This data is described well in Viswanath et al. (2009). (see Viswanath et al. 2009). All code is available from Alec McGail [am2873 at cornell dot edu], don't hesitate to reach out.
The subnetworks are defined by randomly selecting an ego, and their friends, and the friends of their friends (3rd-order egonet). If this network is sizable enough, but not too sizable (100 < N < 2000) we calculate a whole bunch of network statistics from it and save these.
g.friends <- graph_from_data_frame(
friendships[,c("f","t")],
directed = F
)
g.friends <- simplify(g.friends)
There are 63731 individuals in the network, with a total of 817090 edges among them. Thus the average degree is 2*E/V = 25.6418384.
## feld_predicts
## feld_predicts -493.2161
There are 508 subnetworks total. For each subnetwork we have the following attributes:
assortativity, crit_deg_overall_theory, crit_deg_overall_true, crit_deg_para_theory, crit_deg_para_true, crit_p_overall_theory, crit_p_overall_true, crit_p_para_theory, crit_p_para_true, deg_meanfdeg_b, deg_meanfdeg_corr, mean_degree, mean_friends_degree, mean_maxfdeg, mean_meanfdeg, mean_medfdeg, median_degree, n_degAtLeastTwo, n_edges, n_nodes, p_deg_eq_median, p_deg_gt_mean, p_deg_gt_median, p_deg_lt_mean, p_deg_lt_median, p_fdeg_eq_median, p_fdeg_gt_mean, p_fdeg_gt_median, p_fdeg_lt_mean, p_fdeg_lt_median, p_meanfdeg_eq_mean, p_meanfdeg_eq_mydeg, p_meanfdeg_gt_mean, p_meanfdeg_gt_mydeg, p_meanfdeg_lt_mean, p_meanfdeg_lt_mydeg, p_medfdeg_eq_median, p_medfdeg_gt_mean, p_medfdeg_gt_median, p_medfdeg_lt_mean, p_medfdeg_lt_median, sd_degree, skew_degree, variance_degree, feld_predicts, var_mean, var_mean2, mean_med_Omean, mPvOm
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning in data.frame(val = as.numeric(l), x = (0:(length(l) - 1))%%10, : NAs
## introduced by coercion
## Warning in data.frame(val = as.numeric(l), x = (0:(length(l) - 1))%%10, : NAs
## introduced by coercion
## Warning in data.frame(val = as.numeric(l), x = (0:(length(l) - 1))%%10, : NAs
## introduced by coercion
## Warning in data.frame(val = as.numeric(l), x = (0:(length(l) - 1))%%10, : NAs
## introduced by coercion
## Warning in data.frame(val = as.numeric(l), x = (0:(length(l) - 1))%%10, : NAs
## introduced by coercion
m1 <- lm(p_meanfdeg_gt_mydeg ~ skew_degree + assortativity, data=nets.friends)
m2 <- lm(p_meanfdeg_gt_mydeg ~ skew_degree + var_mean2, data=nets.friends)
m3 <- lm(p_meanfdeg_gt_mydeg ~ assortativity + var_mean2, data=nets.friends)
m4 <- lm(p_meanfdeg_gt_mydeg ~ assortativity + var_mean2 + skew_degree, data=nets.friends)
top <- rbind(
data.frame(y=m1$residuals, m=1+rnorm(length(m1$residuals))/10),
data.frame(y=m2$residuals, m=2+rnorm(length(m1$residuals))/10),
data.frame(y=m3$residuals, m=3+rnorm(length(m1$residuals))/10),
data.frame(y=m4$residuals, m=4+rnorm(length(m1$residuals))/10)
)
ggplot(top) +
geom_point(aes(x=m, y=y), size=1) +
xlab("Model") +
ylab("Residual")
Viswanath, Bimal, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009. βOn the Evolution of User Interaction in Facebook.β In Proceedings of the 2Nd Acm Workshop on Online Social Networks, 37β42. WOSN β09. New York, NY, USA: ACM. doi:10.1145/1592665.1592675.