##
## Call:
## factanal(x = d, factors = 4, rotation = "varimax", cutoff = 0.3)
##
## Uniquenesses:
## aero agri bio chem civil compeng cons elec
## 0.690 0.442 0.542 0.580 0.504 0.249 0.325 0.565
## phys env ind mse mech multi nuc compsci
## 0.505 0.548 0.442 0.457 0.513 0.449 0.523 0.131
## it otherstem nonstem
## 0.369 0.686 0.773
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4
## compeng 0.844
## elec 0.525
## compsci 0.913
## it 0.678
## agri 0.683
## bio 0.673
## chem 0.627
## env 0.546
## civil 0.681
## cons 0.776
## ind 0.604
## aero 0.525
## phys 0.549
## mech 0.642
## mse 0.479 0.440
## multi 0.408 0.458
## nuc 0.413 0.476
## otherstem 0.406
## nonstem
##
## Factor1 Factor2 Factor3 Factor4
## SS loadings 2.749 2.657 2.253 2.050
## Proportion Var 0.145 0.140 0.119 0.108
## Cumulative Var 0.145 0.284 0.403 0.511
##
## Test of the hypothesis that 4 factors are sufficient.
## The chi square statistic is 1737.29 on 101 degrees of freedom.
## The p-value is 4.15e-296
##
## Call:
## factanal(x = d, factors = 5, rotation = "varimax", cutoff = 0.3)
##
## Uniquenesses:
## aero agri bio chem civil compeng cons elec
## 0.692 0.453 0.494 0.524 0.502 0.212 0.308 0.535
## phys env ind mse mech multi nuc compsci
## 0.504 0.560 0.444 0.458 0.514 0.432 0.515 0.154
## it otherstem nonstem
## 0.352 0.430 0.545
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4 Factor5
## compeng 0.864
## elec 0.549 0.334
## compsci 0.881
## it 0.633 0.365
## civil 0.681
## cons 0.786
## ind 0.598 0.331
## agri 0.302 0.632
## bio 0.702
## chem 0.664
## aero 0.524
## phys 0.548
## mech 0.642
## otherstem 0.660
## nonstem 0.613
## env 0.372 0.477
## mse 0.316 0.434 0.446
## multi 0.388 0.464 0.321
## nuc 0.401 0.477
##
## Factor1 Factor2 Factor3 Factor4 Factor5
## SS loadings 2.573 2.207 2.187 2.055 1.351
## Proportion Var 0.135 0.116 0.115 0.108 0.071
## Cumulative Var 0.135 0.252 0.367 0.475 0.546
##
## Test of the hypothesis that 5 factors are sufficient.
## The chi square statistic is 1072.33 on 86 degrees of freedom.
## The p-value is 4.61e-170
##
## Call:
## factanal(x = d, factors = 2, rotation = "varimax", cutoff = 0.3)
##
## Uniquenesses:
## career_money career_known career_helping career_supervising
## 0.870 0.632 0.686 0.445
## career_security career_people career_invent career_developing
## 0.779 0.657 0.421 0.213
##
## Loadings:
## Factor1 Factor2
## career_invent 0.742
## career_developing 0.879
## career_known 0.585
## career_supervising 0.724
## career_money
## career_helping 0.448
## career_security
## career_people 0.406 0.422
##
## Factor1 Factor2
## SS loadings 1.895 1.403
## Proportion Var 0.237 0.175
## Cumulative Var 0.237 0.412
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 985.86 on 13 degrees of freedom.
## The p-value is 1.9e-202
##
## Call:
## factanal(x = d, factors = 3, rotation = "varimax", cutoff = 0.3)
##
## Uniquenesses:
## career_money career_known career_helping career_supervising
## 0.005 0.639 0.666 0.398
## career_security career_people career_invent career_developing
## 0.677 0.634 0.415 0.233
##
## Loadings:
## Factor1 Factor2 Factor3
## career_invent 0.737
## career_developing 0.860
## career_known 0.544
## career_supervising 0.754
## career_money 0.986
## career_helping 0.448
## career_security 0.407
## career_people 0.403 0.450
##
## Factor1 Factor2 Factor3
## SS loadings 1.808 1.305 1.220
## Proportion Var 0.226 0.163 0.153
## Cumulative Var 0.226 0.389 0.542
##
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 427.01 on 7 degrees of freedom.
## The p-value is 3.82e-88
Need to find earlier factor analysis or re-run.
Q5. To what extent do you agree or disagree with the following statements:
Q15. How important are the following factors for your future career satisfaction?
(Reverse-coded variables recoded before factor analysis.)
##
## No Yes
## 1975 91
library(strengejacke)
## # Attaching packages
## <U+2714> ggeffects 0.15.0 <U+2714> sjlabelled 1.1.6
## <U+2714> sjmisc 2.8.5 <U+2714> sjstats 0.18.0
## <U+2714> sjPlot 2.8.4.9000 <U+2714> esc 0.5.1
library(car)
d <- d4
d$id <- (d$engint + d$engrec + d$engpc)/3
Y <- d$belong1
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7469 -0.6361 0.2197 0.9082 2.1884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.42099 0.14954 29.563 < 2e-16 ***
## cmn_help -0.10173 0.02029 -5.014 5.81e-07 ***
## cmn_importance -0.14187 0.02307 -6.150 9.36e-10 ***
## cmn_hetero 0.04591 0.01502 3.057 0.00226 **
## cmn_risks 0.15374 0.03888 3.955 7.94e-05 ***
## cmn_violence 0.04900 0.03241 1.512 0.13068
## cmn_stoic -0.01948 0.01677 -1.161 0.24563
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.203 on 1968 degrees of freedom
## Multiple R-squared: 0.04859, Adjusted R-squared: 0.04569
## F-statistic: 16.75 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$belong2
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7099 -0.7118 0.1590 0.9230 2.4150
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.43520 0.14315 30.984 < 2e-16 ***
## cmn_help -0.11630 0.01942 -5.988 2.51e-09 ***
## cmn_importance -0.12974 0.02208 -5.876 4.93e-09 ***
## cmn_hetero 0.03290 0.01437 2.289 0.02221 *
## cmn_risks 0.11401 0.03721 3.064 0.00222 **
## cmn_violence 0.07213 0.03102 2.325 0.02016 *
## cmn_stoic 0.01775 0.01605 1.106 0.26904
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.152 on 1968 degrees of freedom
## Multiple R-squared: 0.05194, Adjusted R-squared: 0.04905
## F-statistic: 17.97 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$id
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3787 -0.5357 0.0749 0.6390 1.9789
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.214372 0.110605 38.103 < 2e-16 ***
## cmn_help -0.055234 0.015007 -3.681 0.000239 ***
## cmn_importance -0.130764 0.017062 -7.664 2.81e-14 ***
## cmn_hetero 0.028468 0.011106 2.563 0.010442 *
## cmn_risks 0.132278 0.028754 4.600 4.49e-06 ***
## cmn_violence 0.046469 0.023968 1.939 0.052674 .
## cmn_stoic 0.006957 0.012404 0.561 0.574953
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8898 on 1968 degrees of freedom
## Multiple R-squared: 0.0561, Adjusted R-squared: 0.05322
## F-statistic: 19.49 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$engbel
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1535 -0.4064 0.2198 0.5760 1.3105
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.2302869 0.0955884 54.717 < 2e-16 ***
## cmn_help -0.0435362 0.0129694 -3.357 0.000803 ***
## cmn_importance -0.1374041 0.0147454 -9.318 < 2e-16 ***
## cmn_hetero -0.0226883 0.0095984 -2.364 0.018187 *
## cmn_risks 0.1117465 0.0248499 4.497 7.3e-06 ***
## cmn_violence 0.0530748 0.0207142 2.562 0.010474 *
## cmn_stoic 0.0004267 0.0107201 0.040 0.968252
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.769 on 1968 degrees of freedom
## Multiple R-squared: 0.06875, Adjusted R-squared: 0.06591
## F-statistic: 24.22 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$engemp
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3275 -0.5680 0.1682 0.7073 1.6063
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.924095 0.112675 43.702 < 2e-16 ***
## cmn_help -0.069538 0.015288 -4.549 5.73e-06 ***
## cmn_importance -0.163198 0.017381 -9.389 < 2e-16 ***
## cmn_hetero -0.003557 0.011314 -0.314 0.7532
## cmn_risks 0.121887 0.029292 4.161 3.30e-05 ***
## cmn_violence 0.048020 0.024417 1.967 0.0494 *
## cmn_stoic 0.027042 0.012636 2.140 0.0325 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9064 on 1968 degrees of freedom
## Multiple R-squared: 0.07601, Adjusted R-squared: 0.0732
## F-statistic: 26.98 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$belong1
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8270 -0.5306 0.1962 0.7288 2.7352
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.49745 0.16502 9.075 < 2e-16 ***
## car_fin 0.07452 0.02867 2.599 0.00942 **
## car_inno 0.59424 0.03103 19.153 < 2e-16 ***
## car_lead -0.03980 0.02549 -1.562 0.11854
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.104 on 1971 degrees of freedom
## Multiple R-squared: 0.1969, Adjusted R-squared: 0.1957
## F-statistic: 161.1 on 3 and 1971 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$belong2
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6803 -0.6702 0.1475 0.8688 2.6691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.371605 0.165152 14.360 <2e-16 ***
## car_fin 0.006802 0.028695 0.237 0.813
## car_inno 0.460877 0.031052 14.842 <2e-16 ***
## car_lead -0.009939 0.025508 -0.390 0.697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 1971 degrees of freedom
## Multiple R-squared: 0.1251, Adjusted R-squared: 0.1238
## F-statistic: 93.95 on 3 and 1971 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$id
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2281 -0.4901 0.0749 0.5678 2.3369
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.22557 0.12302 18.090 <2e-16 ***
## car_fin 0.04803 0.02138 2.247 0.0247 *
## car_inno 0.43582 0.02313 18.841 <2e-16 ***
## car_lead -0.02787 0.01900 -1.467 0.1426
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8234 on 1971 degrees of freedom
## Multiple R-squared: 0.1904, Adjusted R-squared: 0.1892
## F-statistic: 154.5 on 3 and 1971 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$engbel
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2387 -0.3649 0.1528 0.4742 1.6878
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.12520 0.10624 29.416 < 2e-16 ***
## car_fin 0.12986 0.01846 7.035 2.74e-12 ***
## car_inno 0.37369 0.01998 18.707 < 2e-16 ***
## car_lead -0.07665 0.01641 -4.671 3.20e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7111 on 1971 degrees of freedom
## Multiple R-squared: 0.2025, Adjusted R-squared: 0.2012
## F-statistic: 166.8 on 3 and 1971 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$engemp
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4720 -0.4824 0.1030 0.5273 2.3397
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.23086 0.12069 18.485 < 2e-16 ***
## car_fin 0.07820 0.02097 3.729 0.000197 ***
## car_inno 0.52502 0.02269 23.137 < 2e-16 ***
## car_lead -0.04065 0.01864 -2.181 0.029333 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8078 on 1971 degrees of freedom
## Multiple R-squared: 0.2651, Adjusted R-squared: 0.264
## F-statistic: 237 on 3 and 1971 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred") #output
Y <- d$car_fin
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6969 -0.5108 0.1281 0.6786 1.8082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.42875 0.11370 38.952 < 2e-16 ***
## cmn_help 0.02271 0.01543 1.472 0.1411
## cmn_importance -0.12667 0.01754 -7.222 7.27e-13 ***
## cmn_hetero 0.02893 0.01142 2.534 0.0113 *
## cmn_risks 0.16283 0.02956 5.509 4.08e-08 ***
## cmn_violence 0.04383 0.02464 1.779 0.0754 .
## cmn_stoic -0.02942 0.01275 -2.307 0.0211 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9147 on 1968 degrees of freedom
## Multiple R-squared: 0.04743, Adjusted R-squared: 0.04453
## F-statistic: 16.33 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred")
Y <- d$car_inno
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4984 -0.5787 0.0866 0.6681 1.8038
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.52581 0.10883 41.585 < 2e-16 ***
## cmn_help -0.09547 0.01477 -6.465 1.27e-10 ***
## cmn_importance -0.10493 0.01679 -6.250 5.02e-10 ***
## cmn_hetero -0.01107 0.01093 -1.013 0.311
## cmn_risks 0.16610 0.02829 5.870 5.09e-09 ***
## cmn_violence 0.03578 0.02358 1.517 0.129
## cmn_stoic 0.05955 0.01221 4.879 1.15e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8755 on 1968 degrees of freedom
## Multiple R-squared: 0.0837, Adjusted R-squared: 0.08091
## F-statistic: 29.96 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred")
Y <- d$car_lead
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4948 -0.6643 -0.0035 0.6895 3.0090
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.78025 0.13225 21.023 < 2e-16 ***
## cmn_help -0.04474 0.01794 -2.494 0.0127 *
## cmn_importance -0.19858 0.02040 -9.734 < 2e-16 ***
## cmn_hetero 0.07825 0.01328 5.893 4.45e-09 ***
## cmn_risks 0.20175 0.03438 5.868 5.15e-09 ***
## cmn_violence 0.04388 0.02866 1.531 0.1259
## cmn_stoic 0.11940 0.01483 8.051 1.41e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.064 on 1968 degrees of freedom
## Multiple R-squared: 0.1235, Adjusted R-squared: 0.1208
## F-statistic: 46.2 on 6 and 1968 DF, p-value: < 2.2e-16
# plot_model(fit, type = "pred")
Y <- d$disc1
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1330 -1.3095 0.0659 1.1810 3.8919
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.943029 0.195997 9.914 < 2e-16 ***
## cmn_help 0.029980 0.026593 1.127 0.25972
## cmn_importance 0.011762 0.030234 0.389 0.69729
## cmn_hetero -0.037279 0.019681 -1.894 0.05835 .
## cmn_risks 0.069367 0.050953 1.361 0.17354
## cmn_violence 0.129242 0.042473 3.043 0.00237 **
## cmn_stoic -0.004742 0.021981 -0.216 0.82922
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.577 on 1968 degrees of freedom
## Multiple R-squared: 0.009099, Adjusted R-squared: 0.006078
## F-statistic: 3.012 on 6 and 1968 DF, p-value: 0.006217
Y <- d$disc2
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2918 -1.0482 0.0935 1.0372 4.1189
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7556607 0.1831854 9.584 < 2e-16 ***
## cmn_help 0.0200362 0.0248544 0.806 0.4203
## cmn_importance 0.0163736 0.0282581 0.579 0.5624
## cmn_hetero 0.0930810 0.0183943 5.060 4.58e-07 ***
## cmn_risks 0.1029636 0.0476223 2.162 0.0307 *
## cmn_violence -0.0002702 0.0396967 -0.007 0.9946
## cmn_stoic 0.0255083 0.0205440 1.242 0.2145
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.474 on 1968 degrees of freedom
## Multiple R-squared: 0.02132, Adjusted R-squared: 0.01834
## F-statistic: 7.147 on 6 and 1968 DF, p-value: 1.49e-07
Y <- d$disc3
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.946 -1.058 0.055 1.053 3.891
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.105657 0.173570 12.131 < 2e-16 ***
## cmn_help 0.009695 0.023550 0.412 0.68061
## cmn_importance 0.019457 0.026775 0.727 0.46751
## cmn_hetero -0.050014 0.017429 -2.870 0.00415 **
## cmn_risks 0.088308 0.045123 1.957 0.05048 .
## cmn_violence -0.025072 0.037613 -0.667 0.50512
## cmn_stoic 0.080738 0.019466 4.148 3.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.396 on 1968 degrees of freedom
## Multiple R-squared: 0.01533, Adjusted R-squared: 0.01233
## F-statistic: 5.106 on 6 and 1968 DF, p-value: 3.253e-05
Y <- d$disc4
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4159 -0.7879 0.2007 0.9028 3.4270
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.361836 0.157094 15.035 < 2e-16 ***
## cmn_help 0.027806 0.021314 1.305 0.19219
## cmn_importance 0.004907 0.024233 0.203 0.83954
## cmn_hetero -0.015791 0.015774 -1.001 0.31692
## cmn_risks 0.103209 0.040839 2.527 0.01158 *
## cmn_violence 0.101550 0.034043 2.983 0.00289 **
## cmn_stoic -0.015002 0.017618 -0.852 0.39457
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.264 on 1968 degrees of freedom
## Multiple R-squared: 0.01162, Adjusted R-squared: 0.008607
## F-statistic: 3.856 on 6 and 1968 DF, p-value: 0.0007881
Y <- d$disc5
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9998 -1.1827 0.2241 0.8778 4.1339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.68976 0.18660 9.056 < 2e-16 ***
## cmn_help 0.05618 0.02532 2.219 0.02660 *
## cmn_importance 0.02156 0.02878 0.749 0.45393
## cmn_hetero -0.08575 0.01874 -4.577 5.02e-06 ***
## cmn_risks 0.15213 0.04851 3.136 0.00174 **
## cmn_violence 0.02060 0.04044 0.509 0.61056
## cmn_stoic 0.05363 0.02093 2.563 0.01046 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.501 on 1968 degrees of freedom
## Multiple R-squared: 0.0205, Adjusted R-squared: 0.01752
## F-statistic: 6.866 on 6 and 1968 DF, p-value: 3.157e-07
Y <- d$disc1
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7601 -1.3272 0.0927 1.1880 3.5621
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.85355 0.23588 7.858 6.37e-15 ***
## car_fin 0.05444 0.04099 1.328 0.184
## car_inno 0.06150 0.04435 1.387 0.166
## car_lead 0.03517 0.03643 0.965 0.335
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.579 on 1971 degrees of freedom
## Multiple R-squared: 0.004983, Adjusted R-squared: 0.003468
## F-statistic: 3.29 on 3 and 1971 DF, p-value: 0.01991
Y <- d$disc2
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9874 -1.0615 0.1229 1.0265 3.8365
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.72060 0.21992 7.824 8.29e-15 ***
## car_fin 0.06787 0.03821 1.776 0.0759 .
## car_inno -0.04178 0.04135 -1.010 0.3124
## car_lead 0.18272 0.03397 5.379 8.36e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.472 on 1971 degrees of freedom
## Multiple R-squared: 0.02212, Adjusted R-squared: 0.02063
## F-statistic: 14.86 on 3 and 1971 DF, p-value: 1.444e-09
Y <- d$disc3
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0008 -1.0651 0.0646 1.0444 3.7079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.06302 0.20825 9.906 < 2e-16 ***
## car_fin -0.11883 0.03618 -3.284 0.001042 **
## car_inno 0.13208 0.03916 3.373 0.000757 ***
## car_lead 0.09408 0.03216 2.925 0.003484 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.394 on 1971 degrees of freedom
## Multiple R-squared: 0.01731, Adjusted R-squared: 0.01581
## F-statistic: 11.57 on 3 and 1971 DF, p-value: 1.617e-07
Y <- d$disc4
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4019 -0.7522 0.2137 0.8594 3.1096
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.084959 0.186995 11.150 < 2e-16 ***
## car_fin -0.055279 0.032491 -1.701 0.089 .
## car_inno 0.251152 0.035159 7.143 1.28e-12 ***
## car_lead -0.008058 0.028882 -0.279 0.780
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.252 on 1971 degrees of freedom
## Multiple R-squared: 0.02912, Adjusted R-squared: 0.02764
## F-statistic: 19.71 on 3 and 1971 DF, p-value: 1.382e-12
Y <- d$disc5
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8123 -1.2489 0.2053 0.8348 3.9641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5257149 0.2252640 11.212 < 2e-16 ***
## car_fin -0.1311335 0.0391401 -3.350 0.000822 ***
## car_inno -0.0003162 0.0423542 -0.007 0.994044
## car_lead 0.1278479 0.0347927 3.675 0.000245 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.508 on 1971 degrees of freedom
## Multiple R-squared: 0.01035, Adjusted R-squared: 0.008846
## F-statistic: 6.872 on 3 and 1971 DF, p-value: 0.0001327
d$id <- (d$engint + d$engrec + d$engpc)/3
Y <- d$disc1
fit <- lm(Y ~ belong1 + belong2 + id + engbel + engemp, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ belong1 + belong2 + id + engbel + engemp, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9881 -1.2640 0.0828 1.1649 3.6547
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.94875 0.24815 7.853 6.61e-15 ***
## belong1 0.09709 0.04943 1.964 0.049647 *
## belong2 -0.05210 0.04289 -1.215 0.224693
## id 0.22428 0.06183 3.627 0.000294 ***
## engbel -0.09564 0.07763 -1.232 0.218056
## engemp -0.02170 0.07017 -0.309 0.757097
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.567 on 1969 degrees of freedom
## Multiple R-squared: 0.02123, Adjusted R-squared: 0.01875
## F-statistic: 8.544 on 5 and 1969 DF, p-value: 5.138e-08
Y <- d$disc2
fit <- lm(Y ~ belong1 + belong2 + id + engbel + engemp, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ belong1 + belong2 + id + engbel + engemp, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8567 -1.0666 0.0967 1.0457 3.6703
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.974568 0.234207 8.431 <2e-16 ***
## belong1 0.040270 0.046653 0.863 0.3881
## belong2 -0.008376 0.040484 -0.207 0.8361
## id 0.104824 0.058357 1.796 0.0726 .
## engbel -0.177242 0.073265 -2.419 0.0156 *
## engemp 0.169825 0.066223 2.564 0.0104 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.479 on 1969 degrees of freedom
## Multiple R-squared: 0.01424, Adjusted R-squared: 0.01173
## F-statistic: 5.687 on 5 and 1969 DF, p-value: 3.245e-05
Y <- d$disc3
fit <- lm(Y ~ belong1 + belong2 + id + engbel + engemp, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ belong1 + belong2 + id + engbel + engemp, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8921 -1.0484 0.0637 1.0253 3.5260
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.999402 0.221841 9.013 < 2e-16 ***
## belong1 -0.090699 0.044190 -2.052 0.04025 *
## belong2 0.001622 0.038347 0.042 0.96627
## id 0.038779 0.055276 0.702 0.48304
## engbel -0.051155 0.069396 -0.737 0.46112
## engemp 0.192816 0.062726 3.074 0.00214 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.401 on 1969 degrees of freedom
## Multiple R-squared: 0.008842, Adjusted R-squared: 0.006325
## F-statistic: 3.513 on 5 and 1969 DF, p-value: 0.003643
Y <- d$disc4
fit <- lm(Y ~ belong1 + belong2 + id + engbel + engemp, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ belong1 + belong2 + id + engbel + engemp, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4087 -0.7815 0.1864 0.8683 2.9830
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.46521 0.19517 7.508 9.08e-14 ***
## belong1 0.08929 0.03888 2.297 0.0217 *
## belong2 -0.05042 0.03374 -1.495 0.1352
## id 0.25945 0.04863 5.335 1.06e-07 ***
## engbel 0.01629 0.06105 0.267 0.7897
## engemp 0.02249 0.05518 0.408 0.6836
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.232 on 1969 degrees of freedom
## Multiple R-squared: 0.06001, Adjusted R-squared: 0.05762
## F-statistic: 25.14 on 5 and 1969 DF, p-value: < 2.2e-16
Y <- d$disc5
fit <- lm(Y ~ belong1 + belong2 + id + engbel + engemp, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ belong1 + belong2 + id + engbel + engemp, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5042 -1.1810 0.1930 0.8898 4.1697
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.12806 0.23569 9.029 < 2e-16 ***
## belong1 -0.36666 0.04695 -7.810 9.24e-15 ***
## belong2 0.00160 0.04074 0.039 0.9687
## id 0.24972 0.05873 4.252 2.22e-05 ***
## engbel 0.03557 0.07373 0.482 0.6296
## engemp 0.11685 0.06664 1.753 0.0797 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.488 on 1969 degrees of freedom
## Multiple R-squared: 0.03705, Adjusted R-squared: 0.0346
## F-statistic: 15.15 on 5 and 1969 DF, p-value: 1.246e-14
library(strengejacke)
colnames(gender) <- c("Litho","genid","genid2")
dm <- merge(d, gender, by = "Litho", all.x = T)
table(dm$genid)
##
## Agender Cisgender Female
## 2 1 493
## Genderqueer Male Multiple Options Selected
## 3 1363 12
## Not Listed Transgender
## 21 3
dm$genfin[dm$genid == "Male"] <- 0 #male
dm$genfin[dm$genid == "Agender" | dm$genid == "Genderqueer" | dm$genid == "Multiple Options Selected" | dm$genid == "Not Listed" | dm$genid == "Female"] <- 1 #women and non-binary
dm$genfin <- as.factor(dm$genfin)
table(dm$genfin, useNA = "always")
##
## 0 1 <NA>
## 1363 531 81
Y <- dm$belong1
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence +
## cmn_risks + cmn_stoic + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7589 -0.6637 0.2180 0.8990 2.1115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.55367 0.15350 29.666 < 2e-16 ***
## cmn_help -0.09760 0.02047 -4.768 2.00e-06 ***
## cmn_hetero 0.03069 0.01565 1.961 0.050084 .
## cmn_importance -0.14470 0.02336 -6.194 7.19e-10 ***
## cmn_violence 0.04134 0.03291 1.256 0.209211
## cmn_risks 0.14293 0.03934 3.633 0.000287 ***
## cmn_stoic -0.01099 0.01698 -0.647 0.517684
## genfin1 -0.19811 0.06368 -3.111 0.001892 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.192 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.05049, Adjusted R-squared: 0.04697
## F-statistic: 14.33 on 7 and 1886 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance *
## genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7863 -0.6480 0.2207 0.8979 2.1295
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.45400 0.17709 25.151 < 2e-16 ***
## cmn_help -0.11320 0.02437 -4.644 3.65e-06 ***
## genfin1 0.11196 0.34643 0.323 0.74660
## cmn_hetero 0.02382 0.01871 1.273 0.20318
## cmn_importance -0.13463 0.02799 -4.810 1.63e-06 ***
## cmn_violence 0.09161 0.04014 2.282 0.02258 *
## cmn_risks 0.14736 0.04590 3.211 0.00135 **
## cmn_stoic -0.02316 0.02040 -1.135 0.25650
## cmn_help:genfin1 0.05399 0.04509 1.197 0.23129
## genfin1:cmn_hetero 0.01802 0.03426 0.526 0.59894
## genfin1:cmn_importance -0.03278 0.05120 -0.640 0.52211
## genfin1:cmn_violence -0.15332 0.07027 -2.182 0.02924 *
## genfin1:cmn_risks -0.01613 0.08955 -0.180 0.85711
## genfin1:cmn_stoic 0.03278 0.03716 0.882 0.37773
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.191 on 1880 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.05414, Adjusted R-squared: 0.0476
## F-statistic: 8.278 on 13 and 1880 DF, p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
Y <- dm$belong2
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence +
## cmn_risks + cmn_stoic + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7380 -0.7120 0.1492 0.9308 2.3227
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.54332 0.14777 30.745 < 2e-16 ***
## cmn_help -0.11134 0.01971 -5.650 1.85e-08 ***
## cmn_hetero 0.02247 0.01507 1.491 0.13607
## cmn_importance -0.13140 0.02249 -5.843 6.04e-09 ***
## cmn_violence 0.05841 0.03168 1.844 0.06538 .
## cmn_risks 0.10905 0.03787 2.879 0.00403 **
## cmn_stoic 0.02778 0.01635 1.699 0.08951 .
## genfin1 -0.16906 0.06130 -2.758 0.00588 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.147 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.05346, Adjusted R-squared: 0.04995
## F-statistic: 15.22 on 7 and 1886 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance *
## genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8004 -0.7099 0.1473 0.9194 2.3391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.511444 0.170131 26.517 < 2e-16 ***
## cmn_help -0.126197 0.023416 -5.389 7.96e-08 ***
## genfin1 -0.171164 0.332809 -0.514 0.60710
## cmn_hetero 0.011068 0.017977 0.616 0.53821
## cmn_importance -0.118661 0.026889 -4.413 1.08e-05 ***
## cmn_violence 0.123011 0.038561 3.190 0.00145 **
## cmn_risks 0.091252 0.044092 2.070 0.03863 *
## cmn_stoic 0.002927 0.019602 0.149 0.88133
## cmn_help:genfin1 0.054176 0.043313 1.251 0.21116
## genfin1:cmn_hetero 0.032621 0.032915 0.991 0.32178
## genfin1:cmn_importance -0.035056 0.049185 -0.713 0.47610
## genfin1:cmn_violence -0.192830 0.067509 -2.856 0.00433 **
## genfin1:cmn_risks 0.072480 0.086034 0.842 0.39964
## genfin1:cmn_stoic 0.071921 0.035695 2.015 0.04406 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.144 on 1880 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.06103, Adjusted R-squared: 0.05454
## F-statistic: 9.4 on 13 and 1880 DF, p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
Y <- dm$id
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence +
## cmn_risks + cmn_stoic + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4120 -0.5413 0.0841 0.6565 1.9402
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.27143 0.11457 37.282 < 2e-16 ***
## cmn_help -0.05100 0.01528 -3.338 0.000861 ***
## cmn_hetero 0.01875 0.01168 1.605 0.108737
## cmn_importance -0.13398 0.01744 -7.683 2.47e-14 ***
## cmn_violence 0.04202 0.02456 1.711 0.087255 .
## cmn_risks 0.13141 0.02936 4.476 8.08e-06 ***
## cmn_stoic 0.01277 0.01268 1.008 0.313751
## genfin1 -0.11651 0.04753 -2.451 0.014327 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8894 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.05706, Adjusted R-squared: 0.05356
## F-statistic: 16.3 on 7 and 1886 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance *
## genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3884 -0.5453 0.0936 0.6406 1.9475
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2069769 0.1320837 31.851 < 2e-16 ***
## cmn_help -0.0643027 0.0181793 -3.537 0.000414 ***
## genfin1 0.0365757 0.2583811 0.142 0.887445
## cmn_hetero 0.0196316 0.0139570 1.407 0.159718
## cmn_importance -0.1283737 0.0208756 -6.149 9.47e-10 ***
## cmn_violence 0.0864753 0.0299374 2.889 0.003915 **
## cmn_risks 0.1254576 0.0342314 3.665 0.000254 ***
## cmn_stoic -0.0005074 0.0152185 -0.033 0.973405
## cmn_help:genfin1 0.0490345 0.0336267 1.458 0.144952
## genfin1:cmn_hetero -0.0074212 0.0255540 -0.290 0.771534
## genfin1:cmn_importance -0.0150330 0.0381856 -0.394 0.693859
## genfin1:cmn_violence -0.1359951 0.0524119 -2.595 0.009540 **
## genfin1:cmn_risks 0.0210468 0.0667936 0.315 0.752719
## genfin1:cmn_stoic 0.0394306 0.0277126 1.423 0.154949
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8884 on 1880 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.06208, Adjusted R-squared: 0.05559
## F-statistic: 9.572 on 13 and 1880 DF, p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
Y <- dm$belong1
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9020 -0.5462 0.1957 0.7368 2.6409
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.58323 0.16832 9.406 < 2e-16 ***
## car_fin 0.07818 0.02910 2.687 0.00728 **
## car_inno 0.58777 0.03166 18.562 < 2e-16 ***
## car_lead -0.03879 0.02576 -1.506 0.13231
## genfin1 -0.26914 0.05614 -4.794 1.76e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.094 on 1889 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1983, Adjusted R-squared: 0.1966
## F-statistic: 116.8 on 4 and 1889 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8427 -0.5543 0.1843 0.7461 2.5278
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.79127 0.19590 9.144 < 2e-16 ***
## car_fin 0.07935 0.03370 2.355 0.01865 *
## genfin1 -1.08065 0.38200 -2.829 0.00472 **
## car_inno 0.56285 0.03692 15.245 < 2e-16 ***
## car_lead -0.06509 0.03065 -2.124 0.03382 *
## car_fin:genfin1 -0.02632 0.06687 -0.394 0.69392
## genfin1:car_inno 0.11959 0.07215 1.658 0.09756 .
## genfin1:car_lead 0.09807 0.05672 1.729 0.08396 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.092 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.2023, Adjusted R-squared: 0.1993
## F-statistic: 68.32 on 7 and 1886 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$belong2
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7475 -0.6893 0.1144 0.8122 2.5887
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.435024 0.169569 14.360 < 2e-16 ***
## car_fin 0.011633 0.029318 0.397 0.691557
## car_inno 0.454401 0.031900 14.244 < 2e-16 ***
## car_lead -0.007045 0.025954 -0.271 0.786073
## genfin1 -0.207301 0.056554 -3.666 0.000254 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.102 on 1889 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1248, Adjusted R-squared: 0.1229
## F-statistic: 67.32 on 4 and 1889 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7649 -0.6608 0.1319 0.8426 2.4762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.45080 0.19749 12.410 <2e-16 ***
## car_fin 0.04392 0.03397 1.293 0.1963
## genfin1 -0.32841 0.38511 -0.853 0.3939
## car_inno 0.42652 0.03722 11.459 <2e-16 ***
## car_lead -0.01802 0.03090 -0.583 0.5599
## car_fin:genfin1 -0.13772 0.06741 -2.043 0.0412 *
## genfin1:car_inno 0.12243 0.07273 1.683 0.0925 .
## genfin1:car_lead 0.05354 0.05718 0.936 0.3492
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.101 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1279, Adjusted R-squared: 0.1247
## F-statistic: 39.53 on 7 and 1886 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$id
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2658 -0.4908 0.0660 0.5598 2.2939
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.23972 0.12648 17.708 < 2e-16 ***
## car_fin 0.05171 0.02187 2.365 0.018144 *
## car_inno 0.44174 0.02379 18.565 < 2e-16 ***
## car_lead -0.03295 0.01936 -1.702 0.088866 .
## genfin1 -0.15865 0.04218 -3.761 0.000174 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8221 on 1889 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1931, Adjusted R-squared: 0.1914
## F-statistic: 113 on 4 and 1889 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2590 -0.5047 0.0715 0.5694 2.2079
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.29918 0.14717 15.622 < 2e-16 ***
## car_fin 0.06695 0.02532 2.644 0.00825 **
## genfin1 -0.40652 0.28699 -1.417 0.15679
## car_inno 0.43713 0.02774 15.759 < 2e-16 ***
## car_lead -0.06428 0.02303 -2.791 0.00530 **
## car_fin:genfin1 -0.07456 0.05024 -1.484 0.13795
## genfin1:car_inno 0.04117 0.05420 0.760 0.44765
## genfin1:car_lead 0.11437 0.04261 2.684 0.00733 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8205 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1974, Adjusted R-squared: 0.1945
## F-statistic: 66.28 on 7 and 1886 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$engpc
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3178 -0.6304 0.1330 0.7676 2.3668
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.52037 0.15954 15.798 < 2e-16 ***
## car_fin 0.05020 0.02758 1.820 0.0689 .
## car_inno 0.41638 0.03001 13.873 < 2e-16 ***
## car_lead -0.06349 0.02442 -2.600 0.0094 **
## genfin1 -0.26301 0.05321 -4.943 8.37e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.037 on 1889 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1158, Adjusted R-squared: 0.1139
## F-statistic: 61.82 on 4 and 1889 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3869 -0.6350 0.1467 0.7576 2.3370
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.61201 0.18560 14.073 < 2e-16 ***
## car_fin 0.06914 0.03193 2.166 0.030472 *
## genfin1 -0.64129 0.36193 -1.772 0.076580 .
## car_inno 0.40713 0.03498 11.638 < 2e-16 ***
## car_lead -0.10265 0.02904 -3.535 0.000418 ***
## car_fin:genfin1 -0.09410 0.06336 -1.485 0.137663
## genfin1:car_inno 0.06563 0.06836 0.960 0.337091
## genfin1:car_lead 0.14382 0.05374 2.676 0.007506 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.035 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.1209, Adjusted R-squared: 0.1176
## F-statistic: 37.05 on 7 and 1886 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$engint
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7663 -0.4436 0.2339 0.5669 2.4735
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.26414 0.14166 15.983 < 2e-16 ***
## car_fin 0.10050 0.02449 4.103 4.25e-05 ***
## car_inno 0.55997 0.02665 21.012 < 2e-16 ***
## car_lead -0.10270 0.02168 -4.737 2.34e-06 ***
## genfin1 -0.05447 0.04725 -1.153 0.249
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9208 on 1889 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.2242, Adjusted R-squared: 0.2226
## F-statistic: 136.5 on 4 and 1889 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7637 -0.4381 0.2357 0.5617 2.4271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.33548 0.16508 14.148 < 2e-16 ***
## car_fin 0.10816 0.02840 3.809 0.000144 ***
## genfin1 -0.33900 0.32190 -1.053 0.292414
## car_inno 0.55458 0.03111 17.825 < 2e-16 ***
## car_lead -0.12592 0.02583 -4.875 1.18e-06 ***
## car_fin:genfin1 -0.04224 0.05635 -0.750 0.453616
## genfin1:car_inno 0.03839 0.06080 0.631 0.527845
## genfin1:car_lead 0.08431 0.04779 1.764 0.077874 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9203 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.2262, Adjusted R-squared: 0.2233
## F-statistic: 78.75 on 7 and 1886 DF, p-value: < 2.2e-16
Y <- dm$engrec
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4584 -0.7339 0.0713 0.8172 3.0237
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.934673 0.181838 10.640 < 2e-16 ***
## car_fin 0.004438 0.031439 0.141 0.88775
## car_inno 0.348861 0.034208 10.198 < 2e-16 ***
## car_lead 0.067322 0.027831 2.419 0.01566 *
## genfin1 -0.158480 0.060646 -2.613 0.00904 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.182 on 1889 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.08593, Adjusted R-squared: 0.084
## F-statistic: 44.4 on 4 and 1889 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4473 -0.7413 0.0698 0.8393 2.9236
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.95006 0.21191 9.202 <2e-16 ***
## car_fin 0.02355 0.03646 0.646 0.518
## genfin1 -0.23926 0.41323 -0.579 0.563
## car_inno 0.34967 0.03994 8.755 <2e-16 ***
## car_lead 0.03574 0.03316 1.078 0.281
## car_fin:genfin1 -0.08734 0.07234 -1.207 0.227
## genfin1:car_inno 0.01948 0.07804 0.250 0.803
## genfin1:car_lead 0.11499 0.06135 1.874 0.061 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.181 on 1886 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.08812, Adjusted R-squared: 0.08474
## F-statistic: 26.04 on 7 and 1886 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$belong1
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8542 -0.5101 0.1881 0.6598 2.9522
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.75537 0.15315 4.932 8.81e-07 ***
## engbel 0.05014 0.04965 1.010 0.313
## engemp 0.71399 0.04196 17.016 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.01 on 1972 degrees of freedom
## Multiple R-squared: 0.328, Adjusted R-squared: 0.3273
## F-statistic: 481.2 on 2 and 1972 DF, p-value: < 2.2e-16
# plot_model(fit1, type="pred")
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5910 -0.5090 0.1918 0.6090 3.3213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.89458 0.18296 4.890 1.1e-06 ***
## engbel 0.07970 0.05913 1.348 0.1778
## genfin1 -0.76320 0.33593 -2.272 0.0232 *
## engemp 0.66971 0.04955 13.515 < 2e-16 ***
## engbel:genfin1 0.02274 0.11190 0.203 0.8390
## genfin1:engemp 0.07697 0.09610 0.801 0.4233
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9912 on 1888 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.3423, Adjusted R-squared: 0.3405
## F-statistic: 196.5 on 5 and 1888 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$belong2
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6863 -0.5373 0.1521 0.7734 2.8415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.09043 0.15450 7.058 2.33e-12 ***
## engbel 0.20154 0.05009 4.023 5.95e-05 ***
## engemp 0.48782 0.04233 11.524 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.019 on 1972 degrees of freedom
## Multiple R-squared: 0.2561, Adjusted R-squared: 0.2554
## F-statistic: 339.5 on 2 and 1972 DF, p-value: < 2.2e-16
# plot_model(fit1, type="pred")
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7385 -0.5265 0.1604 0.7202 3.1586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.20889 0.18555 6.515 9.28e-11 ***
## engbel 0.20638 0.05996 3.442 0.00059 ***
## genfin1 -0.68801 0.34068 -2.020 0.04357 *
## engemp 0.47209 0.05026 9.394 < 2e-16 ***
## engbel:genfin1 0.03797 0.11349 0.335 0.73795
## genfin1:engemp 0.05707 0.09746 0.586 0.55827
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.005 on 1888 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.2724, Adjusted R-squared: 0.2705
## F-statistic: 141.4 on 5 and 1888 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$id
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6391 -0.4179 0.0821 0.5155 2.3658
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.40610 0.11292 12.452 < 2e-16 ***
## engbel 0.14230 0.03661 3.887 0.000105 ***
## engemp 0.46151 0.03094 14.918 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7448 on 1972 degrees of freedom
## Multiple R-squared: 0.3374, Adjusted R-squared: 0.3367
## F-statistic: 502 on 2 and 1972 DF, p-value: < 2.2e-16
# plot_model(fit1, type="pred")
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6998 -0.4302 0.0737 0.5157 2.4639
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.52454 0.13649 11.170 < 2e-16 ***
## engbel 0.15385 0.04411 3.488 0.000498 ***
## genfin1 -0.60343 0.25061 -2.408 0.016142 *
## engemp 0.43380 0.03697 11.734 < 2e-16 ***
## engbel:genfin1 0.02258 0.08348 0.271 0.786797
## genfin1:engemp 0.06697 0.07170 0.934 0.350393
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7394 on 1888 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.3475, Adjusted R-squared: 0.3458
## F-statistic: 201.1 on 5 and 1888 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$car_fin
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0588 -0.5226 0.1239 0.6618 1.9718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.40427 0.13780 24.704 < 2e-16 ***
## engbel 0.24419 0.04468 5.465 5.2e-08 ***
## engemp 0.03788 0.03776 1.003 0.316
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9089 on 1972 degrees of freedom
## Multiple R-squared: 0.05751, Adjusted R-squared: 0.05655
## F-statistic: 60.17 on 2 and 1972 DF, p-value: < 2.2e-16
# plot_model(fit1, type="pred")
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0463 -0.5190 0.1207 0.6496 1.9000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.420243 0.167486 20.421 < 2e-16 ***
## engbel 0.229504 0.054126 4.240 2.34e-05 ***
## genfin1 0.145088 0.307522 0.472 0.637
## engemp 0.049800 0.045364 1.098 0.272
## engbel:genfin1 0.004024 0.102440 0.039 0.969
## genfin1:engemp -0.033156 0.087978 -0.377 0.706
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9074 on 1888 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.05379, Adjusted R-squared: 0.05128
## F-statistic: 21.46 on 5 and 1888 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$car_lead
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7045 -0.7294 -0.0327 0.7464 2.8984
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.54976 0.16792 15.184 < 2e-16 ***
## engbel -0.14051 0.05444 -2.581 0.00993 **
## engemp 0.35255 0.04601 7.663 2.83e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 1972 degrees of freedom
## Multiple R-squared: 0.04815, Adjusted R-squared: 0.04718
## F-statistic: 49.88 on 2 and 1972 DF, p-value: < 2.2e-16
# plot_model(fit1, type="pred")
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6976 -0.7214 -0.0284 0.7432 2.8910
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.60602 0.20495 12.716 < 2e-16 ***
## engbel -0.18040 0.06623 -2.724 0.00651 **
## genfin1 -0.07132 0.37631 -0.190 0.84970
## engemp 0.38320 0.05551 6.903 6.92e-12 ***
## engbel:genfin1 0.11756 0.12535 0.938 0.34845
## genfin1:engemp -0.11143 0.10766 -1.035 0.30078
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.11 on 1888 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.04705, Adjusted R-squared: 0.04452
## F-statistic: 18.64 on 5 and 1888 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$car_inno
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.842 -0.502 0.147 0.664 2.803
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.33152 0.11922 19.556 <2e-16 ***
## engbel 0.02216 0.03865 0.573 0.566
## engemp 0.47859 0.03266 14.652 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7863 on 1972 degrees of freedom
## Multiple R-squared: 0.2594, Adjusted R-squared: 0.2587
## F-statistic: 345.4 on 2 and 1972 DF, p-value: < 2.2e-16
# plot_model(fit1, type="pred")
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8045 -0.4735 0.0846 0.6621 2.3766
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.26647 0.14394 15.746 < 2e-16 ***
## engbel -0.01686 0.04652 -0.362 0.71710
## genfin1 0.36717 0.26428 1.389 0.16490
## engemp 0.52876 0.03899 13.563 < 2e-16 ***
## engbel:genfin1 0.16397 0.08804 1.863 0.06268 .
## genfin1:engemp -0.22539 0.07561 -2.981 0.00291 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7798 on 1888 degrees of freedom
## (81 observations deleted due to missingness)
## Multiple R-squared: 0.2634, Adjusted R-squared: 0.2615
## F-statistic: 135 on 5 and 1888 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]