1 Librería simPop

#install.packages("simPop")
library(simPop)
## Loading required package: lattice
## Loading required package: vcd
## Loading required package: grid
## Loading required package: data.table
## Package simPop 1.2.0 has been loaded!
## Since simPop does explicit parallelization,
##  the number of data.table threads is set to 1.

2 Datos de la EPH

Cantidad de trabajadores por cuenta propia por tramos de edades quinquenales

2.1 Tramos de edades

age=as.factor(c("0-4","5-9","10-14","15-19","20-24","25-29","30-34","35-39","40-44","45-49","50-54","55-59","60-64","65-69","77-74","75-79","80+"))

2.2 Población en cada tramo

popH=c(0,0,4180,38254,31738,44179,56517,56386,69933,60672,57664,    61748,46811,39420,23147,12631,5121)
popM=c(0,0,1939,8776,24975,50271,48176,62959,48837,42720,42109,41444,31441,24151,9885,4692,2721)

x <-data.frame(age,popH,popM)
x
##      age  popH  popM
## 1    0-4     0     0
## 2    5-9     0     0
## 3  10-14  4180  1939
## 4  15-19 38254  8776
## 5  20-24 31738 24975
## 6  25-29 44179 50271
## 7  30-34 56517 48176
## 8  35-39 56386 62959
## 9  40-44 69933 48837
## 10 45-49 60672 42720
## 11 50-54 57664 42109
## 12 55-59 61748 41444
## 13 60-64 46811 31441
## 14 65-69 39420 24151
## 15 77-74 23147  9885
## 16 75-79 12631  4692
## 17   80+  5121  2721

3 Resultados

sH<-sprague(x[,2])
sM<-sprague(x[,3])
result<-data.frame(sH,sM)
result
##             sH         sM
## 0    -663.3504    -6.3504
## 1    -138.8320     7.3520
## 2     172.2720     8.1600
## 3     311.1040     0.8080
## 4     318.8064    -9.9696
## 5     236.5216   -19.4384
## 6     105.3920   -22.8640
## 7     -33.4400   -15.5120
## 8    -138.8320     7.3520
## 9    -169.6416    50.4624
## 10   -238.6432   120.9616
## 11   -458.6112   225.9920
## 12    -18.8192   358.2480
## 13   1429.7088   517.6480
## 14   3466.3648   716.1504
## 15   5416.8400   965.3712
## 16   7530.3264  1262.4784
## 17   8807.7184  1650.0384
## 18   8720.1424  2150.3264
## 19   7778.9728  2747.7856
## 20   6993.9616  3346.2032
## 21   6126.5632  3894.7648
## 22   5692.8592  4690.3968
## 23   6039.6672  5848.5888
## 24   6884.9488  7195.0464
## 25   7580.0624  8510.8160
## 26   8230.9936  9924.6848
## 27   8879.4656 10790.1728
## 28   9473.5616 10790.4768
## 29  10014.9168 10254.8496
## 30  10598.9184  9756.0944
## 31  11256.6912  9091.7472
## 32  11649.6352  8923.8432
## 33  11634.7232  9611.3792
## 34  11377.0320 10792.9360
## 35  11126.2880 11807.1536
## 36  10762.4928 12857.1712
## 37  10766.9248 13352.2752
## 38  11381.8448 12954.5952
## 39  12348.4496 11987.8048
## 40  13212.1728 11109.4496
## 41  14119.7248 10183.2224
## 42  14588.5648  9451.1424
## 43  14350.5648  9098.3744
## 44  13661.9728  8994.8112
## 45  13048.5072  8816.2848
## 46  12406.6352  8616.9536
## 47  11903.7552  8480.3616
## 48  11676.6752  8412.3056
## 49  11636.4272  8394.0944
## 50  11515.4544  8386.3856
## 51  11317.1312  8379.2224
## 52  11303.5712  8398.3984
## 53  11562.3632  8446.9344
## 54  11965.4800  8498.0592
## 55  12339.8128  8541.2624
## 56  12770.9920  8601.7840
## 57  12838.9200  8500.0480
## 58  12333.2400  8152.9280
## 59  11465.0352  7647.9776
## 60  10629.4608  7140.3744
## 61   9715.9440  6580.4800
## 62   9026.6640  6127.3600
## 63   8741.7120  5869.8640
## 64   8697.2192  5722.9216
## 65   8572.6480  5538.2912
## 66   8460.2128  5376.4352
## 67   8153.8848  5050.7312
## 68   7527.9648  4463.3152
## 69   6705.2896  3722.2272
## 70   5929.9936  3024.0096
## 71   5147.9680  2318.1200
## 72   4472.0480  1764.2560
## 73   3981.3040  1458.1760
## 74   3615.6864  1320.4384
## 75   3231.6736  1166.4816
## 76   2852.6880  1021.9840
## 77   2502.1520   912.6240
## 78   2175.6640   829.0400
## 79   1868.8224   761.8704
## 80+  5121.0000  2721.0000