11 Apr 2015
How does potato starch affect my sleep?
Here is the summary chart based on testing since October 2014:
This is for a total of 125 days of complete PS/REM/Z/Deep data. (n=31) nights with potato starch.
(from 2014-10-05 to 2015-04-10 )
| Sleep (n=125) | Average (hrs) | Standard Deviation | w/Potato Starch (n=31) |
|---|---|---|---|
| total sleep (Z) | 6.356 | 0.823 | 6.415 (SD=0.76) |
| REM | 1.825 | 0.396 | 1.857 (SD=0.39) |
| Deep | 1.064 | 0.194 | 1.073 (SD=0.2) |
Although the average amount of sleep I get with potato starch is slightly higher, there is enough variance in the data for it to be a coincidence.
Here’s a summary of the REM sleep (standard deviation = 23.7691276 minutes) for all dates (n=126 ) when I have Zeo REM data:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7167 1.5460 1.8500 1.8250 2.0420 2.6670
What’s the standard deviation (variance) for days when I have above average and below-average sleep?
sd(rik2$Z[rik2$Z>mean(rik2$Z,na.rm=TRUE)],na.rm=TRUE)
## [1] 0.4585686
sd(rik2$Z[rik2$Z<mean(rik2$Z,na.rm=TRUE)],na.rm=TRUE)
## [1] 0.588466
I tried potato starch on 61 days, and I have Zeo sleep data for a total of 31 of those days.
On 16 days I took exactly one tablespoon.
For total sleep (Z):
P-value on days when I had any potato starch: 0.5078558
P-value on days when I had exactly 1 TBS: 0.133395
## days Z.Mean REM.Mean Deep.Mean Z.SD
## 0 94 6.311312 1.818262 1.061170 0.7412362
## 1 16 6.609979 1.975000 1.064583 0.7015906
## 1.5 1 6.283333 1.300000 1.083333 NA
## 2 6 6.047222 1.641667 1.016667 0.7371429
## 2.5 1 5.750000 1.983333 1.250000 NA
## 3 3 6.933333 2.105556 1.066667 0.9291573
## 4 3 6.000000 1.694444 1.111111 1.0000000
## 8 1 6.000000 1.433333 1.250000 NA
Here’s the effect of any potato starch has on my overall sleep (Z), REM, and Deep:
t.test(allps$Z[allps$Potato.Starch==0],allps$Z[allps$Potato.Starch>0])
##
## Welch Two Sample t-test
##
## data: allps$Z[allps$Potato.Starch == 0] and allps$Z[allps$Potato.Starch > 0]
## t = -0.6669, df = 50.335, p-value = 0.5079
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4173695 0.2092624
## sample estimates:
## mean of x mean of y
## 6.311312 6.415366
t.test(allps$REM[allps$Potato.Starch==0],allps$REM[allps$Potato.Starch>0])
##
## Welch Two Sample t-test
##
## data: allps$REM[allps$Potato.Starch == 0] and allps$REM[allps$Potato.Starch > 0]
## t = -0.4772, df = 52.482, p-value = 0.6352
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2015359 0.1240823
## sample estimates:
## mean of x mean of y
## 1.818262 1.856989
t.test(allps$Deep[allps$Potato.Starch==0],allps$Deep[allps$Potato.Starch>0])
##
## Welch Two Sample t-test
##
## data: allps$Deep[allps$Potato.Starch == 0] and allps$Deep[allps$Potato.Starch > 0]
## t = -0.2744, df = 48.903, p-value = 0.7849
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.09496866 0.07214779
## sample estimates:
## mean of x mean of y
## 1.061170 1.072581
(p-values are too high, indicating virtually no effect )
Try with a single tablespoon (but note: n=16) is very small:
t.test(allps$Z[allps$Potato.Starch==0],allps$Z[allps$Potato.Starch==1])
##
## Welch Two Sample t-test
##
## data: allps$Z[allps$Potato.Starch == 0] and allps$Z[allps$Potato.Starch == 1]
## t = -1.561, df = 21.118, p-value = 0.1334
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.69643578 0.09910156
## sample estimates:
## mean of x mean of y
## 6.311312 6.609979
t.test(allps$REM[allps$Potato.Starch==0],allps$REM[allps$Potato.Starch==1])
##
## Welch Two Sample t-test
##
## data: allps$REM[allps$Potato.Starch == 0] and allps$REM[allps$Potato.Starch == 1]
## t = -1.8875, df = 25.984, p-value = 0.07031
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.32743354 0.01395836
## sample estimates:
## mean of x mean of y
## 1.818262 1.975000
t.test(allps$Deep[allps$Potato.Starch==0],allps$Deep[allps$Potato.Starch==1])
##
## Welch Two Sample t-test
##
## data: allps$Deep[allps$Potato.Starch == 0] and allps$Deep[allps$Potato.Starch == 1]
## t = -0.07, df = 21.41, p-value = 0.9448
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.10463150 0.09780526
## sample estimates:
## mean of x mean of y
## 1.061170 1.064583
Here’s the affect on deep sleep, X=no potato starch, Y=some potato starch
compare_treatment(data=rik2,treatment=rik2$Potato.Starch,wrt="Deep")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = 0.2744, df = 48.903, p-value = 0.7849
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07214779 0.09496866
## sample estimates:
## mean of x mean of y
## 1.072581 1.061170
Here’s the affect on REM sleep, X=no potato starch, Y=some potato starch
compare_treatment(data=rik2,treatment=rik2$Potato.Starch,wrt="REM")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = 0.4772, df = 52.482, p-value = 0.6352
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1240823 0.2015359
## sample estimates:
## mean of x mean of y
## 1.856989 1.818262
How about alcohol? Here’s my sleep average with and without drinking alcohol:
waR <- rik2[rik2$Alcohol>0,]$Z
woaR <- rik2[rik2$Alcohol==0,]$Z
mean(waR, na.rm=TRUE)
## [1] 6.350194
mean(woaR, na.rm=TRUE)
## [1] 6.361838
i.e. virtually no difference. and here’s REM with and without alcohol:
waR <- rik2[rik2$Alcohol>0,]$REM
woaR <- rik2[rik2$Alcohol==0,]$REM
mean(waR, na.rm=TRUE)
## [1] 1.805721
mean(woaR, na.rm=TRUE)
## [1] 1.846045
Deep sleep without and then with alcohol (the control, i.e. the null case is shown as X)
compare_treatment(data=rik2,treatment=rik2$Alcohol,wrt="Deep")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = -0.2763, df = 123.999, p-value = 0.7828
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07761694 0.05860184
## sample estimates:
## mean of x mean of y
## 1.059701 1.069209
compare_treatment(data=rik2,treatment=rik2$Alcohol,wrt="REM")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = -0.5654, df = 118.516, p-value = 0.5729
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1815451 0.1008974
## sample estimates:
## mean of x mean of y
## 1.805721 1.846045
compare_treatment(data=rik2,treatment=rik2$Alcohol,wrt="Z")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = -0.0897, df = 159.286, p-value = 0.9286
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2678830 0.2445966
## sample estimates:
## mean of x mean of y
## 6.350194 6.361838
bottom line: no measurable difference.
Taking Vitamin D (Y, below) seems to slightly increase my REM:
compare_treatment(data=rik2,treatment=rik2$Vitamin.D,wrt="REM")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = 1.9235, df = 71.716, p-value = 0.05839
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.005514323 0.308119644
## sample estimates:
## mean of x mean of y
## 1.877439 1.726136
and maybe a tiny improvement in overall sleep too:
compare_treatment(data=rik2,treatment=rik2$Vitamin.D,wrt="Z")
##
## Welch Two Sample t-test
##
## data: data[[wrt]][treatment > 0] and data[[wrt]][treatment == 0]
## t = 0.7154, df = 135.05, p-value = 0.4756
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1669586 0.3561981
## sample estimates:
## mean of x mean of y
## 6.40019 6.30557
but the p-values in each case are high enough that I shouldn’t make assumptions about Vitamin D one way or another.