Load Data
datawithmissings <- read_excel("data_for_analysis.xlsx")
-
/
tempdata <- mice(datawithmissings, m = 5, maxit = 50, meth = 'pmm', seed = 500, printFlag = FALSE)
Number of logged events: 2
data <- mice::complete(tempdata,1)
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial") #the independent variable thrombolysis affects the outcome seizures
model.2 <- glm(nihss_high~ thrombolysis, data=data, family = "binomial") #the independent variable thrombolysis affects the mediator nihss
model.3 <- glm(early ~ nihss_high + thrombolysis, data=data, family = "binomial") #the independent variable thrombolysis and mediator nihss affect the outcome seizures
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='nihss_high', boot=TRUE, sims=500)
Running nonparametric bootstrap
summary(results) #to proof the there's mediation, ACME, which is the magnitud of inderect effect (mediator) must be significant. No sig. means no mediaton
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.00964 0.00190 0.02 0.004 **
ACME (treated) 0.01379 0.00369 0.02 0.004 **
ADE (control) 0.02073 0.00297 0.04 0.020 *
ADE (treated) 0.02488 0.00384 0.05 0.020 *
Total Effect 0.03453 0.01527 0.05 <2e-16 ***
Prop. Mediated (control) 0.27931 0.05122 0.77 0.004 **
Prop. Mediated (treated) 0.39951 0.08713 0.83 0.004 **
ACME (average) 0.01172 0.00275 0.02 0.004 **
ADE (average) 0.02281 0.00341 0.04 0.020 *
Prop. Mediated (average) 0.33941 0.06920 0.80 0.004 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sample Size Used: 3213
Simulations: 500
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial")
model.2 <- glm(nihss_middle~ thrombolysis, data=data, family = "binomial")
model.3 <- glm(early ~ nihss_middle + thrombolysis, data=data, family = "binomial")
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='nihss_middle', boot=TRUE, sims=500)
Running nonparametric bootstrap
summary(results)
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) -0.000305 -0.001812 0.00 0.64
ACME (treated) -0.000535 -0.003321 0.00 0.64
ADE (control) 0.035612 0.016514 0.06 <2e-16 ***
ADE (treated) 0.035383 0.016544 0.06 <2e-16 ***
Total Effect 0.035078 0.016351 0.06 <2e-16 ***
Prop. Mediated (control) -0.008706 -0.061841 0.05 0.64
Prop. Mediated (treated) -0.015240 -0.095027 0.07 0.64
ACME (average) -0.000420 -0.002523 0.00 0.64
ADE (average) 0.035498 0.016562 0.06 <2e-16 ***
Prop. Mediated (average) -0.011973 -0.078605 0.06 0.64
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sample Size Used: 3213
Simulations: 500
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial")
model.2 <- glm(cortical~ thrombolysis, data=data, family = "binomial")
model.3 <- glm(early ~ cortical + thrombolysis, data=data, family = "binomial")
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='cortical', boot=TRUE, sims=500)
Running nonparametric bootstrap
summary(results)
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.001552 0.000582 0.00 <2e-16 ***
ACME (treated) 0.002599 0.001036 0.01 <2e-16 ***
ADE (control) 0.032088 0.011780 0.05 <2e-16 ***
ADE (treated) 0.033136 0.012349 0.05 <2e-16 ***
Total Effect 0.034688 0.014514 0.06 <2e-16 ***
Prop. Mediated (control) 0.044746 0.013608 0.20 <2e-16 ***
Prop. Mediated (treated) 0.074934 0.027202 0.25 <2e-16 ***
ACME (average) 0.002076 0.000827 0.01 <2e-16 ***
ADE (average) 0.032612 0.012144 0.05 <2e-16 ***
Prop. Mediated (average) 0.059840 0.020610 0.23 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sample Size Used: 3213
Simulations: 500
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial")
model.2 <- glm(cardio~ thrombolysis, data=data, family = "binomial")
model.3 <- glm(early ~ cardio + thrombolysis, data=data, family = "binomial")
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='cardio', boot=TRUE, sims=500)
Running nonparametric bootstrap
summary(results)
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.000582 -0.000859 0.00 0.51
ACME (treated) 0.001000 -0.001552 0.00 0.51
ADE (control) 0.034272 0.013100 0.06 <2e-16 ***
ADE (treated) 0.034691 0.013273 0.06 <2e-16 ***
Total Effect 0.035272 0.013803 0.06 <2e-16 ***
Prop. Mediated (control) 0.016495 -0.025112 0.07 0.51
Prop. Mediated (treated) 0.028360 -0.042917 0.10 0.51
ACME (average) 0.000791 -0.001221 0.00 0.51
ADE (average) 0.034481 0.013210 0.06 <2e-16 ***
Prop. Mediated (average) 0.022427 -0.034087 0.08 0.51
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sample Size Used: 3213
Simulations: 500
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial")
model.2 <- glm(macro~ thrombolysis, data=data, family = "binomial")
model.3 <- glm(early ~ macro + thrombolysis, data=data, family = "binomial")
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='macro', boot=TRUE, sims=500)
Running nonparametric bootstrap
summary(results)
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.001610 0.000433 0.00 0.016 *
ACME (treated) 0.002668 0.000697 0.01 0.016 *
ADE (control) 0.031989 0.013064 0.05 <2e-16 ***
ADE (treated) 0.033048 0.013290 0.06 <2e-16 ***
Total Effect 0.034657 0.014844 0.06 <2e-16 ***
Prop. Mediated (control) 0.046444 0.012329 0.15 0.016 *
Prop. Mediated (treated) 0.076985 0.022763 0.21 0.016 *
ACME (average) 0.002139 0.000573 0.01 0.016 *
ADE (average) 0.032519 0.013177 0.06 <2e-16 ***
Prop. Mediated (average) 0.061714 0.017872 0.18 0.016 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sample Size Used: 3213
Simulations: 500
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial")
model.2 <- glm(micro~ thrombolysis, data=data, family = "binomial")
model.3 <- glm(early ~ micro + thrombolysis, data=data, family = "binomial")
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='micro', boot=TRUE, sims=500)
Running nonparametric bootstrap
model.1 <- glm(early~ thrombolysis, data=data, family = "binomial") #the independent variable thrombolysis affects the outcome seizures
model.2 <- glm(mca~ thrombolysis, data=data, family = "binomial") #the independent variable thrombolysis affects the mediator nihss
model.3 <- glm(early ~ mca + thrombolysis, data=data, family = "binomial") #the independent variable thrombolysis and mediator nihss affect the outcome seizures
results <- mediate(model.2, model.3, treat='thrombolysis', mediator='mca', boot=TRUE, sims=500)
Running nonparametric bootstrap
summary(results) #to prove the theres mediation, ACME which is the magnitud of inderect effect (mediator) must be significant. No sig. means no mediaton
Causal Mediation Analysis
Nonparametric Bootstrap Confidence Intervals with the Percentile Method
Estimate 95% CI Lower 95% CI Upper p-value
ACME (control) 0.000639 -0.001304 0.00 0.500
ACME (treated) 0.001097 -0.002377 0.00 0.500
ADE (control) 0.033859 0.013630 0.06 0.004 **
ADE (treated) 0.034317 0.013604 0.06 0.004 **
Total Effect 0.034956 0.013714 0.06 0.004 **
Prop. Mediated (control) 0.018292 -0.045733 0.09 0.504
Prop. Mediated (treated) 0.031382 -0.075743 0.14 0.504
ACME (average) 0.000868 -0.001857 0.00 0.500
ADE (average) 0.034088 0.013618 0.06 0.004 **
Prop. Mediated (average) 0.024837 -0.060593 0.11 0.504
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Sample Size Used: 3213
Simulations: 500
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0CiAgd29yZF9kb2N1bWVudDogZGVmYXVsdAotLS0KCiMjIyBEb3dubG9hZCBsaWJyYXJpZXMKYGBge3IsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHJlc3VsdHM9J2hpZGUnfQpsaWJyYXJ5KHN1cnZtaW5lcikKbGlicmFyeShzdXJ2aXZhbCkKbGlicmFyeShyZWFkeGwpCmxpYnJhcnkobWVkaWF0aW9uKQoKYGBgCgojIyMgTG9hZCBEYXRhCmBgYHtyfQpkYXRhd2l0aG1pc3NpbmdzIDwtIHJlYWRfZXhjZWwoImRhdGFfZm9yX2FuYWx5c2lzLnhsc3giKQp0ZW1wZGF0YSA8LSBtaWNlKGRhdGF3aXRobWlzc2luZ3MsIG0gPSA1LCBtYXhpdCA9IDUwLCBtZXRoID0gJ3BtbScsIHNlZWQgPSA1MDAsIHByaW50RmxhZyA9IEZBTFNFKQpkYXRhIDwtIG1pY2U6OmNvbXBsZXRlKHRlbXBkYXRhLDEpCmBgYApgYGB7cn0KbW9kZWwuMSA8LSBnbG0oZWFybHl+IHRocm9tYm9seXNpcywgZGF0YT1kYXRhLCBmYW1pbHkgPSAiYmlub21pYWwiKSAjdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlIHRocm9tYm9seXNpcyBhZmZlY3RzIHRoZSBvdXRjb21lIHNlaXp1cmVzCm1vZGVsLjIgPC0gZ2xtKG5paHNzX2hpZ2h+IHRocm9tYm9seXNpcywgZGF0YT1kYXRhLCBmYW1pbHkgPSAiYmlub21pYWwiKSAjdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlIHRocm9tYm9seXNpcyBhZmZlY3RzIHRoZSBtZWRpYXRvciBuaWhzcwptb2RlbC4zIDwtIGdsbShlYXJseSB+IG5paHNzX2hpZ2ggKyB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgI3RoZSBpbmRlcGVuZGVudCB2YXJpYWJsZSB0aHJvbWJvbHlzaXMgYW5kIG1lZGlhdG9yIG5paHNzIGFmZmVjdCB0aGUgb3V0Y29tZSBzZWl6dXJlcwpyZXN1bHRzIDwtIG1lZGlhdGUobW9kZWwuMiwgbW9kZWwuMywgdHJlYXQ9J3Rocm9tYm9seXNpcycsIG1lZGlhdG9yPSduaWhzc19oaWdoJywgYm9vdD1UUlVFLCBzaW1zPTUwMCkKc3VtbWFyeShyZXN1bHRzKSAjdG8gcHJvb2YgdGhlIHRoZXJlJ3MgbWVkaWF0aW9uLCBBQ01FLCB3aGljaCBpcyB0aGUgbWFnbml0dWQgb2YgaW5kZXJlY3QgZWZmZWN0IChtZWRpYXRvcikgbXVzdCBiZSBzaWduaWZpY2FudC4gTm8gc2lnLiBtZWFucyBubyBtZWRpYXRvbgpgYGAKYGBge3J9Cm1vZGVsLjEgPC0gZ2xtKGVhcmx5fiB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgCm1vZGVsLjIgPC0gZ2xtKG5paHNzX21pZGRsZX4gdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIAptb2RlbC4zIDwtIGdsbShlYXJseSB+IG5paHNzX21pZGRsZSArIHRocm9tYm9seXNpcywgZGF0YT1kYXRhLCBmYW1pbHkgPSAiYmlub21pYWwiKSAKcmVzdWx0cyA8LSBtZWRpYXRlKG1vZGVsLjIsIG1vZGVsLjMsIHRyZWF0PSd0aHJvbWJvbHlzaXMnLCBtZWRpYXRvcj0nbmloc3NfbWlkZGxlJywgYm9vdD1UUlVFLCBzaW1zPTUwMCkKc3VtbWFyeShyZXN1bHRzKSAKYGBgCmBgYHtyfQptb2RlbC4xIDwtIGdsbShlYXJseX4gdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIAptb2RlbC4yIDwtIGdsbShjb3J0aWNhbH4gdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIAptb2RlbC4zIDwtIGdsbShlYXJseSB+IGNvcnRpY2FsICsgdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIApyZXN1bHRzIDwtIG1lZGlhdGUobW9kZWwuMiwgbW9kZWwuMywgdHJlYXQ9J3Rocm9tYm9seXNpcycsIG1lZGlhdG9yPSdjb3J0aWNhbCcsIGJvb3Q9VFJVRSwgc2ltcz01MDApCnN1bW1hcnkocmVzdWx0cykgCmBgYApgYGB7cn0KbW9kZWwuMSA8LSBnbG0oZWFybHl+IHRocm9tYm9seXNpcywgZGF0YT1kYXRhLCBmYW1pbHkgPSAiYmlub21pYWwiKSAKbW9kZWwuMiA8LSBnbG0oY2FyZGlvfiB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgCm1vZGVsLjMgPC0gZ2xtKGVhcmx5IH4gY2FyZGlvICsgdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIApyZXN1bHRzIDwtIG1lZGlhdGUobW9kZWwuMiwgbW9kZWwuMywgdHJlYXQ9J3Rocm9tYm9seXNpcycsIG1lZGlhdG9yPSdjYXJkaW8nLCBib290PVRSVUUsIHNpbXM9NTAwKQpzdW1tYXJ5KHJlc3VsdHMpIApgYGAKYGBge3J9Cm1vZGVsLjEgPC0gZ2xtKGVhcmx5fiB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgCm1vZGVsLjIgPC0gZ2xtKG1hY3JvfiB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgCm1vZGVsLjMgPC0gZ2xtKGVhcmx5IH4gbWFjcm8gKyB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgCnJlc3VsdHMgPC0gbWVkaWF0ZShtb2RlbC4yLCBtb2RlbC4zLCB0cmVhdD0ndGhyb21ib2x5c2lzJywgbWVkaWF0b3I9J21hY3JvJywgYm9vdD1UUlVFLCBzaW1zPTUwMCkKc3VtbWFyeShyZXN1bHRzKSAKYGBgCmBgYHtyfQptb2RlbC4xIDwtIGdsbShlYXJseX4gdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIAptb2RlbC4yIDwtIGdsbShtaWNyb34gdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIAptb2RlbC4zIDwtIGdsbShlYXJseSB+IG1pY3JvICsgdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIApyZXN1bHRzIDwtIG1lZGlhdGUobW9kZWwuMiwgbW9kZWwuMywgdHJlYXQ9J3Rocm9tYm9seXNpcycsIG1lZGlhdG9yPSdtaWNybycsIGJvb3Q9VFJVRSwgc2ltcz01MDApCnN1bW1hcnkocmVzdWx0cykKYGBgCmBgYHtyfQptb2RlbC4xIDwtIGdsbShlYXJseX4gdGhyb21ib2x5c2lzLCBkYXRhPWRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpIAptb2RlbC4yIDwtIGdsbShtY2F+IHRocm9tYm9seXNpcywgZGF0YT1kYXRhLCBmYW1pbHkgPSAiYmlub21pYWwiKSAKbW9kZWwuMyA8LSBnbG0oZWFybHkgfiBtY2EgKyB0aHJvbWJvbHlzaXMsIGRhdGE9ZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikgCnJlc3VsdHMgPC0gbWVkaWF0ZShtb2RlbC4yLCBtb2RlbC4zLCB0cmVhdD0ndGhyb21ib2x5c2lzJywgbWVkaWF0b3I9J21jYScsIGJvb3Q9VFJVRSwgc2ltcz01MDApCnN1bW1hcnkocmVzdWx0cykgCmBgYAoKCg==