library(dplyr)
library(tidyr)
library(purrr)
library(DT)

surv <- read.csv(file="career_imp.csv", header=T)
surv$Litho <- trimws(surv$Litho, which=c("both"))

  # calculate selected factors
  surv$engpc <- (surv$Q3Eng_m + surv$Q3Eng_n + surv$Q3Eng_k)/3
  surv$engint <- (surv$Q3Eng_i + surv$Q3Eng_h + surv$Q3Eng_j)/3
  surv$engrec <- (surv$Q3Eng_f + surv$Q3Eng_e + surv$Q3Eng_d + surv$Q3Eng_g)/4
  surv$belong1 <- (surv$Q4a + surv$Q4b + surv$Q4c + surv$Q4g + surv$Q4h)/5
  surv$belong2 <- (surv$Q4e + surv$Q4f)/2
  surv$engbel <- (surv$Q5d + surv$Q5h + surv$Q5g + surv$Q5e + surv$Q5b)/5
  surv$engemp <- (surv$Q5a + surv$Q5c + surv$Q5f)/3

  # subset needed columns
  names(surv)
  surv2 <- subset(surv, select=c(1,185:205,221:228,229:237,319:327,328:335,377:383))
  head(surv2)

  # calculate demographics
  surv2$racenum <- as.numeric(surv2$Q30a) + as.numeric(surv2$Q30b) + as.numeric(surv2$Q30c) + as.numeric(surv2$Q30d) + as.numeric(surv2$Q30e) + as.numeric(surv2$Q30f) + as.numeric(surv2$Q30g) + as.numeric(surv2$Q30h)
  surv2$raceeth[surv2$racenum == 0] <- NA
  surv2$raceeth[surv2$racenum == 2] <- "Biracial"
  surv2$raceeth[surv2$racenum > 2] <- "Multiracial"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30a == 1] <- "Asian"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30b == 1] <- "Black/AA"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30c == 1] <- "Latinx"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30d == 1] <- "MidEast"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30e == 1] <- "NH/PI"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30f == 1] <- "NA/AN"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30g == 1] <- "White"
  surv2$raceeth[surv2$racenum == 1 & surv2$Q30h == 1] <- "WriteIn"
  table(surv2$raceeth)
  
  surv2$gennum <- as.numeric(surv2$Q31a) + as.numeric(surv2$Q31b) + as.numeric(surv2$Q31c) + as.numeric(surv2$Q31d) + as.numeric(surv2$Q31e) + as.numeric(surv2$Q31f) + as.numeric(surv2$Q31g)
  table(surv2$gennum)
  surv2$genid[surv2$gennum == 0] <- NA
  surv2$genid[surv2$gennum > 1] <- "Multiple Options Selected"
  surv2$genid[surv2$gennum == 1 & surv2$Q31a == 1] <- "Female"
  surv2$genid[surv2$gennum == 1 & surv2$Q31b == 1] <- "Male"
  surv2$genid[surv2$gennum == 1 & surv2$Q31c == 1] <- "Agender"
  surv2$genid[surv2$gennum == 1 & surv2$Q31d == 1] <- "Genderqueer"
  surv2$genid[surv2$gennum == 1 & surv2$Q31e == 1] <- "Cisgender"
  surv2$genid[surv2$gennum == 1 & surv2$Q31f == 1] <- "Transgender"
  surv2$genid[surv2$gennum == 1 & surv2$Q31g == 1] <- "Not Listed"
  table(surv2$genid, useNA = "always")
  names(surv2)
  # write.csv(surv2, file="multi.csv", row.names = F)
  temp <- read.csv(file="multi.csv", header=T)
  gender <- cbind.data.frame(temp$Litho, temp$genid, temp$genid2)
  
  # career priorities
  colnames(surv2)[2:39] <- c("cmn1","cmn2","cmn3","cmn4","cmn5","cmn6","cmn7","cmn8","cmn9","cmn10","cmn11","cmn12","cmn13","cmn14","cmn15","cmn16","cmn17","cmn18","cmn19","cmn20","cmn21",
                       "career_money",
                       "career_known",
                       "career_helping",
                       "career_supervising",
                       "career_security",
                       "career_people",
                       "career_invent",
                       "career_developing",
                       "field_academia",
                       "field_industry",
                       "field_entre",
                       "field_govt",
                       "field_k12",
                       "field_law",
                       "field_med",
                       "field_nonprofit",
                       "field_other")
  head(surv2)
  names(surv2)
  surv3 <- subset(surv2, select=c(1:39,57:63))
  head(surv3)
  names(surv3)
  
  library(psych)
  table(surv3$cmn3)
  recodeme <- c(1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1)
  surv4 <- surv3
  surv4[2:22] <- reverse.code(recodeme, surv3[2:22])
  head(surv4)

data <- surv4

rm(list=setdiff(ls(), c("data","gender")))

Factor Analysis

Career Vars only

Field Vars only

CMN Vars only

Final Composites

Career

Q15. How important are the following factors for your future career satisfaction?

  • Finances
    • Q15e Having job security and opportunity (security)
    • Q15a Making money (money)
  • Leadership
    • Q15b Becoming well known (known)
    • Q15d Supervising others (supervising)
    • Q15f Working with people (people)
  • Innovation
    • Q15g Inventing/designing things (invent)
    • Q15h Developing new knowledge and skills (developing)
    • Q15c Helping others (helping)

CMN

  1. Thinking about your own actions, feelings and beliefs, please indicate how much you personally agree or disagree with each statement. There are no correct or wrong answers to the items. You should give the responses that most accurately describe your personal actions, feelings and beliefs. It is best if you respond with your first impression when answering.

(Reverse-coded variables recoded before factor analysis.)

  • Stoic
    • cmn6-Q13f = I like to talk about my feelings. *
    • cmn9-Q13i = I tend to share my feelings. *
  • Hetero
    • cmn4-Q13d = It would be awful if someone thought I was gay.
    • cmn7-Q13g = It is important to me that people think I am heterosexual.
  • Risks
    • cmn3-Q13c = In general, I do not like risky situations. *
    • cmn18-Q13r = I enjoy taking risks.
  • Help
    • cmn21-Q12u = It bothers me when I have to ask for help.
    • cmn17-Q13q = I never ask for help.
  • Violence
    • cmn8-Q13h = I believe that violence is never justified. *
    • cmn12-Q13l = Sometimes violent action is necessary.
  • Importance
    • cmn11-Q13k = I would hate to be important. *
    • cmn16-Q13p = I never do things to be an important person. *

In Progress

Several rows with same Litho number but not same values

rm(list=setdiff(ls(), c("data","gender")))

data$car_fin <- (data$career_security + data$career_money)/2
data$car_lead <- (data$career_known  + data$career_supervising  + data$career_people)/3
data$car_inno <- (data$career_invent  + data$career_developing  + data$career_helping)/3
data$cmn_stoic <- (data$cmn6 + data$cmn9)/2
data$cmn_hetero <- (data$cmn4 + data$cmn7)/2
data$cmn_risks <- (data$cmn3 + data$cmn18)/2
data$cmn_help <- (data$cmn21 + data$cmn17)/2
data$cmn_violence <- (data$cmn8 + data$cmn12)/2
data$cmn_importance <- (data$cmn11 + data$cmn16)/2
head(data)
##   Litho cmn1 cmn2 cmn3 cmn4 cmn5 cmn6 cmn7 cmn8 cmn9 cmn10 cmn11 cmn12 cmn13
## 1  1028    1    3    3    6    4    4    6    4    3     5     1     4     1
## 2  1030    4    2    5    6    3    1    6    1    1     3     1     5     2
## 3  1029    3    6    6    6    3    0    6    3    0     6     0     6     6
## 4  1054   NA   NA   NA   NA   NA   NA   NA   NA   NA    NA    NA    NA    NA
## 5  1027    0    1    4    6    3    4    6    0    2    NA    NA    NA    NA
## 6  1039    1    1    3    5    1    1    5    4    1     3     3     4     4
##   cmn14 cmn15 cmn16 cmn17 cmn18 cmn19 cmn20 cmn21 career_money career_known
## 1     4     0     0     1     1     6     0     0            1            2
## 2     1    NA     2     4     4     2     1     4            4            4
## 3     3     0     0     0     3     6     3     0           NA           NA
## 4    NA    NA    NA    NA    NA    NA    NA    NA           NA           NA
## 5    NA    NA    NA    NA    NA    NA    NA    NA           NA           NA
## 6     2     0     3     1     4     6     1     2            4            3
##   career_helping career_supervising career_security career_people career_invent
## 1              5                  5               5             5             5
## 2              5                  2               4             4             4
## 3             NA                 NA              NA            NA            NA
## 4             NA                 NA              NA            NA            NA
## 5             NA                 NA              NA            NA            NA
## 6              5                  3               5             4             5
##   career_developing field_academia field_industry field_entre field_govt
## 1                 5              5              5           0          4
## 2                 4              2              5           4          4
## 3                NA             NA             NA          NA         NA
## 4                NA             NA             NA          NA         NA
## 5                NA             NA             NA          NA         NA
## 6                 5              5              5           1          1
##   field_k12 field_law field_med field_nonprofit field_other    engpc   engint
## 1         0         3         3               4           5 4.000000 4.666667
## 2         1         4         4               1           5 4.333333 4.333333
## 3        NA        NA        NA              NA          NA 6.000000 6.000000
## 4        NA        NA        NA              NA          NA 4.666667 5.333333
## 5        NA        NA        NA              NA          NA 6.000000 5.333333
## 6         1         1         4               2           3 4.666667 5.333333
##   engrec belong1 belong2 engbel   engemp car_fin car_lead car_inno cmn_stoic
## 1   5.00     4.4     4.5    4.6 4.666667     3.0 4.000000 5.000000       3.5
## 2   4.00     3.6     4.5    5.8 5.000000     4.0 3.333333 4.333333       1.0
## 3   3.00     5.8     6.0    6.0 6.000000      NA       NA       NA       0.0
## 4   5.00     4.8     5.0    5.2 5.000000      NA       NA       NA        NA
## 5   3.25     4.8     5.5    4.6 5.333333      NA       NA       NA       3.0
## 6   3.75     4.6     4.0    4.6 3.666667     4.5 3.333333 5.000000       1.0
##   cmn_hetero cmn_risks cmn_help cmn_violence cmn_importance
## 1          6       2.0      0.5          4.0            0.5
## 2          6       4.5      4.0          3.0            1.5
## 3          6       4.5      0.0          4.5            0.0
## 4         NA        NA       NA           NA             NA
## 5          6        NA       NA           NA             NA
## 6          5       3.5      1.5          4.0            3.0
data2 <- subset(data, Litho != 2564 & Litho != 7551 & Litho !=7713 & Litho !=7714 & Litho !=7717 & Litho !=8068 & Litho !=8090 & Litho !=6748 & Litho !=6798 & Litho !=6986 & Litho !=7111 & Litho !=7112 & Litho !=7113 & Litho !=7137 & Litho !=2360)

## Normality
d <- na.omit(subset(data2, select=c(1,40:55)))
library(psych)
norm <- describe(d)
norm
##                vars    n    mean      sd  median trimmed     mad  min  max
## Litho*            1 2344 4837.64 2155.76 5264.50 4895.19 2467.79 1002 8508
## engpc             2 2344    4.43    1.20    4.67    4.53    0.99    0    6
## engint            3 2344    5.02    1.17    5.33    5.23    0.99    0    6
## engrec            4 2344    3.79    1.30    4.00    3.86    1.48    0    6
## belong1           5 2344    4.53    1.32    4.80    4.70    1.19    0    6
## belong2           6 2344    4.53    1.27    5.00    4.66    1.48    0    6
## engbel            7 2344    5.28    0.85    5.60    5.42    0.59    0    6
## engemp            8 2344    4.96    1.03    5.00    5.10    0.99    0    6
## car_fin           9 2344    4.88    1.00    5.00    5.00    0.74    0    6
## car_lead         10 2344    3.56    1.18    3.67    3.57    0.99    0    6
## car_inno         11 2344    4.80    1.01    5.00    4.91    0.99    0    6
## cmn_stoic        12 2344    2.60    1.69    2.50    2.55    2.22    0    6
## cmn_hetero       13 2344    2.75    1.87    3.00    2.70    2.22    0    6
## cmn_risks        14 2344    3.31    0.77    3.00    3.27    0.74    0    6
## cmn_help         15 2344    2.49    1.45    2.50    2.46    1.48    0    6
## cmn_violence     16 2344    3.00    0.92    3.00    3.01    0.74    0    6
## cmn_importance   17 2344    2.13    1.28    2.00    2.09    1.48    0    6
##                range  skew kurtosis    se
## Litho*          7506 -0.25    -1.17 44.53
## engpc              6 -0.91     1.02  0.02
## engint             6 -1.62     3.00  0.02
## engrec             6 -0.49     0.04  0.03
## belong1            6 -1.07     0.96  0.03
## belong2            6 -0.90     0.84  0.03
## engbel             6 -1.40     2.29  0.02
## engemp             6 -1.22     2.04  0.02
## car_fin            6 -1.29     2.59  0.02
## car_lead           6 -0.18     0.14  0.02
## car_inno           6 -1.13     2.26  0.02
## cmn_stoic          6  0.16    -0.85  0.03
## cmn_hetero         6  0.04    -1.06  0.04
## cmn_risks          6  0.33     1.67  0.02
## cmn_help           6  0.17    -0.54  0.03
## cmn_violence       6 -0.13     1.47  0.02
## cmn_importance     6  0.27    -0.28  0.03
datatable(norm) %>%
  formatRound(1:13) %>%
  formatStyle(11:12, color = styleInterval(c(-2, 2), c('red', 'black', 'red')))
## Detect Outliers
d1 <- na.omit(subset(data2, select=c(1,40:55)))
m_dist <- mahalanobis(d1[2:17], colMeans(d1[2:17]), cov(d1[2:17]))
d1$MD <- round(m_dist, 1)
plot(d1$MD)
abline(h = 40, col = "red")

d1$outlier <- "No"
d1$outlier[d1$MD > 40] <- "Yes"
table(d1$outlier)
## 
##   No  Yes 
## 2264   80
d$outlier <- d1$outlier
d4 <- subset(d, outlier == "No", select=c(1:17))

head(d4)
##    Litho    engpc   engint engrec belong1 belong2 engbel   engemp car_fin
## 1   1028 4.000000 4.666667   5.00     4.4     4.5    4.6 4.666667     3.0
## 2   1030 4.333333 4.333333   4.00     3.6     4.5    5.8 5.000000     4.0
## 6   1039 4.666667 5.333333   3.75     4.6     4.0    4.6 3.666667     4.5
## 7   1040 6.000000 6.000000   5.25     6.0     6.0    6.0 6.000000     6.0
## 17  1034 4.000000 6.000000   6.00     5.0     6.0    5.8 5.333333     6.0
## 19  1047 3.333333 4.333333   5.50     3.6     5.5    4.4 4.666667     0.5
##    car_lead car_inno cmn_stoic cmn_hetero cmn_risks cmn_help cmn_violence
## 1  4.000000 5.000000       3.5        6.0       2.0      0.5          4.0
## 2  3.333333 4.333333       1.0        6.0       4.5      4.0          3.0
## 6  3.333333 5.000000       1.0        5.0       3.5      1.5          4.0
## 7  5.000000 5.000000       1.5        6.0       3.0      0.0          3.0
## 17 4.333333 6.000000       0.0        1.5       3.5      5.0          3.0
## 19 1.666667 4.666667       0.5        6.0       3.0      2.5          2.5
##    cmn_importance
## 1             0.5
## 2             1.5
## 6             3.0
## 7             0.0
## 17            0.0
## 19            4.5
allcor <- corr.test(d4[2:17], use = "pairwise", adjust = "holm")
allcor_r <- data.frame(allcor$r)

datatable(allcor_r) %>%
  formatRound(1:16) %>%
  formatStyle(1:16, backgroundColor = styleInterval(.75, c(none, 'yellow')))
library(corrplot)
col4 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F",
                           "cyan", "#007FFF", "blue", "#00007F"))
corrplot(allcor$r, p.mat = allcor$p, insig = "blank",
         method = "color", order = "hclust", col = col4(10))

# detach("package:backports", unload=TRUE)
# remove.packages("sjPlot")
# install.packages("backports")
# library(devtools)
# devtools::install_github("strengejacke/strengejacke", force = TRUE)
# devtools::install_github("strengejacke/sjPlot")
library(strengejacke)
## # Attaching packages
## <U+2714> ggeffects  0.15.0       <U+2714> sjlabelled 1.1.6     
## <U+2714> sjmisc     2.8.5        <U+2714> sjstats    0.18.0    
## <U+2714> sjPlot     2.8.4.9000   <U+2714> esc        0.5.1
library(car)
d <- d4
d$id <- (d$engint + d$engrec + d$engpc)/3

Y <- d$belong1
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)

# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)

layout(matrix(c(1), byrow = TRUE))

# Evaluate Collinearity
vif(fit) # variance inflation factors
##       cmn_help cmn_importance     cmn_hetero      cmn_risks   cmn_violence 
##       1.145039       1.141477       1.056639       1.077697       1.115018 
##      cmn_stoic 
##       1.052574
sqrt(vif(fit)) > 2 # problem?
##       cmn_help cmn_importance     cmn_hetero      cmn_risks   cmn_violence 
##          FALSE          FALSE          FALSE          FALSE          FALSE 
##      cmn_stoic 
##          FALSE
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7334 -0.6400  0.2090  0.9107  2.1736 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.38865    0.13743  31.933  < 2e-16 ***
## cmn_help       -0.10603    0.01893  -5.600 2.40e-08 ***
## cmn_importance -0.13192    0.02146  -6.147 9.31e-10 ***
## cmn_hetero      0.04847    0.01399   3.466 0.000538 ***
## cmn_risks       0.15530    0.03539   4.389 1.19e-05 ***
## cmn_violence    0.04752    0.02969   1.601 0.109624    
## cmn_stoic      -0.01623    0.01561  -1.040 0.298577    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.203 on 2257 degrees of freedom
## Multiple R-squared:  0.04917,    Adjusted R-squared:  0.04664 
## F-statistic: 19.45 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

##########

Y <- d$belong2
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)

# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)

layout(matrix(c(1), byrow = TRUE))

# Evaluate Collinearity
vif(fit) # variance inflation factors
##       cmn_help cmn_importance     cmn_hetero      cmn_risks   cmn_violence 
##       1.145039       1.141477       1.056639       1.077697       1.115018 
##      cmn_stoic 
##       1.052574
sqrt(vif(fit)) > 2 # problem?
##       cmn_help cmn_importance     cmn_hetero      cmn_risks   cmn_violence 
##          FALSE          FALSE          FALSE          FALSE          FALSE 
##      cmn_stoic 
##          FALSE
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6976 -0.7134  0.1594  0.9298  2.4560 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.41424    0.13418  32.897  < 2e-16 ***
## cmn_help       -0.12715    0.01849  -6.878 7.82e-12 ***
## cmn_importance -0.11941    0.02095  -5.699 1.37e-08 ***
## cmn_hetero      0.04472    0.01366   3.275  0.00107 ** 
## cmn_risks       0.11010    0.03455   3.187  0.00146 ** 
## cmn_violence    0.07245    0.02899   2.499  0.01252 *  
## cmn_stoic       0.01194    0.01524   0.784  0.43327    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.175 on 2257 degrees of freedom
## Multiple R-squared:  0.05308,    Adjusted R-squared:  0.05057 
## F-statistic: 21.09 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

##########

Y <- d$id
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)

# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)

layout(matrix(c(1), byrow = TRUE))

# Evaluate Collinearity
vif(fit) # variance inflation factors
##       cmn_help cmn_importance     cmn_hetero      cmn_risks   cmn_violence 
##       1.145039       1.141477       1.056639       1.077697       1.115018 
##      cmn_stoic 
##       1.052574
sqrt(vif(fit)) > 2 # problem?
##       cmn_help cmn_importance     cmn_hetero      cmn_risks   cmn_violence 
##          FALSE          FALSE          FALSE          FALSE          FALSE 
##      cmn_stoic 
##          FALSE
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3844 -0.5391  0.0851  0.6391  2.0671 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.23226    0.10276  41.184  < 2e-16 ***
## cmn_help       -0.05746    0.01416  -4.059 5.10e-05 ***
## cmn_importance -0.12350    0.01605  -7.696 2.08e-14 ***
## cmn_hetero      0.03211    0.01046   3.070  0.00217 ** 
## cmn_risks       0.11714    0.02646   4.427 1.00e-05 ***
## cmn_violence    0.04727    0.02220   2.129  0.03335 *  
## cmn_stoic       0.00882    0.01167   0.756  0.44990    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8997 on 2257 degrees of freedom
## Multiple R-squared:  0.053,  Adjusted R-squared:  0.05049 
## F-statistic: 21.05 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

##########

Y <- d$engbel
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4154 -0.4042  0.2231  0.5843  1.4716 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.239766   0.090011  58.212  < 2e-16 ***
## cmn_help       -0.046949   0.012400  -3.786 0.000157 ***
## cmn_importance -0.135742   0.014056  -9.657  < 2e-16 ***
## cmn_hetero     -0.023310   0.009160  -2.545 0.011005 *  
## cmn_risks       0.105457   0.023176   4.550 5.64e-06 ***
## cmn_violence    0.058302   0.019446   2.998 0.002747 ** 
## cmn_stoic      -0.002147   0.010223  -0.210 0.833671    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.788 on 2257 degrees of freedom
## Multiple R-squared:  0.0678, Adjusted R-squared:  0.06533 
## F-statistic: 27.36 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

Y <- d$engemp
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3373 -0.5782  0.1774  0.7117  1.7208 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.94424    0.10486  47.149  < 2e-16 ***
## cmn_help       -0.07151    0.01445  -4.950 7.98e-07 ***
## cmn_importance -0.15889    0.01638  -9.703  < 2e-16 ***
## cmn_hetero     -0.00746    0.01067  -0.699   0.4846    
## cmn_risks       0.12092    0.02700   4.478 7.90e-06 ***
## cmn_violence    0.04553    0.02266   2.010   0.0446 *  
## cmn_stoic       0.02304    0.01191   1.935   0.0531 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.918 on 2257 degrees of freedom
## Multiple R-squared:  0.07457,    Adjusted R-squared:  0.07211 
## F-statistic: 30.31 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

##########

Y <- d$belong1
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)

layout(matrix(c(1,2,3,4),2,2))
plot(fit)

layout(matrix(c(1), byrow = TRUE))

# Evaluate Collinearity
vif(fit) # variance inflation factors
##  car_fin car_inno car_lead 
## 1.165696 1.295058 1.340127
sqrt(vif(fit)) > 2 # problem?
##  car_fin car_inno car_lead 
##    FALSE    FALSE    FALSE
summary(fit)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7896 -0.5635  0.1918  0.7604  3.2457 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57589    0.15295  10.303  < 2e-16 ***
## car_fin      0.07127    0.02660   2.679  0.00744 ** 
## car_inno     0.59277    0.02876  20.610  < 2e-16 ***
## car_lead    -0.05701    0.02370  -2.405  0.01625 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 2260 degrees of freedom
## Multiple R-squared:  0.1933, Adjusted R-squared:  0.1922 
## F-statistic: 180.5 on 3 and 2260 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin

## 
## $car_inno

## 
## $car_lead

Y <- d$belong2
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)

layout(matrix(c(1,2,3,4),2,2))
plot(fit)

layout(matrix(c(1), byrow = TRUE))

# Evaluate Collinearity
vif(fit) # variance inflation factors
##  car_fin car_inno car_lead 
## 1.165696 1.295058 1.340127
sqrt(vif(fit)) > 2 # problem?
##  car_fin car_inno car_lead 
##    FALSE    FALSE    FALSE
summary(fit)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1075 -0.6653  0.1552  0.8909  2.6937 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.446587   0.156352  15.648   <2e-16 ***
## car_fin     -0.009334   0.027196  -0.343    0.731    
## car_inno     0.466935   0.029400  15.882   <2e-16 ***
## car_lead    -0.023102   0.024232  -0.953    0.340    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.132 on 2260 degrees of freedom
## Multiple R-squared:  0.1193, Adjusted R-squared:  0.1182 
## F-statistic: 102.1 on 3 and 2260 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin

## 
## $car_inno

## 
## $car_lead

Y <- d$id
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)

# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)

layout(matrix(c(1), byrow = TRUE))

# Evaluate Collinearity
vif(fit) # variance inflation factors
##  car_fin car_inno car_lead 
## 1.165696 1.295058 1.340127
sqrt(vif(fit)) > 2 # problem?
##  car_fin car_inno car_lead 
##    FALSE    FALSE    FALSE
summary(fit)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2209 -0.4910  0.0846  0.5642  2.8682 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.25379    0.11450  19.684   <2e-16 ***
## car_fin      0.03279    0.01992   1.646   0.0998 .  
## car_inno     0.45001    0.02153  20.901   <2e-16 ***
## car_lead    -0.03558    0.01775  -2.005   0.0451 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8291 on 2260 degrees of freedom
## Multiple R-squared:  0.1947, Adjusted R-squared:  0.1936 
## F-statistic: 182.1 on 3 and 2260 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin

## 
## $car_inno

## 
## $car_lead

Y <- d$engbel
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4476 -0.3692  0.1582  0.4794  1.9265 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.08004    0.10026  30.722  < 2e-16 ***
## car_fin      0.12566    0.01744   7.206 7.81e-13 ***
## car_inno     0.38740    0.01885  20.549  < 2e-16 ***
## car_lead    -0.07918    0.01554  -5.096 3.76e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7259 on 2260 degrees of freedom
## Multiple R-squared:  0.2078, Adjusted R-squared:  0.2068 
## F-statistic: 197.6 on 3 and 2260 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin

## 
## $car_inno

## 
## $car_lead

Y <- d$engemp
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4598 -0.4912  0.1083  0.5283  2.5703 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.24104    0.11292  19.847  < 2e-16 ***
## car_fin      0.07022    0.01964   3.575 0.000357 ***
## car_inno     0.52864    0.02123  24.897  < 2e-16 ***
## car_lead    -0.03963    0.01750  -2.265 0.023627 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8176 on 2260 degrees of freedom
## Multiple R-squared:  0.265,  Adjusted R-squared:  0.264 
## F-statistic: 271.6 on 3 and 2260 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin

## 
## $car_inno

## 
## $car_lead

###############################################

describe(d)
##                vars    n    mean      sd  median trimmed     mad     min  max
## Litho*            1 2264 4823.86 2153.81 5255.50 4880.11 2460.37 1002.00 8508
## engpc             2 2264    4.48    1.13    4.67    4.56    0.99    0.00    6
## engint            3 2264    5.09    1.05    5.33    5.27    0.99    0.00    6
## engrec            4 2264    3.84    1.25    4.00    3.89    1.48    0.00    6
## belong1           5 2264    4.59    1.23    4.80    4.74    1.19    0.00    6
## belong2           6 2264    4.58    1.21    5.00    4.69    1.48    0.00    6
## engbel            7 2264    5.29    0.82    5.60    5.42    0.59    1.00    6
## engemp            8 2264    5.01    0.95    5.00    5.12    0.99    0.67    6
## car_fin           9 2264    4.90    0.94    5.00    5.01    0.74    0.00    6
## car_lead         10 2264    3.59    1.14    3.67    3.60    0.99    0.00    6
## car_inno         11 2264    4.85    0.92    5.00    4.93    0.99    0.33    6
## cmn_stoic        12 2264    2.58    1.66    2.50    2.54    2.22    0.00    6
## cmn_hetero       13 2264    2.75    1.86    3.00    2.71    2.22    0.00    6
## cmn_risks        14 2264    3.31    0.74    3.00    3.28    0.74    0.50    6
## cmn_help         15 2264    2.47    1.43    2.50    2.45    1.48    0.00    6
## cmn_violence     16 2264    2.99    0.90    3.00    3.01    0.74    0.00    6
## cmn_importance   17 2264    2.12    1.26    2.00    2.08    1.48    0.00    6
## id               18 2264    4.47    0.92    4.58    4.52    0.95    0.00    6
##                  range  skew kurtosis    se
## Litho*         7506.00 -0.25    -1.17 45.27
## engpc             6.00 -0.73     0.50  0.02
## engint            6.00 -1.39     2.01  0.02
## engrec            6.00 -0.42    -0.01  0.03
## belong1           6.00 -0.98     0.76  0.03
## belong2           6.00 -0.77     0.48  0.03
## engbel            5.00 -1.24     1.27  0.02
## engemp            5.33 -0.91     0.52  0.02
## car_fin           6.00 -1.07     1.54  0.02
## car_lead          6.00 -0.09    -0.02  0.02
## car_inno          5.67 -0.70     0.19  0.02
## cmn_stoic         6.00  0.16    -0.84  0.03
## cmn_hetero        6.00  0.04    -1.05  0.04
## cmn_risks         5.50  0.31     1.40  0.02
## cmn_help          6.00  0.15    -0.55  0.03
## cmn_violence      6.00 -0.16     1.54  0.02
## cmn_importance    6.00  0.26    -0.31  0.03
## id                6.00 -0.69     0.71  0.02
Y <- d$car_fin
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7251 -0.5084  0.1307  0.6859  1.7976 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.51642    0.10568  42.737  < 2e-16 ***
## cmn_help        0.02163    0.01456   1.486   0.1374    
## cmn_importance -0.12773    0.01650  -7.740 1.49e-14 ***
## cmn_hetero      0.02386    0.01075   2.219   0.0266 *  
## cmn_risks       0.15081    0.02721   5.542 3.33e-08 ***
## cmn_violence    0.03441    0.02283   1.507   0.1319    
## cmn_stoic      -0.02653    0.01200  -2.210   0.0272 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9252 on 2257 degrees of freedom
## Multiple R-squared:  0.0437, Adjusted R-squared:  0.04115 
## F-statistic: 17.19 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred")
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

Y <- d$car_inno
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5013 -0.5753  0.1009  0.6696  1.7824 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.562415   0.101220  45.074  < 2e-16 ***
## cmn_help       -0.089168   0.013945  -6.394 1.95e-10 ***
## cmn_importance -0.100911   0.015806  -6.384 2.08e-10 ***
## cmn_hetero     -0.009925   0.010301  -0.964    0.335    
## cmn_risks       0.157212   0.026063   6.032 1.89e-09 ***
## cmn_violence    0.025517   0.021868   1.167    0.243    
## cmn_stoic       0.058759   0.011496   5.111 3.47e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8861 on 2257 degrees of freedom
## Multiple R-squared:  0.07708,    Adjusted R-squared:  0.07462 
## F-statistic: 31.42 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred")
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

Y <- d$car_lead
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + 
##     cmn_violence + cmn_stoic, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4881 -0.6687 -0.0074  0.6968  2.9761 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2.78883    0.12170  22.916  < 2e-16 ***
## cmn_help       -0.02499    0.01677  -1.491    0.136    
## cmn_importance -0.20497    0.01900 -10.785  < 2e-16 ***
## cmn_hetero      0.07368    0.01239   5.949 3.12e-09 ***
## cmn_risks       0.21088    0.03134   6.730 2.15e-11 ***
## cmn_violence    0.02639    0.02629   1.004    0.316    
## cmn_stoic       0.12288    0.01382   8.890  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.065 on 2257 degrees of freedom
## Multiple R-squared:  0.1242, Adjusted R-squared:  0.1219 
## F-statistic: 53.34 on 6 and 2257 DF,  p-value: < 2.2e-16
plot_model(fit, type = "pred")
## $cmn_help

## 
## $cmn_importance

## 
## $cmn_hetero

## 
## $cmn_risks

## 
## $cmn_violence

## 
## $cmn_stoic

Y <- d$belong1
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7896 -0.5635  0.1918  0.7604  3.2457 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57589    0.15295  10.303  < 2e-16 ***
## d$car_fin    0.07127    0.02660   2.679  0.00744 ** 
## d$car_inno   0.59277    0.02876  20.610  < 2e-16 ***
## d$car_lead  -0.05701    0.02370  -2.405  0.01625 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 2260 degrees of freedom
## Multiple R-squared:  0.1933, Adjusted R-squared:  0.1922 
## F-statistic: 180.5 on 3 and 2260 DF,  p-value: < 2.2e-16
Y <- d$belong2
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1075 -0.6653  0.1552  0.8909  2.6937 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.446587   0.156352  15.648   <2e-16 ***
## d$car_fin   -0.009334   0.027196  -0.343    0.731    
## d$car_inno   0.466935   0.029400  15.882   <2e-16 ***
## d$car_lead  -0.023102   0.024232  -0.953    0.340    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.132 on 2260 degrees of freedom
## Multiple R-squared:  0.1193, Adjusted R-squared:  0.1182 
## F-statistic: 102.1 on 3 and 2260 DF,  p-value: < 2.2e-16
Y <- d$id
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
summary(fit)
## 
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2209 -0.4910  0.0846  0.5642  2.8682 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.25379    0.11450  19.684   <2e-16 ***
## d$car_fin    0.03279    0.01992   1.646   0.0998 .  
## d$car_inno   0.45001    0.02153  20.901   <2e-16 ***
## d$car_lead  -0.03558    0.01775  -2.005   0.0451 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8291 on 2260 degrees of freedom
## Multiple R-squared:  0.1947, Adjusted R-squared:  0.1936 
## F-statistic: 182.1 on 3 and 2260 DF,  p-value: < 2.2e-16
colnames(gender) <- c("Litho","genid","genid2")
dm <- merge(d, gender, by = "Litho", all.x = T)
table(dm$genid)
## 
##                   Agender                 Cisgender                    Female 
##                         2                         1                       550 
##               Genderqueer                      Male Multiple Options Selected 
##                         3                      1526                        14 
##                Not Listed               Transgender 
##                        26                         3
dm$genfin[dm$genid == "Male"] <- 0 #male
dm$genfin[dm$genid == "Agender" | dm$genid == "Genderqueer" | dm$genid == "Multiple Options Selected" | dm$genid == "Not Listed" | dm$genid == "Female"] <- 1 #women and non-binary
dm$genfin <- as.factor(dm$genfin)
table(dm$genfin, useNA = "always")
## 
##    0    1 <NA> 
## 1526  595  143
Y <- dm$belong1
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + 
##     cmn_risks + cmn_stoic + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7858 -0.6571  0.2196  0.9089  2.1414 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.518286   0.144159  31.342  < 2e-16 ***
## cmn_help       -0.107886   0.019428  -5.553 3.16e-08 ***
## cmn_hetero      0.028563   0.014796   1.931   0.0537 .  
## cmn_importance -0.136660   0.022145  -6.171 8.10e-10 ***
## cmn_violence    0.047022   0.030672   1.533   0.1254    
## cmn_risks       0.151853   0.036323   4.181 3.03e-05 ***
## cmn_stoic      -0.005414   0.016044  -0.337   0.7358    
## genfin1        -0.260713   0.060318  -4.322 1.62e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.196 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.05622,    Adjusted R-squared:  0.05309 
## F-statistic: 17.98 on 7 and 2113 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance * 
##     genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8188 -0.6463  0.2127  0.9083  2.2244 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             4.42137    0.16616  26.609  < 2e-16 ***
## cmn_help               -0.12040    0.02302  -5.230 1.87e-07 ***
## genfin1                 0.07180    0.32495   0.221 0.825155    
## cmn_hetero              0.01653    0.01761   0.939 0.347913    
## cmn_importance         -0.12093    0.02649  -4.565 5.27e-06 ***
## cmn_violence            0.09403    0.03743   2.513 0.012060 *  
## cmn_risks               0.15937    0.04211   3.784 0.000158 ***
## cmn_stoic              -0.02032    0.01926  -1.055 0.291602    
## cmn_help:genfin1        0.04286    0.04300   0.997 0.319088    
## genfin1:cmn_hetero      0.03636    0.03253   1.118 0.263801    
## genfin1:cmn_importance -0.05637    0.04857  -1.161 0.245971    
## genfin1:cmn_violence   -0.14220    0.06549  -2.171 0.030024 *  
## genfin1:cmn_risks      -0.02799    0.08328  -0.336 0.736803    
## genfin1:cmn_stoic       0.03901    0.03508   1.112 0.266263    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.195 on 2107 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.06043,    Adjusted R-squared:  0.05463 
## F-statistic: 10.42 on 13 and 2107 DF,  p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

Y <- dm$belong2
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + 
##     cmn_risks + cmn_stoic + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7304 -0.7137  0.1595  0.9333  2.3728 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.54517    0.14154  32.112  < 2e-16 ***
## cmn_help       -0.12706    0.01908  -6.661 3.46e-11 ***
## cmn_hetero      0.03229    0.01453   2.223 0.026317 *  
## cmn_importance -0.12214    0.02174  -5.618 2.19e-08 ***
## cmn_violence    0.06315    0.03011   2.097 0.036102 *  
## cmn_risks       0.10130    0.03566   2.840 0.004550 ** 
## cmn_stoic       0.02408    0.01575   1.529 0.126434    
## genfin1        -0.20371    0.05922  -3.440 0.000594 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.174 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.05719,    Adjusted R-squared:  0.05406 
## F-statistic: 18.31 on 7 and 2113 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance * 
##     genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7922 -0.7131  0.1509  0.9233  2.4218 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             4.4694654  0.1627987  27.454  < 2e-16 ***
## cmn_help               -0.1361137  0.0225575  -6.034 1.88e-09 ***
## genfin1                -0.0131085  0.3183785  -0.041 0.967162    
## cmn_hetero              0.0167258  0.0172544   0.969 0.332474    
## cmn_importance         -0.1097277  0.0259514  -4.228 2.46e-05 ***
## cmn_violence            0.1333569  0.0366683   3.637 0.000283 ***
## cmn_risks               0.0916255  0.0412615   2.221 0.026484 *  
## cmn_stoic              -0.0009974  0.0188700  -0.053 0.957851    
## cmn_help:genfin1        0.0342446  0.0421347   0.813 0.416458    
## genfin1:cmn_hetero      0.0465312  0.0318729   1.460 0.144468    
## genfin1:cmn_importance -0.0438108  0.0475910  -0.921 0.357382    
## genfin1:cmn_violence   -0.2086403  0.0641662  -3.252 0.001166 ** 
## genfin1:cmn_risks       0.0401736  0.0815933   0.492 0.622513    
## genfin1:cmn_stoic       0.0696919  0.0343747   2.027 0.042745 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.171 on 2107 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.06533,    Adjusted R-squared:  0.05956 
## F-statistic: 11.33 on 13 and 2107 DF,  p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

Y <- dm$id
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + 
##     cmn_risks + cmn_stoic + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4245 -0.5402  0.0820  0.6555  2.0771 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.30490    0.10845  39.694  < 2e-16 ***
## cmn_help       -0.05683    0.01462  -3.888 0.000104 ***
## cmn_hetero      0.01978    0.01113   1.777 0.075779 .  
## cmn_importance -0.13100    0.01666  -7.863 5.91e-15 ***
## cmn_violence    0.04538    0.02307   1.967 0.049363 *  
## cmn_risks       0.11811    0.02733   4.322 1.62e-05 ***
## cmn_stoic       0.01570    0.01207   1.300 0.193577    
## genfin1        -0.14427    0.04538  -3.179 0.001498 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8999 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.05803,    Adjusted R-squared:  0.05491 
## F-statistic:  18.6 on 7 and 2113 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance * 
##     genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3977 -0.5386  0.0945  0.6461  2.0345 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             4.221539   0.124937  33.789  < 2e-16 ***
## cmn_help               -0.070147   0.017311  -4.052 5.26e-05 ***
## genfin1                 0.108984   0.244334   0.446 0.655611    
## cmn_hetero              0.016882   0.013242   1.275 0.202466    
## cmn_importance         -0.121944   0.019916  -6.123 1.09e-09 ***
## cmn_violence            0.088404   0.028140   3.142 0.001704 ** 
## cmn_risks               0.121193   0.031665   3.827 0.000133 ***
## cmn_stoic               0.001622   0.014481   0.112 0.910808    
## cmn_help:genfin1        0.048664   0.032336   1.505 0.132485    
## genfin1:cmn_hetero      0.004842   0.024460   0.198 0.843105    
## genfin1:cmn_importance -0.031406   0.036523  -0.860 0.389944    
## genfin1:cmn_violence   -0.131752   0.049243  -2.676 0.007519 ** 
## genfin1:cmn_risks      -0.011768   0.062617  -0.188 0.850946    
## genfin1:cmn_stoic       0.040171   0.026380   1.523 0.127967    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8987 on 2107 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.06321,    Adjusted R-squared:  0.05743 
## F-statistic: 10.94 on 13 and 2107 DF,  p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

Y <- dm$belong1
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8818 -0.5569  0.1913  0.7437  2.6469 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57718    0.15893   9.924  < 2e-16 ***
## car_fin      0.07653    0.02737   2.796  0.00522 ** 
## car_inno     0.60550    0.02977  20.342  < 2e-16 ***
## car_lead    -0.05764    0.02419  -2.383  0.01727 *  
## genfin1     -0.31487    0.05312  -5.928 3.57e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.097 on 2116 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2057, Adjusted R-squared:  0.2042 
## F-statistic:   137 on 4 and 2116 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8156 -0.5530  0.1863  0.7581  2.5884 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.804640   0.184592   9.776  < 2e-16 ***
## car_fin           0.074190   0.031777   2.335 0.019652 *  
## genfin1          -1.192298   0.360765  -3.305 0.000966 ***
## car_inno          0.583891   0.034705  16.824  < 2e-16 ***
## car_lead         -0.088894   0.028789  -3.088 0.002043 ** 
## car_fin:genfin1  -0.009596   0.062433  -0.154 0.877858    
## genfin1:car_inno  0.106804   0.067629   1.579 0.114427    
## genfin1:car_lead  0.110785   0.053108   2.086 0.037094 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.094 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2102, Adjusted R-squared:  0.2076 
## F-statistic: 80.32 on 7 and 2113 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

Y <- dm$belong2
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9675 -0.6848  0.1291  0.8332  2.6357 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.4100754  0.1634888  14.742  < 2e-16 ***
## car_fin     -0.0002179  0.0281588  -0.008    0.994    
## car_inno     0.4819622  0.0306205  15.740  < 2e-16 ***
## car_lead    -0.0250846  0.0248819  -1.008    0.313    
## genfin1     -0.2410332  0.0546400  -4.411 1.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.128 on 2116 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.129,  Adjusted R-squared:  0.1274 
## F-statistic: 78.36 on 4 and 2116 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9675 -0.6698  0.1344  0.8652  2.5372 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.44286    0.19018  12.845   <2e-16 ***
## car_fin           0.02558    0.03274   0.781   0.4348    
## genfin1          -0.41352    0.37169  -1.113   0.2660    
## car_inno          0.45631    0.03576  12.762   <2e-16 ***
## car_lead         -0.03498    0.02966  -1.179   0.2384    
## car_fin:genfin1  -0.10707    0.06432  -1.665   0.0961 .  
## genfin1:car_inno  0.10861    0.06968   1.559   0.1192    
## genfin1:car_lead  0.04525    0.05471   0.827   0.4083    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.127 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.1312, Adjusted R-squared:  0.1283 
## F-statistic: 45.59 on 7 and 2113 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

Y <- dm$id
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2549 -0.4935  0.0651  0.5664  2.3597 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.20087    0.11964  18.395  < 2e-16 ***
## car_fin      0.04022    0.02061   1.952   0.0511 .  
## car_inno     0.46656    0.02241  20.821  < 2e-16 ***
## car_lead    -0.04055    0.01821  -2.227   0.0261 *  
## genfin1     -0.17824    0.03999  -4.458 8.72e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8255 on 2116 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2062, Adjusted R-squared:  0.2047 
## F-statistic: 137.4 on 4 and 2116 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2512 -0.4999  0.0744  0.5707  2.2784 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.28722    0.13908  16.445   <2e-16 ***
## car_fin           0.04453    0.02394   1.860   0.0631 .  
## genfin1          -0.50896    0.27182  -1.872   0.0613 .  
## car_inno          0.46533    0.02615  17.796   <2e-16 ***
## car_lead         -0.06894    0.02169  -3.178   0.0015 ** 
## car_fin:genfin1  -0.02799    0.04704  -0.595   0.5519    
## genfin1:car_inno  0.02270    0.05096   0.445   0.6560    
## genfin1:car_lead  0.09888    0.04001   2.471   0.0135 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8245 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2093, Adjusted R-squared:  0.2067 
## F-statistic:  79.9 on 7 and 2113 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

Y <- dm$engpc
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3046 -0.6491  0.1531  0.7854  2.4226 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.42331    0.15252  15.888  < 2e-16 ***
## car_fin      0.04839    0.02627   1.842  0.06559 .  
## car_inno     0.44361    0.02857  15.529  < 2e-16 ***
## car_lead    -0.07059    0.02321  -3.041  0.00239 ** 
## genfin1     -0.28460    0.05097  -5.583 2.67e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.052 on 2116 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.1268, Adjusted R-squared:  0.1252 
## F-statistic: 76.83 on 4 and 2116 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3500 -0.6573  0.1573  0.7865  2.3324 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.50734    0.17731  14.141  < 2e-16 ***
## car_fin           0.06328    0.03052   2.073 0.038290 *  
## genfin1          -0.62358    0.34653  -1.800 0.072082 .  
## car_inno          0.43486    0.03334  13.045  < 2e-16 ***
## car_lead         -0.10266    0.02765  -3.712 0.000211 ***
## car_fin:genfin1  -0.07097    0.05997  -1.184 0.236738    
## genfin1:car_inno  0.05495    0.06496   0.846 0.397736    
## genfin1:car_lead  0.11562    0.05101   2.267 0.023520 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.051 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.1301, Adjusted R-squared:  0.1273 
## F-statistic: 45.16 on 7 and 2113 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

Y <- dm$engint
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7655 -0.4462  0.2248  0.5694  2.5256 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.27070    0.13331  17.034  < 2e-16 ***
## car_fin      0.09006    0.02296   3.923 9.04e-05 ***
## car_inno     0.57673    0.02497  23.099  < 2e-16 ***
## car_lead    -0.11173    0.02029  -5.507 4.09e-08 ***
## genfin1     -0.07702    0.04455  -1.729    0.084 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9198 on 2116 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2325, Adjusted R-squared:  0.231 
## F-statistic: 160.2 on 4 and 2116 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7683 -0.4343  0.2291  0.5568  2.4986 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       2.371802   0.155146  15.288  < 2e-16 ***
## car_fin           0.086199   0.026708   3.227  0.00127 ** 
## genfin1          -0.460260   0.303217  -1.518  0.12918    
## car_inno          0.571343   0.029169  19.587  < 2e-16 ***
## car_lead         -0.127433   0.024196  -5.267 1.53e-07 ***
## car_fin:genfin1   0.006643   0.052474   0.127  0.89927    
## genfin1:car_inno  0.031756   0.056841   0.559  0.57644    
## genfin1:car_lead  0.053983   0.044636   1.209  0.22664    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9197 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2337, Adjusted R-squared:  0.2311 
## F-statistic: 92.04 on 7 and 2113 DF,  p-value: < 2.2e-16
Y <- dm$engrec
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4418 -0.7369  0.0748  0.8346  3.1289 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.90860    0.17273  11.049  < 2e-16 ***
## car_fin     -0.01780    0.02975  -0.598  0.54977    
## car_inno     0.37933    0.03235  11.725  < 2e-16 ***
## car_lead     0.06067    0.02629   2.308  0.02111 *  
## genfin1     -0.17311    0.05773  -2.999  0.00274 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.192 on 2116 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.09266,    Adjusted R-squared:  0.09094 
## F-statistic: 54.02 on 4 and 2116 DF,  p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead * 
##     genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4552 -0.7284  0.0687  0.8419  3.0600 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.98252    0.20093   9.867   <2e-16 ***
## car_fin          -0.01590    0.03459  -0.460   0.6458    
## genfin1          -0.44304    0.39270  -1.128   0.2594    
## car_inno          0.38979    0.03778  10.318   <2e-16 ***
## car_lead          0.02329    0.03134   0.743   0.4575    
## car_fin:genfin1  -0.01964    0.06796  -0.289   0.7726    
## genfin1:car_inno -0.01860    0.07362  -0.253   0.8005    
## genfin1:car_lead  0.12704    0.05781   2.198   0.0281 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.191 on 2113 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.09497,    Adjusted R-squared:  0.09197 
## F-statistic: 31.68 on 7 and 2113 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

## 
## [[3]]

Y <- dm$belong1
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8450 -0.5205  0.1801  0.6795  2.9054 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.86866    0.14048   6.183 7.42e-10 ***
## engbel       0.04108    0.04593   0.894    0.371    
## engemp       0.70089    0.03929  17.841  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.018 on 2261 degrees of freedom
## Multiple R-squared:  0.3188, Adjusted R-squared:  0.3182 
## F-statistic:   529 on 2 and 2261 DF,  p-value: < 2.2e-16
plot_model(fit1, type="pred")
## $engbel

## 
## $engemp

fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5884 -0.5130  0.2116  0.6158  3.2477 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.95143    0.16800   5.663 1.69e-08 ***
## engbel          0.11386    0.05512   2.066   0.0390 *  
## genfin1        -0.63179    0.31835  -1.985   0.0473 *  
## engemp          0.62564    0.04679  13.372  < 2e-16 ***
## engbel:genfin1 -0.14098    0.10477  -1.346   0.1786    
## genfin1:engemp  0.21236    0.09017   2.355   0.0186 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.001 on 2115 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.3384, Adjusted R-squared:  0.3368 
## F-statistic: 216.4 on 5 and 2115 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

Y <- dm$belong2
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1916 -0.5346  0.1484  0.8084  2.8185 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.17147    0.14527   8.064 1.18e-15 ***
## engbel       0.19890    0.04750   4.187 2.93e-05 ***
## engemp       0.47112    0.04062  11.597  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.052 on 2261 degrees of freedom
## Multiple R-squared:  0.239,  Adjusted R-squared:  0.2383 
## F-statistic:   355 on 2 and 2261 DF,  p-value: < 2.2e-16
plot_model(fit1, type="pred")
## $engbel

## 
## $engemp

fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.1059 -0.5381  0.1536  0.7366  3.0409 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.17458    0.17457   6.728 2.20e-11 ***
## engbel          0.26114    0.05728   4.559 5.43e-06 ***
## genfin1        -0.36217    0.33081  -1.095   0.2737    
## engemp          0.42033    0.04862   8.646  < 2e-16 ***
## engbel:genfin1 -0.18283    0.10887  -1.679   0.0932 .  
## genfin1:engemp  0.21694    0.09369   2.315   0.0207 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.04 on 2115 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.2597, Adjusted R-squared:  0.258 
## F-statistic: 148.4 on 5 and 2115 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]

Y <- dm$id
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
## 
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6420 -0.4213  0.0719  0.5209  2.3605 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.41539    0.10341  13.687  < 2e-16 ***
## engbel       0.13151    0.03381   3.889 0.000103 ***
## engemp       0.47097    0.02892  16.287  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.749 on 2261 degrees of freedom
## Multiple R-squared:  0.3425, Adjusted R-squared:  0.3419 
## F-statistic: 588.8 on 2 and 2261 DF,  p-value: < 2.2e-16
plot_model(fit1, type="pred")
## $engbel

## 
## $engemp

fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
## 
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7013 -0.4303  0.0698  0.5204  2.4427 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     1.51458    0.12486  12.130  < 2e-16 ***
## engbel          0.17431    0.04097   4.255 2.18e-05 ***
## genfin1        -0.54998    0.23661  -2.324  0.02020 *  
## engemp          0.41572    0.03477  11.955  < 2e-16 ***
## engbel:genfin1 -0.09656    0.07787  -1.240  0.21513    
## genfin1:engemp  0.17632    0.06702   2.631  0.00858 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.744 on 2115 degrees of freedom
##   (143 observations deleted due to missingness)
## Multiple R-squared:  0.3555, Adjusted R-squared:  0.354 
## F-statistic: 233.3 on 5 and 2115 DF,  p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]

## 
## [[2]]