
## 15  0.405   0.584   0.584
## 16  0.320   0.349   0.349
## 17  1.000   1.000   1.000
## 18  1.000   1.000   1.000
## 19  0.619   0.619   0.619
## 20  3.447   3.127   3.127
## 21  3.502   3.161   3.161
## 22  3.297   2.662   2.662
## 23  3.230   3.256   3.256
## 24  3.289   2.989   2.989
## 25  3.779   4.408   4.408
## 26  3.940   4.729   4.729
## 27  3.560   3.720   3.720
## 28  0.000   0.000   0.000
## 29  0.000   0.000   0.000
round(residuals(fit3, type="cor")$cov, digits = 2)
##          rec1  rec2  rec3  rec4  rec5  sbj_p1 sbj_p3 sbj_p5
## rec1      0.00                                             
## rec2      0.04  0.00                                       
## rec3     -0.03  0.02  0.00                                 
## rec4     -0.03 -0.02 -0.03  0.00                           
## rec5     -0.03 -0.02  0.02  0.06  0.00                     
## subj_pc1  0.10  0.06  0.04  0.05  0.05  0.00               
## subj_pc3 -0.03 -0.02 -0.14 -0.03 -0.07 -0.03   0.00        
## subj_pc5  0.00 -0.03 -0.04  0.01 -0.04 -0.01   0.05   0.00

SALG

salg2 <- 'verb_pc =~ verb_pc1 + verb_pc2 + verb_pc3 + verb_pc4 + verb_pc5 + verb_pc6
          careerint =~ car_int1 + car_int2 + car_int3 + car_int4
          sciapp =~ sci1 + sci2 + sci3 + sci4
          rw_int =~ rw_int1 + rw_int2 + rw_int3'
fit2 <- cfa(salg2, data=d, std.lv=T,missing="fiml")
summary(fit2, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-6 ended normally after 68 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         57
##                                                       
##   Number of observations                           430
##   Number of missing patterns                        10
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               379.994
##   Degrees of freedom                               113
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4246.876
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.935
##   Tucker-Lewis Index (TLI)                       0.922
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -7716.723
##   Loglikelihood unrestricted model (H1)      -7526.726
##                                                       
##   Akaike (AIC)                               15547.445
##   Bayesian (BIC)                             15779.081
##   Sample-size adjusted Bayesian (BIC)        15598.196
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.074
##   90 Percent confidence interval - lower         0.066
##   90 Percent confidence interval - upper         0.082
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   verb_pc =~                                                            
##     verb_pc1          0.618    0.047   13.194    0.000    0.618    0.611
##     verb_pc2          0.705    0.044   16.074    0.000    0.705    0.714
##     verb_pc3          0.679    0.041   16.562    0.000    0.679    0.723
##     verb_pc4          0.733    0.036   20.149    0.000    0.733    0.831
##     verb_pc5          0.668    0.037   18.296    0.000    0.668    0.779
##     verb_pc6          0.648    0.043   15.084    0.000    0.648    0.674
##   careerint =~                                                          
##     car_int1          0.765    0.033   22.995    0.000    0.765    0.896
##     car_int2          0.811    0.038   21.098    0.000    0.811    0.846
##     car_int3          0.869    0.044   19.889    0.000    0.869    0.818
##     car_int4          0.768    0.049   15.723    0.000    0.768    0.690
##   sciapp =~                                                             
##     sci1              0.668    0.033   20.039    0.000    0.668    0.830
##     sci2              0.668    0.034   19.881    0.000    0.668    0.825
##     sci3              0.682    0.037   18.563    0.000    0.682    0.791
##     sci4              0.636    0.038   16.606    0.000    0.636    0.733
##   rw_int =~                                                             
##     rw_int1           0.707    0.034   21.070    0.000    0.707    0.869
##     rw_int2           0.771    0.037   20.694    0.000    0.771    0.858
##     rw_int3           0.558    0.037   14.983    0.000    0.558    0.675
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   verb_pc ~~                                                            
##     careerint         0.326    0.049    6.641    0.000    0.326    0.326
##     sciapp            0.608    0.038   15.984    0.000    0.608    0.608
##     rw_int            0.491    0.044   11.227    0.000    0.491    0.491
##   careerint ~~                                                          
##     sciapp            0.518    0.042   12.432    0.000    0.518    0.518
##     rw_int            0.460    0.044   10.355    0.000    0.460    0.460
##   sciapp ~~                                                             
##     rw_int            0.539    0.042   12.954    0.000    0.539    0.539
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .verb_pc1          3.849    0.049   78.973    0.000    3.849    3.808
##    .verb_pc2          3.721    0.048   78.211    0.000    3.721    3.772
##    .verb_pc3          3.728    0.045   82.323    0.000    3.728    3.970
##    .verb_pc4          3.854    0.043   90.521    0.000    3.854    4.370
##    .verb_pc5          3.804    0.041   91.977    0.000    3.804    4.438
##    .verb_pc6          3.588    0.046   77.330    0.000    3.588    3.729
##    .car_int1          4.209    0.041  102.281    0.000    4.209    4.932
##    .car_int2          4.006    0.046   86.602    0.000    4.006    4.178
##    .car_int3          3.929    0.051   76.618    0.000    3.929    3.697
##    .car_int4          4.129    0.054   76.855    0.000    4.129    3.711
##    .sci1              4.119    0.039  106.036    0.000    4.119    5.114
##    .sci2              4.153    0.039  106.379    0.000    4.153    5.130
##    .sci3              3.995    0.042   96.041    0.000    3.995    4.631
##    .sci4              4.009    0.042   95.783    0.000    4.009    4.619
##    .rw_int1           4.154    0.039  105.837    0.000    4.154    5.108
##    .rw_int2           3.980    0.043   91.670    0.000    3.980    4.429
##    .rw_int3           4.359    0.040  108.980    0.000    4.359    5.272
##     verb_pc           0.000                               0.000    0.000
##     careerint         0.000                               0.000    0.000
##     sciapp            0.000                               0.000    0.000
##     rw_int            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .verb_pc1          0.640    0.048   13.342    0.000    0.640    0.627
##    .verb_pc2          0.477    0.039   12.213    0.000    0.477    0.490
##    .verb_pc3          0.420    0.034   12.498    0.000    0.420    0.477
##    .verb_pc4          0.240    0.024   10.064    0.000    0.240    0.309
##    .verb_pc5          0.288    0.025   11.349    0.000    0.288    0.392
##    .verb_pc6          0.505    0.039   13.062    0.000    0.505    0.546
##    .car_int1          0.144    0.018    8.153    0.000    0.144    0.197
##    .car_int2          0.261    0.024   10.669    0.000    0.261    0.284
##    .car_int3          0.374    0.033   11.194    0.000    0.374    0.331
##    .car_int4          0.648    0.049   13.211    0.000    0.648    0.523
##    .sci1              0.202    0.020   10.002    0.000    0.202    0.312
##    .sci2              0.209    0.021   10.179    0.000    0.209    0.319
##    .sci3              0.278    0.026   10.809    0.000    0.278    0.374
##    .sci4              0.349    0.029   11.839    0.000    0.349    0.463
##    .rw_int1           0.162    0.021    7.562    0.000    0.162    0.244
##    .rw_int2           0.213    0.026    8.145    0.000    0.213    0.264
##    .rw_int3           0.372    0.029   12.782    0.000    0.372    0.544
##     verb_pc           1.000                               1.000    1.000
##     careerint         1.000                               1.000    1.000
##     sciapp            1.000                               1.000    1.000
##     rw_int            1.000                               1.000    1.000
parameterEstimates(fit2, standardized=T)
##          lhs op       rhs   est    se       z pvalue ci.lower ci.upper std.lv
## 1    verb_pc =~  verb_pc1 0.618 0.047  13.194      0    0.526    0.709  0.618
## 2    verb_pc =~  verb_pc2 0.705 0.044  16.074      0    0.619    0.790  0.705
## 3    verb_pc =~  verb_pc3 0.679 0.041  16.562      0    0.599    0.760  0.679
## 4    verb_pc =~  verb_pc4 0.733 0.036  20.149      0    0.662    0.804  0.733
## 5    verb_pc =~  verb_pc5 0.668 0.037  18.296      0    0.597    0.740  0.668
## 6    verb_pc =~  verb_pc6 0.648 0.043  15.084      0    0.564    0.733  0.648
## 7  careerint =~  car_int1 0.765 0.033  22.995      0    0.699    0.830  0.765
## 8  careerint =~  car_int2 0.811 0.038  21.098      0    0.736    0.887  0.811
## 9  careerint =~  car_int3 0.869 0.044  19.889      0    0.784    0.955  0.869
## 10 careerint =~  car_int4 0.768 0.049  15.723      0    0.672    0.864  0.768
## 11    sciapp =~      sci1 0.668 0.033  20.039      0    0.603    0.734  0.668
## 12    sciapp =~      sci2 0.668 0.034  19.881      0    0.602    0.734  0.668
## 13    sciapp =~      sci3 0.682 0.037  18.563      0    0.610    0.755  0.682
## 14    sciapp =~      sci4 0.636 0.038  16.606      0    0.561    0.711  0.636
## 15    rw_int =~   rw_int1 0.707 0.034  21.070      0    0.641    0.773  0.707
## 16    rw_int =~   rw_int2 0.771 0.037  20.694      0    0.698    0.844  0.771
## 17    rw_int =~   rw_int3 0.558 0.037  14.983      0    0.485    0.631  0.558
## 18  verb_pc1 ~~  verb_pc1 0.640 0.048  13.342      0    0.546    0.734  0.640
## 19  verb_pc2 ~~  verb_pc2 0.477 0.039  12.213      0    0.400    0.553  0.477
## 20  verb_pc3 ~~  verb_pc3 0.420 0.034  12.498      0    0.354    0.486  0.420
## 21  verb_pc4 ~~  verb_pc4 0.240 0.024  10.064      0    0.194    0.287  0.240
## 22  verb_pc5 ~~  verb_pc5 0.288 0.025  11.349      0    0.239    0.338  0.288
## 23  verb_pc6 ~~  verb_pc6 0.505 0.039  13.062      0    0.430    0.581  0.505
## 24  car_int1 ~~  car_int1 0.144 0.018   8.153      0    0.109    0.178  0.144
## 25  car_int2 ~~  car_int2 0.261 0.024  10.669      0    0.213    0.309  0.261
## 26  car_int3 ~~  car_int3 0.374 0.033  11.194      0    0.308    0.439  0.374
## 27  car_int4 ~~  car_int4 0.648 0.049  13.211      0    0.552    0.744  0.648
## 28      sci1 ~~      sci1 0.202 0.020  10.002      0    0.163    0.242  0.202
## 29      sci2 ~~      sci2 0.209 0.021  10.179      0    0.169    0.250  0.209
## 30      sci3 ~~      sci3 0.278 0.026  10.809      0    0.228    0.329  0.278
## 31      sci4 ~~      sci4 0.349 0.029  11.839      0    0.291    0.406  0.349
## 32   rw_int1 ~~   rw_int1 0.162 0.021   7.562      0    0.120    0.204  0.162
## 33   rw_int2 ~~   rw_int2 0.213 0.026   8.145      0    0.162    0.265  0.213
## 34   rw_int3 ~~   rw_int3 0.372 0.029  12.782      0    0.315    0.429  0.372
## 35   verb_pc ~~   verb_pc 1.000 0.000      NA     NA    1.000    1.000  1.000
## 36 careerint ~~ careerint 1.000 0.000      NA     NA    1.000    1.000  1.000
## 37    sciapp ~~    sciapp 1.000 0.000      NA     NA    1.000    1.000  1.000
## 38    rw_int ~~    rw_int 1.000 0.000      NA     NA    1.000    1.000  1.000
## 39   verb_pc ~~ careerint 0.326 0.049   6.641      0    0.230    0.422  0.326
## 40   verb_pc ~~    sciapp 0.608 0.038  15.984      0    0.533    0.682  0.608
## 41   verb_pc ~~    rw_int 0.491 0.044  11.227      0    0.406    0.577  0.491
## 42 careerint ~~    sciapp 0.518 0.042  12.432      0    0.436    0.599  0.518
## 43 careerint ~~    rw_int 0.460 0.044  10.355      0    0.373    0.547  0.460
## 44    sciapp ~~    rw_int 0.539 0.042  12.954      0    0.458    0.621  0.539
## 45  verb_pc1 ~1           3.849 0.049  78.973      0    3.753    3.944  3.849
## 46  verb_pc2 ~1           3.721 0.048  78.211      0    3.628    3.814  3.721
## 47  verb_pc3 ~1           3.728 0.045  82.323      0    3.639    3.817  3.728
## 48  verb_pc4 ~1           3.854 0.043  90.521      0    3.770    3.937  3.854
## 49  verb_pc5 ~1           3.804 0.041  91.977      0    3.723    3.885  3.804
## 50  verb_pc6 ~1           3.588 0.046  77.330      0    3.497    3.679  3.588
## 51  car_int1 ~1           4.209 0.041 102.281      0    4.129    4.290  4.209
## 52  car_int2 ~1           4.006 0.046  86.602      0    3.916    4.097  4.006
## 53  car_int3 ~1           3.929 0.051  76.618      0    3.828    4.029  3.929
## 54  car_int4 ~1           4.129 0.054  76.855      0    4.024    4.235  4.129
## 55      sci1 ~1           4.119 0.039 106.036      0    4.042    4.195  4.119
## 56      sci2 ~1           4.153 0.039 106.379      0    4.077    4.230  4.153
## 57      sci3 ~1           3.995 0.042  96.041      0    3.914    4.077  3.995
## 58      sci4 ~1           4.009 0.042  95.783      0    3.927    4.091  4.009
## 59   rw_int1 ~1           4.154 0.039 105.837      0    4.077    4.231  4.154
## 60   rw_int2 ~1           3.980 0.043  91.670      0    3.895    4.065  3.980
## 61   rw_int3 ~1           4.359 0.040 108.980      0    4.281    4.438  4.359
## 62   verb_pc ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
## 63 careerint ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
## 64    sciapp ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
## 65    rw_int ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
##    std.all std.nox
## 1    0.611   0.611
## 2    0.714   0.714
## 3    0.723   0.723
## 4    0.831   0.831
## 5    0.779   0.779
## 6    0.674   0.674
## 7    0.896   0.896
## 8    0.846   0.846
## 9    0.818   0.818
## 10   0.690   0.690
## 11   0.830   0.830
## 12   0.825   0.825
## 13   0.791   0.791
## 14   0.733   0.733
## 15   0.869   0.869
## 16   0.858   0.858
## 17   0.675   0.675
## 18   0.627   0.627
## 19   0.490   0.490
## 20   0.477   0.477
## 21   0.309   0.309
## 22   0.392   0.392
## 23   0.546   0.546
## 24   0.197   0.197
## 25   0.284   0.284
## 26   0.331   0.331
## 27   0.523   0.523
## 28   0.312   0.312
## 29   0.319   0.319
## 30   0.374   0.374
## 31   0.463   0.463
## 32   0.244   0.244
## 33   0.264   0.264
## 34   0.544   0.544
## 35   1.000   1.000
## 36   1.000   1.000
## 37   1.000   1.000
## 38   1.000   1.000
## 39   0.326   0.326
## 40   0.608   0.608
## 41   0.491   0.491
## 42   0.518   0.518
## 43   0.460   0.460
## 44   0.539   0.539
## 45   3.808   3.808
## 46   3.772   3.772
## 47   3.970   3.970
## 48   4.370   4.370
## 49   4.438   4.438
## 50   3.729   3.729
## 51   4.932   4.932
## 52   4.178   4.178
## 53   3.697   3.697
## 54   3.711   3.711
## 55   5.114   5.114
## 56   5.130   5.130
## 57   4.631   4.631
## 58   4.619   4.619
## 59   5.108   5.108
## 60   4.429   4.429
## 61   5.272   5.272
## 62   0.000   0.000
## 63   0.000   0.000
## 64   0.000   0.000
## 65   0.000   0.000
round(residuals(fit2, type="cor")$cov, digits = 2)
##          vrb_p1 vrb_p2 vrb_p3 vrb_p4 vrb_p5 vrb_p6 cr_nt1 cr_nt2 cr_nt3 cr_nt4
## verb_pc1  0.00                                                                
## verb_pc2  0.17   0.00                                                         
## verb_pc3  0.00   0.06   0.00                                                  
## verb_pc4 -0.05  -0.06   0.01   0.00                                           
## verb_pc5 -0.07  -0.08  -0.05   0.07   0.00                                    
## verb_pc6 -0.01  -0.01  -0.02  -0.01   0.07   0.00                             
## car_int1  0.00   0.07   0.02  -0.04  -0.04  -0.04   0.00                      
## car_int2  0.04   0.05  -0.01  -0.03  -0.03  -0.03   0.01   0.00               
## car_int3  0.01   0.09   0.06   0.01   0.00  -0.04  -0.02   0.01   0.00        
## car_int4  0.07   0.04   0.02   0.02  -0.03   0.03   0.01  -0.04   0.04   0.00 
## sci1      0.01   0.06  -0.01  -0.05  -0.06  -0.10   0.05   0.06   0.04   0.01 
## sci2      0.00   0.01  -0.07  -0.05  -0.05  -0.10   0.05   0.06   0.01   0.02 
## sci3      0.03   0.08   0.09   0.01   0.05  -0.01  -0.06  -0.09  -0.02  -0.08 
## sci4      0.02   0.12   0.07   0.04   0.11   0.06  -0.08  -0.06  -0.02  -0.09 
## rw_int1   0.05   0.02  -0.02   0.04  -0.01  -0.05   0.01  -0.04  -0.04   0.07 
## rw_int2   0.04  -0.01  -0.02   0.01  -0.04  -0.01   0.00  -0.04  -0.04   0.03 
## rw_int3   0.09   0.05  -0.02   0.00  -0.05  -0.04   0.10   0.04   0.02   0.03 
##          sci1  sci2  sci3  sci4  rw_nt1 rw_nt2 rw_nt3
## verb_pc1                                             
## verb_pc2                                             
## verb_pc3                                             
## verb_pc4                                             
## verb_pc5                                             
## verb_pc6                                             
## car_int1                                             
## car_int2                                             
## car_int3                                             
## car_int4                                             
## sci1      0.00                                       
## sci2      0.05  0.00                                 
## sci3     -0.02 -0.04  0.00                           
## sci4     -0.06 -0.03  0.11  0.00                     
## rw_int1   0.03  0.02 -0.03  0.01  0.00               
## rw_int2   0.00  0.00 -0.06 -0.05  0.00   0.00        
## rw_int3   0.06  0.08 -0.01 -0.02 -0.01   0.00   0.00
salg2 <- 'verb_pc =~ verb_pc2 + verb_pc3 + verb_pc4 + verb_pc5 + verb_pc6
          careerint =~ car_int1 + car_int2 + car_int3 + car_int4
          sciapp =~ sci1 + sci3 + sci4
          rw_int =~ rw_int1 + rw_int2 + rw_int3'
fit2 <- cfa(salg2, data=d, std.lv=T,missing="fiml")
summary(fit2, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-6 ended normally after 65 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         51
##                                                       
##   Number of observations                           430
##   Number of missing patterns                        10
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               231.204
##   Degrees of freedom                                84
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3579.516
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.958
##   Tucker-Lewis Index (TLI)                       0.947
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6841.985
##   Loglikelihood unrestricted model (H1)      -6726.383
##                                                       
##   Akaike (AIC)                               13785.970
##   Bayesian (BIC)                             13993.223
##   Sample-size adjusted Bayesian (BIC)        13831.379
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.064
##   90 Percent confidence interval - lower         0.054
##   90 Percent confidence interval - upper         0.074
##   P-value RMSEA <= 0.05                          0.010
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   verb_pc =~                                                            
##     verb_pc2          0.666    0.044   14.977    0.000    0.666    0.675
##     verb_pc3          0.675    0.041   16.321    0.000    0.675    0.718
##     verb_pc4          0.746    0.036   20.706    0.000    0.746    0.846
##     verb_pc5          0.687    0.036   19.105    0.000    0.687    0.802
##     verb_pc6          0.650    0.043   15.094    0.000    0.650    0.676
##   careerint =~                                                          
##     car_int1          0.764    0.033   22.965    0.000    0.764    0.896
##     car_int2          0.810    0.039   21.040    0.000    0.810    0.845
##     car_int3          0.871    0.044   19.911    0.000    0.871    0.819
##     car_int4          0.769    0.049   15.739    0.000    0.769    0.691
##   sciapp =~                                                             
##     sci1              0.595    0.036   16.651    0.000    0.595    0.739
##     sci3              0.737    0.036   20.429    0.000    0.737    0.854
##     sci4              0.685    0.037   18.371    0.000    0.685    0.789
##   rw_int =~                                                             
##     rw_int1           0.707    0.034   21.009    0.000    0.707    0.869
##     rw_int2           0.772    0.037   20.660    0.000    0.772    0.859
##     rw_int3           0.557    0.037   14.924    0.000    0.557    0.673
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   verb_pc ~~                                                            
##     careerint         0.316    0.050    6.384    0.000    0.316    0.316
##     sciapp            0.639    0.037   17.111    0.000    0.639    0.639
##     rw_int            0.479    0.044   10.791    0.000    0.479    0.479
##   careerint ~~                                                          
##     sciapp            0.450    0.046    9.708    0.000    0.450    0.450
##     rw_int            0.460    0.044   10.351    0.000    0.460    0.460
##   sciapp ~~                                                             
##     rw_int            0.494    0.045   10.864    0.000    0.494    0.494
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .verb_pc2          3.721    0.048   78.211    0.000    3.721    3.772
##    .verb_pc3          3.728    0.045   82.323    0.000    3.728    3.970
##    .verb_pc4          3.853    0.043   90.523    0.000    3.853    4.370
##    .verb_pc5          3.804    0.041   91.979    0.000    3.804    4.438
##    .verb_pc6          3.588    0.046   77.330    0.000    3.588    3.729
##    .car_int1          4.209    0.041  102.281    0.000    4.209    4.932
##    .car_int2          4.006    0.046   86.601    0.000    4.006    4.178
##    .car_int3          3.929    0.051   76.614    0.000    3.929    3.696
##    .car_int4          4.129    0.054   76.857    0.000    4.129    3.711
##    .sci1              4.119    0.039  106.036    0.000    4.119    5.114
##    .sci3              3.995    0.042   96.041    0.000    3.995    4.631
##    .sci4              4.009    0.042   95.783    0.000    4.009    4.619
##    .rw_int1           4.154    0.039  105.834    0.000    4.154    5.108
##    .rw_int2           3.980    0.043   91.666    0.000    3.980    4.429
##    .rw_int3           4.359    0.040  108.976    0.000    4.359    5.272
##     verb_pc           0.000                               0.000    0.000
##     careerint         0.000                               0.000    0.000
##     sciapp            0.000                               0.000    0.000
##     rw_int            0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .verb_pc2          0.529    0.041   12.782    0.000    0.529    0.544
##    .verb_pc3          0.427    0.034   12.386    0.000    0.427    0.484
##    .verb_pc4          0.221    0.023    9.595    0.000    0.221    0.285
##    .verb_pc5          0.262    0.024   10.927    0.000    0.262    0.357
##    .verb_pc6          0.503    0.039   12.970    0.000    0.503    0.543
##    .car_int1          0.144    0.018    8.092    0.000    0.144    0.198
##    .car_int2          0.263    0.025   10.697    0.000    0.263    0.286
##    .car_int3          0.371    0.033   11.094    0.000    0.371    0.329
##    .car_int4          0.646    0.049   13.192    0.000    0.646    0.522
##    .sci1              0.294    0.026   11.465    0.000    0.294    0.454
##    .sci3              0.201    0.025    8.034    0.000    0.201    0.270
##    .sci4              0.284    0.027   10.584    0.000    0.284    0.377
##    .rw_int1           0.161    0.022    7.430    0.000    0.161    0.244
##    .rw_int2           0.212    0.027    7.978    0.000    0.212    0.262
##    .rw_int3           0.374    0.029   12.803    0.000    0.374    0.547
##     verb_pc           1.000                               1.000    1.000
##     careerint         1.000                               1.000    1.000
##     sciapp            1.000                               1.000    1.000
##     rw_int            1.000                               1.000    1.000
parameterEstimates(fit2, standardized=T)
##          lhs op       rhs   est    se       z pvalue ci.lower ci.upper std.lv
## 1    verb_pc =~  verb_pc2 0.666 0.044  14.977      0    0.579    0.753  0.666
## 2    verb_pc =~  verb_pc3 0.675 0.041  16.321      0    0.594    0.756  0.675
## 3    verb_pc =~  verb_pc4 0.746 0.036  20.706      0    0.675    0.817  0.746
## 4    verb_pc =~  verb_pc5 0.687 0.036  19.105      0    0.617    0.758  0.687
## 5    verb_pc =~  verb_pc6 0.650 0.043  15.094      0    0.566    0.735  0.650
## 6  careerint =~  car_int1 0.764 0.033  22.965      0    0.699    0.830  0.764
## 7  careerint =~  car_int2 0.810 0.039  21.040      0    0.735    0.886  0.810
## 8  careerint =~  car_int3 0.871 0.044  19.911      0    0.785    0.957  0.871
## 9  careerint =~  car_int4 0.769 0.049  15.739      0    0.673    0.865  0.769
## 10    sciapp =~      sci1 0.595 0.036  16.651      0    0.525    0.665  0.595
## 11    sciapp =~      sci3 0.737 0.036  20.429      0    0.666    0.808  0.737
## 12    sciapp =~      sci4 0.685 0.037  18.371      0    0.612    0.758  0.685
## 13    rw_int =~   rw_int1 0.707 0.034  21.009      0    0.641    0.773  0.707
## 14    rw_int =~   rw_int2 0.772 0.037  20.660      0    0.699    0.845  0.772
## 15    rw_int =~   rw_int3 0.557 0.037  14.924      0    0.483    0.630  0.557
## 16  verb_pc2 ~~  verb_pc2 0.529 0.041  12.782      0    0.448    0.610  0.529
## 17  verb_pc3 ~~  verb_pc3 0.427 0.034  12.386      0    0.359    0.494  0.427
## 18  verb_pc4 ~~  verb_pc4 0.221 0.023   9.595      0    0.176    0.267  0.221
## 19  verb_pc5 ~~  verb_pc5 0.262 0.024  10.927      0    0.215    0.309  0.262
## 20  verb_pc6 ~~  verb_pc6 0.503 0.039  12.970      0    0.427    0.579  0.503
## 21  car_int1 ~~  car_int1 0.144 0.018   8.092      0    0.109    0.179  0.144
## 22  car_int2 ~~  car_int2 0.263 0.025  10.697      0    0.215    0.311  0.263
## 23  car_int3 ~~  car_int3 0.371 0.033  11.094      0    0.306    0.437  0.371
## 24  car_int4 ~~  car_int4 0.646 0.049  13.192      0    0.550    0.743  0.646
## 25      sci1 ~~      sci1 0.294 0.026  11.465      0    0.244    0.345  0.294
## 26      sci3 ~~      sci3 0.201 0.025   8.034      0    0.152    0.250  0.201
## 27      sci4 ~~      sci4 0.284 0.027  10.584      0    0.232    0.337  0.284
## 28   rw_int1 ~~   rw_int1 0.161 0.022   7.430      0    0.119    0.204  0.161
## 29   rw_int2 ~~   rw_int2 0.212 0.027   7.978      0    0.160    0.264  0.212
## 30   rw_int3 ~~   rw_int3 0.374 0.029  12.803      0    0.317    0.431  0.374
## 31   verb_pc ~~   verb_pc 1.000 0.000      NA     NA    1.000    1.000  1.000
## 32 careerint ~~ careerint 1.000 0.000      NA     NA    1.000    1.000  1.000
## 33    sciapp ~~    sciapp 1.000 0.000      NA     NA    1.000    1.000  1.000
## 34    rw_int ~~    rw_int 1.000 0.000      NA     NA    1.000    1.000  1.000
## 35   verb_pc ~~ careerint 0.316 0.050   6.384      0    0.219    0.414  0.316
## 36   verb_pc ~~    sciapp 0.639 0.037  17.111      0    0.565    0.712  0.639
## 37   verb_pc ~~    rw_int 0.479 0.044  10.791      0    0.392    0.567  0.479
## 38 careerint ~~    sciapp 0.450 0.046   9.708      0    0.359    0.541  0.450
## 39 careerint ~~    rw_int 0.460 0.044  10.351      0    0.373    0.547  0.460
## 40    sciapp ~~    rw_int 0.494 0.045  10.864      0    0.405    0.583  0.494
## 41  verb_pc2 ~1           3.721 0.048  78.211      0    3.628    3.814  3.721
## 42  verb_pc3 ~1           3.728 0.045  82.323      0    3.639    3.817  3.728
## 43  verb_pc4 ~1           3.853 0.043  90.523      0    3.770    3.937  3.853
## 44  verb_pc5 ~1           3.804 0.041  91.979      0    3.723    3.885  3.804
## 45  verb_pc6 ~1           3.588 0.046  77.330      0    3.497    3.679  3.588
## 46  car_int1 ~1           4.209 0.041 102.281      0    4.129    4.290  4.209
## 47  car_int2 ~1           4.006 0.046  86.601      0    3.916    4.097  4.006
## 48  car_int3 ~1           3.929 0.051  76.614      0    3.828    4.029  3.929
## 49  car_int4 ~1           4.129 0.054  76.857      0    4.024    4.235  4.129
## 50      sci1 ~1           4.119 0.039 106.036      0    4.042    4.195  4.119
## 51      sci3 ~1           3.995 0.042  96.041      0    3.914    4.077  3.995
## 52      sci4 ~1           4.009 0.042  95.783      0    3.927    4.091  4.009
## 53   rw_int1 ~1           4.154 0.039 105.834      0    4.077    4.231  4.154
## 54   rw_int2 ~1           3.980 0.043  91.666      0    3.895    4.065  3.980
## 55   rw_int3 ~1           4.359 0.040 108.976      0    4.281    4.438  4.359
## 56   verb_pc ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
## 57 careerint ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
## 58    sciapp ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
## 59    rw_int ~1           0.000 0.000      NA     NA    0.000    0.000  0.000
##    std.all std.nox
## 1    0.675   0.675
## 2    0.718   0.718
## 3    0.846   0.846
## 4    0.802   0.802
## 5    0.676   0.676
## 6    0.896   0.896
## 7    0.845   0.845
## 8    0.819   0.819
## 9    0.691   0.691
## 10   0.739   0.739
## 11   0.854   0.854
## 12   0.789   0.789
## 13   0.869   0.869
## 14   0.859   0.859
## 15   0.673   0.673
## 16   0.544   0.544
## 17   0.484   0.484
## 18   0.285   0.285
## 19   0.357   0.357
## 20   0.543   0.543
## 21   0.198   0.198
## 22   0.286   0.286
## 23   0.329   0.329
## 24   0.522   0.522
## 25   0.454   0.454
## 26   0.270   0.270
## 27   0.377   0.377
## 28   0.244   0.244
## 29   0.262   0.262
## 30   0.547   0.547
## 31   1.000   1.000
## 32   1.000   1.000
## 33   1.000   1.000
## 34   1.000   1.000
## 35   0.316   0.316
## 36   0.639   0.639
## 37   0.479   0.479
## 38   0.450   0.450
## 39   0.460   0.460
## 40   0.494   0.494
## 41   3.772   3.772
## 42   3.970   3.970
## 43   4.370   4.370
## 44   4.438   4.438
## 45   3.729   3.729
## 46   4.932   4.932
## 47   4.178   4.178
## 48   3.696   3.696
## 49   3.711   3.711
## 50   5.114   5.114
## 51   4.631   4.631
## 52   4.619   4.619
## 53   5.108   5.108
## 54   4.429   4.429
## 55   5.272   5.272
## 56   0.000   0.000
## 57   0.000   0.000
## 58   0.000   0.000
## 59   0.000   0.000
round(residuals(fit2, type="cor")$cov, digits = 2)
##          vrb_p2 vrb_p3 vrb_p4 vrb_p5 vrb_p6 cr_nt1 cr_nt2 cr_nt3 cr_nt4 sci1 
## verb_pc2  0.00                                                               
## verb_pc3  0.10   0.00                                                        
## verb_pc4 -0.04   0.01   0.00                                                 
## verb_pc5 -0.06  -0.07   0.04   0.00                                          
## verb_pc6  0.02  -0.01  -0.03   0.05   0.00                                   
## car_int1  0.09   0.03  -0.04  -0.04  -0.04   0.00                            
## car_int2  0.07  -0.01  -0.03  -0.03  -0.02   0.01   0.00                     
## car_int3  0.10   0.07   0.02   0.00  -0.04  -0.02   0.01   0.00              
## car_int4  0.06   0.02   0.02  -0.03   0.03   0.01  -0.04   0.03   0.00       
## sci1      0.10   0.02  -0.03  -0.04  -0.08   0.14   0.14   0.12   0.08   0.00
## sci3      0.06   0.05  -0.05  -0.01  -0.05  -0.03  -0.07   0.00  -0.07   0.00
## sci4      0.09   0.03  -0.02   0.06   0.02  -0.05  -0.04   0.00  -0.08  -0.04
## rw_int1   0.04  -0.01   0.04  -0.01  -0.05   0.01  -0.04  -0.04   0.07   0.10
## rw_int2   0.01  -0.01   0.01  -0.04  -0.01   0.00  -0.04  -0.04   0.03   0.07
## rw_int3   0.07  -0.01   0.00  -0.05  -0.03   0.10   0.04   0.02   0.03   0.11
##          sci3  sci4  rw_nt1 rw_nt2 rw_nt3
## verb_pc2                                 
## verb_pc3                                 
## verb_pc4                                 
## verb_pc5                                 
## verb_pc6                                 
## car_int1                                 
## car_int2                                 
## car_int3                                 
## car_int4                                 
## sci1                                     
## sci3      0.00                           
## sci4      0.02  0.00                     
## rw_int1  -0.03  0.02  0.00               
## rw_int2  -0.06 -0.04  0.00   0.00        
## rw_int3  -0.01 -0.01 -0.01   0.00   0.00
write.csv(d, file="fa_finaldata.csv", row.names = F)