library(dplyr)
library(tidyr)
library(purrr)
library(DT)
surv <- read.csv(file="career_imp.csv", header=T)
surv$Litho <- trimws(surv$Litho, which=c("both"))
# calculate selected factors
surv$engpc <- (surv$Q3Eng_m + surv$Q3Eng_n + surv$Q3Eng_k)/3
surv$engint <- (surv$Q3Eng_i + surv$Q3Eng_h + surv$Q3Eng_j)/3
surv$engrec <- (surv$Q3Eng_f + surv$Q3Eng_e + surv$Q3Eng_d + surv$Q3Eng_g)/4
surv$belong1 <- (surv$Q4a + surv$Q4b + surv$Q4c + surv$Q4g + surv$Q4h)/5
surv$belong2 <- (surv$Q4e + surv$Q4f)/2
surv$engbel <- (surv$Q5d + surv$Q5h + surv$Q5g + surv$Q5e + surv$Q5b)/5
surv$engemp <- (surv$Q5a + surv$Q5c + surv$Q5f)/3
# subset needed columns
names(surv)
surv2 <- subset(surv, select=c(1,185:205,221:228,229:237,319:327,328:335,377:383))
head(surv2)
# calculate demographics
surv2$racenum <- as.numeric(surv2$Q30a) + as.numeric(surv2$Q30b) + as.numeric(surv2$Q30c) + as.numeric(surv2$Q30d) + as.numeric(surv2$Q30e) + as.numeric(surv2$Q30f) + as.numeric(surv2$Q30g) + as.numeric(surv2$Q30h)
surv2$raceeth[surv2$racenum == 0] <- NA
surv2$raceeth[surv2$racenum == 2] <- "Biracial"
surv2$raceeth[surv2$racenum > 2] <- "Multiracial"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30a == 1] <- "Asian"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30b == 1] <- "Black/AA"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30c == 1] <- "Latinx"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30d == 1] <- "MidEast"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30e == 1] <- "NH/PI"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30f == 1] <- "NA/AN"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30g == 1] <- "White"
surv2$raceeth[surv2$racenum == 1 & surv2$Q30h == 1] <- "WriteIn"
table(surv2$raceeth)
surv2$gennum <- as.numeric(surv2$Q31a) + as.numeric(surv2$Q31b) + as.numeric(surv2$Q31c) + as.numeric(surv2$Q31d) + as.numeric(surv2$Q31e) + as.numeric(surv2$Q31f) + as.numeric(surv2$Q31g)
table(surv2$gennum)
surv2$genid[surv2$gennum == 0] <- NA
surv2$genid[surv2$gennum > 1] <- "Multiple Options Selected"
surv2$genid[surv2$gennum == 1 & surv2$Q31a == 1] <- "Female"
surv2$genid[surv2$gennum == 1 & surv2$Q31b == 1] <- "Male"
surv2$genid[surv2$gennum == 1 & surv2$Q31c == 1] <- "Agender"
surv2$genid[surv2$gennum == 1 & surv2$Q31d == 1] <- "Genderqueer"
surv2$genid[surv2$gennum == 1 & surv2$Q31e == 1] <- "Cisgender"
surv2$genid[surv2$gennum == 1 & surv2$Q31f == 1] <- "Transgender"
surv2$genid[surv2$gennum == 1 & surv2$Q31g == 1] <- "Not Listed"
table(surv2$genid, useNA = "always")
names(surv2)
# write.csv(surv2, file="multi.csv", row.names = F)
temp <- read.csv(file="multi.csv", header=T)
gender <- cbind.data.frame(temp$Litho, temp$genid, temp$genid2)
# career priorities
colnames(surv2)[2:39] <- c("cmn1","cmn2","cmn3","cmn4","cmn5","cmn6","cmn7","cmn8","cmn9","cmn10","cmn11","cmn12","cmn13","cmn14","cmn15","cmn16","cmn17","cmn18","cmn19","cmn20","cmn21",
"career_money",
"career_known",
"career_helping",
"career_supervising",
"career_security",
"career_people",
"career_invent",
"career_developing",
"field_academia",
"field_industry",
"field_entre",
"field_govt",
"field_k12",
"field_law",
"field_med",
"field_nonprofit",
"field_other")
head(surv2)
names(surv2)
surv3 <- subset(surv2, select=c(1:39,57:63))
head(surv3)
names(surv3)
library(psych)
table(surv3$cmn3)
recodeme <- c(1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1)
surv4 <- surv3
surv4[2:22] <- reverse.code(recodeme, surv3[2:22])
head(surv4)
data <- surv4
rm(list=setdiff(ls(), c("data","gender")))
Q15. How important are the following factors for your future career satisfaction?
(Reverse-coded variables recoded before factor analysis.)
Several rows with same Litho number but not same values
rm(list=setdiff(ls(), c("data","gender")))
data$car_fin <- (data$career_security + data$career_money)/2
data$car_lead <- (data$career_known + data$career_supervising + data$career_people)/3
data$car_inno <- (data$career_invent + data$career_developing + data$career_helping)/3
data$cmn_stoic <- (data$cmn6 + data$cmn9)/2
data$cmn_hetero <- (data$cmn4 + data$cmn7)/2
data$cmn_risks <- (data$cmn3 + data$cmn18)/2
data$cmn_help <- (data$cmn21 + data$cmn17)/2
data$cmn_violence <- (data$cmn8 + data$cmn12)/2
data$cmn_importance <- (data$cmn11 + data$cmn16)/2
head(data)
## Litho cmn1 cmn2 cmn3 cmn4 cmn5 cmn6 cmn7 cmn8 cmn9 cmn10 cmn11 cmn12 cmn13
## 1 1028 1 3 3 6 4 4 6 4 3 5 1 4 1
## 2 1030 4 2 5 6 3 1 6 1 1 3 1 5 2
## 3 1029 3 6 6 6 3 0 6 3 0 6 0 6 6
## 4 1054 NA NA NA NA NA NA NA NA NA NA NA NA NA
## 5 1027 0 1 4 6 3 4 6 0 2 NA NA NA NA
## 6 1039 1 1 3 5 1 1 5 4 1 3 3 4 4
## cmn14 cmn15 cmn16 cmn17 cmn18 cmn19 cmn20 cmn21 career_money career_known
## 1 4 0 0 1 1 6 0 0 1 2
## 2 1 NA 2 4 4 2 1 4 4 4
## 3 3 0 0 0 3 6 3 0 NA NA
## 4 NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA
## 6 2 0 3 1 4 6 1 2 4 3
## career_helping career_supervising career_security career_people career_invent
## 1 5 5 5 5 5
## 2 5 2 4 4 4
## 3 NA NA NA NA NA
## 4 NA NA NA NA NA
## 5 NA NA NA NA NA
## 6 5 3 5 4 5
## career_developing field_academia field_industry field_entre field_govt
## 1 5 5 5 0 4
## 2 4 2 5 4 4
## 3 NA NA NA NA NA
## 4 NA NA NA NA NA
## 5 NA NA NA NA NA
## 6 5 5 5 1 1
## field_k12 field_law field_med field_nonprofit field_other engpc engint
## 1 0 3 3 4 5 4.000000 4.666667
## 2 1 4 4 1 5 4.333333 4.333333
## 3 NA NA NA NA NA 6.000000 6.000000
## 4 NA NA NA NA NA 4.666667 5.333333
## 5 NA NA NA NA NA 6.000000 5.333333
## 6 1 1 4 2 3 4.666667 5.333333
## engrec belong1 belong2 engbel engemp car_fin car_lead car_inno cmn_stoic
## 1 5.00 4.4 4.5 4.6 4.666667 3.0 4.000000 5.000000 3.5
## 2 4.00 3.6 4.5 5.8 5.000000 4.0 3.333333 4.333333 1.0
## 3 3.00 5.8 6.0 6.0 6.000000 NA NA NA 0.0
## 4 5.00 4.8 5.0 5.2 5.000000 NA NA NA NA
## 5 3.25 4.8 5.5 4.6 5.333333 NA NA NA 3.0
## 6 3.75 4.6 4.0 4.6 3.666667 4.5 3.333333 5.000000 1.0
## cmn_hetero cmn_risks cmn_help cmn_violence cmn_importance
## 1 6 2.0 0.5 4.0 0.5
## 2 6 4.5 4.0 3.0 1.5
## 3 6 4.5 0.0 4.5 0.0
## 4 NA NA NA NA NA
## 5 6 NA NA NA NA
## 6 5 3.5 1.5 4.0 3.0
data2 <- subset(data, Litho != 2564 & Litho != 7551 & Litho !=7713 & Litho !=7714 & Litho !=7717 & Litho !=8068 & Litho !=8090 & Litho !=6748 & Litho !=6798 & Litho !=6986 & Litho !=7111 & Litho !=7112 & Litho !=7113 & Litho !=7137 & Litho !=2360)
## Normality
d <- na.omit(subset(data2, select=c(1,40:55)))
library(psych)
norm <- describe(d)
norm
## vars n mean sd median trimmed mad min max
## Litho* 1 2344 4837.64 2155.76 5264.50 4895.19 2467.79 1002 8508
## engpc 2 2344 4.43 1.20 4.67 4.53 0.99 0 6
## engint 3 2344 5.02 1.17 5.33 5.23 0.99 0 6
## engrec 4 2344 3.79 1.30 4.00 3.86 1.48 0 6
## belong1 5 2344 4.53 1.32 4.80 4.70 1.19 0 6
## belong2 6 2344 4.53 1.27 5.00 4.66 1.48 0 6
## engbel 7 2344 5.28 0.85 5.60 5.42 0.59 0 6
## engemp 8 2344 4.96 1.03 5.00 5.10 0.99 0 6
## car_fin 9 2344 4.88 1.00 5.00 5.00 0.74 0 6
## car_lead 10 2344 3.56 1.18 3.67 3.57 0.99 0 6
## car_inno 11 2344 4.80 1.01 5.00 4.91 0.99 0 6
## cmn_stoic 12 2344 2.60 1.69 2.50 2.55 2.22 0 6
## cmn_hetero 13 2344 2.75 1.87 3.00 2.70 2.22 0 6
## cmn_risks 14 2344 3.31 0.77 3.00 3.27 0.74 0 6
## cmn_help 15 2344 2.49 1.45 2.50 2.46 1.48 0 6
## cmn_violence 16 2344 3.00 0.92 3.00 3.01 0.74 0 6
## cmn_importance 17 2344 2.13 1.28 2.00 2.09 1.48 0 6
## range skew kurtosis se
## Litho* 7506 -0.25 -1.17 44.53
## engpc 6 -0.91 1.02 0.02
## engint 6 -1.62 3.00 0.02
## engrec 6 -0.49 0.04 0.03
## belong1 6 -1.07 0.96 0.03
## belong2 6 -0.90 0.84 0.03
## engbel 6 -1.40 2.29 0.02
## engemp 6 -1.22 2.04 0.02
## car_fin 6 -1.29 2.59 0.02
## car_lead 6 -0.18 0.14 0.02
## car_inno 6 -1.13 2.26 0.02
## cmn_stoic 6 0.16 -0.85 0.03
## cmn_hetero 6 0.04 -1.06 0.04
## cmn_risks 6 0.33 1.67 0.02
## cmn_help 6 0.17 -0.54 0.03
## cmn_violence 6 -0.13 1.47 0.02
## cmn_importance 6 0.27 -0.28 0.03
datatable(norm) %>%
formatRound(1:13) %>%
formatStyle(11:12, color = styleInterval(c(-2, 2), c('red', 'black', 'red')))
## Detect Outliers
d1 <- na.omit(subset(data2, select=c(1,40:55)))
m_dist <- mahalanobis(d1[2:17], colMeans(d1[2:17]), cov(d1[2:17]))
d1$MD <- round(m_dist, 1)
plot(d1$MD)
abline(h = 40, col = "red")
d1$outlier <- "No"
d1$outlier[d1$MD > 40] <- "Yes"
table(d1$outlier)
##
## No Yes
## 2264 80
d$outlier <- d1$outlier
d4 <- subset(d, outlier == "No", select=c(1:17))
head(d4)
## Litho engpc engint engrec belong1 belong2 engbel engemp car_fin
## 1 1028 4.000000 4.666667 5.00 4.4 4.5 4.6 4.666667 3.0
## 2 1030 4.333333 4.333333 4.00 3.6 4.5 5.8 5.000000 4.0
## 6 1039 4.666667 5.333333 3.75 4.6 4.0 4.6 3.666667 4.5
## 7 1040 6.000000 6.000000 5.25 6.0 6.0 6.0 6.000000 6.0
## 17 1034 4.000000 6.000000 6.00 5.0 6.0 5.8 5.333333 6.0
## 19 1047 3.333333 4.333333 5.50 3.6 5.5 4.4 4.666667 0.5
## car_lead car_inno cmn_stoic cmn_hetero cmn_risks cmn_help cmn_violence
## 1 4.000000 5.000000 3.5 6.0 2.0 0.5 4.0
## 2 3.333333 4.333333 1.0 6.0 4.5 4.0 3.0
## 6 3.333333 5.000000 1.0 5.0 3.5 1.5 4.0
## 7 5.000000 5.000000 1.5 6.0 3.0 0.0 3.0
## 17 4.333333 6.000000 0.0 1.5 3.5 5.0 3.0
## 19 1.666667 4.666667 0.5 6.0 3.0 2.5 2.5
## cmn_importance
## 1 0.5
## 2 1.5
## 6 3.0
## 7 0.0
## 17 0.0
## 19 4.5
allcor <- corr.test(d4[2:17], use = "pairwise", adjust = "holm")
allcor_r <- data.frame(allcor$r)
datatable(allcor_r) %>%
formatRound(1:16) %>%
formatStyle(1:16, backgroundColor = styleInterval(.75, c(none, 'yellow')))
library(corrplot)
col4 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "#7FFF7F",
"cyan", "#007FFF", "blue", "#00007F"))
corrplot(allcor$r, p.mat = allcor$p, insig = "blank",
method = "color", order = "hclust", col = col4(10))
# detach("package:backports", unload=TRUE)
# remove.packages("sjPlot")
# install.packages("backports")
# library(devtools)
# devtools::install_github("strengejacke/strengejacke", force = TRUE)
# devtools::install_github("strengejacke/sjPlot")
library(strengejacke)
## # Attaching packages
## <U+2714> ggeffects 0.15.0 <U+2714> sjlabelled 1.1.6
## <U+2714> sjmisc 2.8.5 <U+2714> sjstats 0.18.0
## <U+2714> sjPlot 2.8.4.9000 <U+2714> esc 0.5.1
library(car)
d <- d4
d$id <- (d$engint + d$engrec + d$engpc)/3
Y <- d$belong1
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## cmn_help cmn_importance cmn_hetero cmn_risks cmn_violence
## 1.145039 1.141477 1.056639 1.077697 1.115018
## cmn_stoic
## 1.052574
sqrt(vif(fit)) > 2 # problem?
## cmn_help cmn_importance cmn_hetero cmn_risks cmn_violence
## FALSE FALSE FALSE FALSE FALSE
## cmn_stoic
## FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7334 -0.6400 0.2090 0.9107 2.1736
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.38865 0.13743 31.933 < 2e-16 ***
## cmn_help -0.10603 0.01893 -5.600 2.40e-08 ***
## cmn_importance -0.13192 0.02146 -6.147 9.31e-10 ***
## cmn_hetero 0.04847 0.01399 3.466 0.000538 ***
## cmn_risks 0.15530 0.03539 4.389 1.19e-05 ***
## cmn_violence 0.04752 0.02969 1.601 0.109624
## cmn_stoic -0.01623 0.01561 -1.040 0.298577
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.203 on 2257 degrees of freedom
## Multiple R-squared: 0.04917, Adjusted R-squared: 0.04664
## F-statistic: 19.45 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
##########
Y <- d$belong2
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## cmn_help cmn_importance cmn_hetero cmn_risks cmn_violence
## 1.145039 1.141477 1.056639 1.077697 1.115018
## cmn_stoic
## 1.052574
sqrt(vif(fit)) > 2 # problem?
## cmn_help cmn_importance cmn_hetero cmn_risks cmn_violence
## FALSE FALSE FALSE FALSE FALSE
## cmn_stoic
## FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6976 -0.7134 0.1594 0.9298 2.4560
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.41424 0.13418 32.897 < 2e-16 ***
## cmn_help -0.12715 0.01849 -6.878 7.82e-12 ***
## cmn_importance -0.11941 0.02095 -5.699 1.37e-08 ***
## cmn_hetero 0.04472 0.01366 3.275 0.00107 **
## cmn_risks 0.11010 0.03455 3.187 0.00146 **
## cmn_violence 0.07245 0.02899 2.499 0.01252 *
## cmn_stoic 0.01194 0.01524 0.784 0.43327
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.175 on 2257 degrees of freedom
## Multiple R-squared: 0.05308, Adjusted R-squared: 0.05057
## F-statistic: 21.09 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
##########
Y <- d$id
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## cmn_help cmn_importance cmn_hetero cmn_risks cmn_violence
## 1.145039 1.141477 1.056639 1.077697 1.115018
## cmn_stoic
## 1.052574
sqrt(vif(fit)) > 2 # problem?
## cmn_help cmn_importance cmn_hetero cmn_risks cmn_violence
## FALSE FALSE FALSE FALSE FALSE
## cmn_stoic
## FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3844 -0.5391 0.0851 0.6391 2.0671
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.23226 0.10276 41.184 < 2e-16 ***
## cmn_help -0.05746 0.01416 -4.059 5.10e-05 ***
## cmn_importance -0.12350 0.01605 -7.696 2.08e-14 ***
## cmn_hetero 0.03211 0.01046 3.070 0.00217 **
## cmn_risks 0.11714 0.02646 4.427 1.00e-05 ***
## cmn_violence 0.04727 0.02220 2.129 0.03335 *
## cmn_stoic 0.00882 0.01167 0.756 0.44990
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8997 on 2257 degrees of freedom
## Multiple R-squared: 0.053, Adjusted R-squared: 0.05049
## F-statistic: 21.05 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
##########
Y <- d$engbel
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4154 -0.4042 0.2231 0.5843 1.4716
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.239766 0.090011 58.212 < 2e-16 ***
## cmn_help -0.046949 0.012400 -3.786 0.000157 ***
## cmn_importance -0.135742 0.014056 -9.657 < 2e-16 ***
## cmn_hetero -0.023310 0.009160 -2.545 0.011005 *
## cmn_risks 0.105457 0.023176 4.550 5.64e-06 ***
## cmn_violence 0.058302 0.019446 2.998 0.002747 **
## cmn_stoic -0.002147 0.010223 -0.210 0.833671
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.788 on 2257 degrees of freedom
## Multiple R-squared: 0.0678, Adjusted R-squared: 0.06533
## F-statistic: 27.36 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
Y <- d$engemp
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3373 -0.5782 0.1774 0.7117 1.7208
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.94424 0.10486 47.149 < 2e-16 ***
## cmn_help -0.07151 0.01445 -4.950 7.98e-07 ***
## cmn_importance -0.15889 0.01638 -9.703 < 2e-16 ***
## cmn_hetero -0.00746 0.01067 -0.699 0.4846
## cmn_risks 0.12092 0.02700 4.478 7.90e-06 ***
## cmn_violence 0.04553 0.02266 2.010 0.0446 *
## cmn_stoic 0.02304 0.01191 1.935 0.0531 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.918 on 2257 degrees of freedom
## Multiple R-squared: 0.07457, Adjusted R-squared: 0.07211
## F-statistic: 30.31 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
##########
Y <- d$belong1
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## car_fin car_inno car_lead
## 1.165696 1.295058 1.340127
sqrt(vif(fit)) > 2 # problem?
## car_fin car_inno car_lead
## FALSE FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7896 -0.5635 0.1918 0.7604 3.2457
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57589 0.15295 10.303 < 2e-16 ***
## car_fin 0.07127 0.02660 2.679 0.00744 **
## car_inno 0.59277 0.02876 20.610 < 2e-16 ***
## car_lead -0.05701 0.02370 -2.405 0.01625 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 2260 degrees of freedom
## Multiple R-squared: 0.1933, Adjusted R-squared: 0.1922
## F-statistic: 180.5 on 3 and 2260 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin
##
## $car_inno
##
## $car_lead
Y <- d$belong2
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## car_fin car_inno car_lead
## 1.165696 1.295058 1.340127
sqrt(vif(fit)) > 2 # problem?
## car_fin car_inno car_lead
## FALSE FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1075 -0.6653 0.1552 0.8909 2.6937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.446587 0.156352 15.648 <2e-16 ***
## car_fin -0.009334 0.027196 -0.343 0.731
## car_inno 0.466935 0.029400 15.882 <2e-16 ***
## car_lead -0.023102 0.024232 -0.953 0.340
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.132 on 2260 degrees of freedom
## Multiple R-squared: 0.1193, Adjusted R-squared: 0.1182
## F-statistic: 102.1 on 3 and 2260 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin
##
## $car_inno
##
## $car_lead
Y <- d$id
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
# diagnostics
layout(matrix(c(1,2,3,4),2,2))
plot(fit)
layout(matrix(c(1), byrow = TRUE))
# Evaluate Collinearity
vif(fit) # variance inflation factors
## car_fin car_inno car_lead
## 1.165696 1.295058 1.340127
sqrt(vif(fit)) > 2 # problem?
## car_fin car_inno car_lead
## FALSE FALSE FALSE
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2209 -0.4910 0.0846 0.5642 2.8682
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.25379 0.11450 19.684 <2e-16 ***
## car_fin 0.03279 0.01992 1.646 0.0998 .
## car_inno 0.45001 0.02153 20.901 <2e-16 ***
## car_lead -0.03558 0.01775 -2.005 0.0451 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8291 on 2260 degrees of freedom
## Multiple R-squared: 0.1947, Adjusted R-squared: 0.1936
## F-statistic: 182.1 on 3 and 2260 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin
##
## $car_inno
##
## $car_lead
Y <- d$engbel
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4476 -0.3692 0.1582 0.4794 1.9265
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.08004 0.10026 30.722 < 2e-16 ***
## car_fin 0.12566 0.01744 7.206 7.81e-13 ***
## car_inno 0.38740 0.01885 20.549 < 2e-16 ***
## car_lead -0.07918 0.01554 -5.096 3.76e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7259 on 2260 degrees of freedom
## Multiple R-squared: 0.2078, Adjusted R-squared: 0.2068
## F-statistic: 197.6 on 3 and 2260 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin
##
## $car_inno
##
## $car_lead
Y <- d$engemp
fit <- lm(Y ~ car_fin + car_inno + car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4598 -0.4912 0.1083 0.5283 2.5703
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.24104 0.11292 19.847 < 2e-16 ***
## car_fin 0.07022 0.01964 3.575 0.000357 ***
## car_inno 0.52864 0.02123 24.897 < 2e-16 ***
## car_lead -0.03963 0.01750 -2.265 0.023627 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8176 on 2260 degrees of freedom
## Multiple R-squared: 0.265, Adjusted R-squared: 0.264
## F-statistic: 271.6 on 3 and 2260 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred") #output
## $car_fin
##
## $car_inno
##
## $car_lead
###############################################
describe(d)
## vars n mean sd median trimmed mad min max
## Litho* 1 2264 4823.86 2153.81 5255.50 4880.11 2460.37 1002.00 8508
## engpc 2 2264 4.48 1.13 4.67 4.56 0.99 0.00 6
## engint 3 2264 5.09 1.05 5.33 5.27 0.99 0.00 6
## engrec 4 2264 3.84 1.25 4.00 3.89 1.48 0.00 6
## belong1 5 2264 4.59 1.23 4.80 4.74 1.19 0.00 6
## belong2 6 2264 4.58 1.21 5.00 4.69 1.48 0.00 6
## engbel 7 2264 5.29 0.82 5.60 5.42 0.59 1.00 6
## engemp 8 2264 5.01 0.95 5.00 5.12 0.99 0.67 6
## car_fin 9 2264 4.90 0.94 5.00 5.01 0.74 0.00 6
## car_lead 10 2264 3.59 1.14 3.67 3.60 0.99 0.00 6
## car_inno 11 2264 4.85 0.92 5.00 4.93 0.99 0.33 6
## cmn_stoic 12 2264 2.58 1.66 2.50 2.54 2.22 0.00 6
## cmn_hetero 13 2264 2.75 1.86 3.00 2.71 2.22 0.00 6
## cmn_risks 14 2264 3.31 0.74 3.00 3.28 0.74 0.50 6
## cmn_help 15 2264 2.47 1.43 2.50 2.45 1.48 0.00 6
## cmn_violence 16 2264 2.99 0.90 3.00 3.01 0.74 0.00 6
## cmn_importance 17 2264 2.12 1.26 2.00 2.08 1.48 0.00 6
## id 18 2264 4.47 0.92 4.58 4.52 0.95 0.00 6
## range skew kurtosis se
## Litho* 7506.00 -0.25 -1.17 45.27
## engpc 6.00 -0.73 0.50 0.02
## engint 6.00 -1.39 2.01 0.02
## engrec 6.00 -0.42 -0.01 0.03
## belong1 6.00 -0.98 0.76 0.03
## belong2 6.00 -0.77 0.48 0.03
## engbel 5.00 -1.24 1.27 0.02
## engemp 5.33 -0.91 0.52 0.02
## car_fin 6.00 -1.07 1.54 0.02
## car_lead 6.00 -0.09 -0.02 0.02
## car_inno 5.67 -0.70 0.19 0.02
## cmn_stoic 6.00 0.16 -0.84 0.03
## cmn_hetero 6.00 0.04 -1.05 0.04
## cmn_risks 5.50 0.31 1.40 0.02
## cmn_help 6.00 0.15 -0.55 0.03
## cmn_violence 6.00 -0.16 1.54 0.02
## cmn_importance 6.00 0.26 -0.31 0.03
## id 6.00 -0.69 0.71 0.02
Y <- d$car_fin
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7251 -0.5084 0.1307 0.6859 1.7976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.51642 0.10568 42.737 < 2e-16 ***
## cmn_help 0.02163 0.01456 1.486 0.1374
## cmn_importance -0.12773 0.01650 -7.740 1.49e-14 ***
## cmn_hetero 0.02386 0.01075 2.219 0.0266 *
## cmn_risks 0.15081 0.02721 5.542 3.33e-08 ***
## cmn_violence 0.03441 0.02283 1.507 0.1319
## cmn_stoic -0.02653 0.01200 -2.210 0.0272 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9252 on 2257 degrees of freedom
## Multiple R-squared: 0.0437, Adjusted R-squared: 0.04115
## F-statistic: 17.19 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred")
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
Y <- d$car_inno
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5013 -0.5753 0.1009 0.6696 1.7824
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.562415 0.101220 45.074 < 2e-16 ***
## cmn_help -0.089168 0.013945 -6.394 1.95e-10 ***
## cmn_importance -0.100911 0.015806 -6.384 2.08e-10 ***
## cmn_hetero -0.009925 0.010301 -0.964 0.335
## cmn_risks 0.157212 0.026063 6.032 1.89e-09 ***
## cmn_violence 0.025517 0.021868 1.167 0.243
## cmn_stoic 0.058759 0.011496 5.111 3.47e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8861 on 2257 degrees of freedom
## Multiple R-squared: 0.07708, Adjusted R-squared: 0.07462
## F-statistic: 31.42 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred")
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
Y <- d$car_lead
fit <- lm(Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks + cmn_violence + cmn_stoic, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_importance + cmn_hetero + cmn_risks +
## cmn_violence + cmn_stoic, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4881 -0.6687 -0.0074 0.6968 2.9761
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.78883 0.12170 22.916 < 2e-16 ***
## cmn_help -0.02499 0.01677 -1.491 0.136
## cmn_importance -0.20497 0.01900 -10.785 < 2e-16 ***
## cmn_hetero 0.07368 0.01239 5.949 3.12e-09 ***
## cmn_risks 0.21088 0.03134 6.730 2.15e-11 ***
## cmn_violence 0.02639 0.02629 1.004 0.316
## cmn_stoic 0.12288 0.01382 8.890 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.065 on 2257 degrees of freedom
## Multiple R-squared: 0.1242, Adjusted R-squared: 0.1219
## F-statistic: 53.34 on 6 and 2257 DF, p-value: < 2.2e-16
plot_model(fit, type = "pred")
## $cmn_help
##
## $cmn_importance
##
## $cmn_hetero
##
## $cmn_risks
##
## $cmn_violence
##
## $cmn_stoic
Y <- d$belong1
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7896 -0.5635 0.1918 0.7604 3.2457
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57589 0.15295 10.303 < 2e-16 ***
## d$car_fin 0.07127 0.02660 2.679 0.00744 **
## d$car_inno 0.59277 0.02876 20.610 < 2e-16 ***
## d$car_lead -0.05701 0.02370 -2.405 0.01625 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.108 on 2260 degrees of freedom
## Multiple R-squared: 0.1933, Adjusted R-squared: 0.1922
## F-statistic: 180.5 on 3 and 2260 DF, p-value: < 2.2e-16
Y <- d$belong2
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1075 -0.6653 0.1552 0.8909 2.6937
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.446587 0.156352 15.648 <2e-16 ***
## d$car_fin -0.009334 0.027196 -0.343 0.731
## d$car_inno 0.466935 0.029400 15.882 <2e-16 ***
## d$car_lead -0.023102 0.024232 -0.953 0.340
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.132 on 2260 degrees of freedom
## Multiple R-squared: 0.1193, Adjusted R-squared: 0.1182
## F-statistic: 102.1 on 3 and 2260 DF, p-value: < 2.2e-16
Y <- d$id
fit <- lm(Y ~ d$car_fin + d$car_inno + d$car_lead, d=d)
summary(fit)
##
## Call:
## lm(formula = Y ~ d$car_fin + d$car_inno + d$car_lead, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2209 -0.4910 0.0846 0.5642 2.8682
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.25379 0.11450 19.684 <2e-16 ***
## d$car_fin 0.03279 0.01992 1.646 0.0998 .
## d$car_inno 0.45001 0.02153 20.901 <2e-16 ***
## d$car_lead -0.03558 0.01775 -2.005 0.0451 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8291 on 2260 degrees of freedom
## Multiple R-squared: 0.1947, Adjusted R-squared: 0.1936
## F-statistic: 182.1 on 3 and 2260 DF, p-value: < 2.2e-16
colnames(gender) <- c("Litho","genid","genid2")
dm <- merge(d, gender, by = "Litho", all.x = T)
table(dm$genid)
##
## Agender Cisgender Female
## 2 1 550
## Genderqueer Male Multiple Options Selected
## 3 1526 14
## Not Listed Transgender
## 26 3
dm$genfin[dm$genid == "Male"] <- 0 #male
dm$genfin[dm$genid == "Agender" | dm$genid == "Genderqueer" | dm$genid == "Multiple Options Selected" | dm$genid == "Not Listed" | dm$genid == "Female"] <- 1 #women and non-binary
dm$genfin <- as.factor(dm$genfin)
table(dm$genfin, useNA = "always")
##
## 0 1 <NA>
## 1526 595 143
Y <- dm$belong1
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence +
## cmn_risks + cmn_stoic + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7858 -0.6571 0.2196 0.9089 2.1414
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.518286 0.144159 31.342 < 2e-16 ***
## cmn_help -0.107886 0.019428 -5.553 3.16e-08 ***
## cmn_hetero 0.028563 0.014796 1.931 0.0537 .
## cmn_importance -0.136660 0.022145 -6.171 8.10e-10 ***
## cmn_violence 0.047022 0.030672 1.533 0.1254
## cmn_risks 0.151853 0.036323 4.181 3.03e-05 ***
## cmn_stoic -0.005414 0.016044 -0.337 0.7358
## genfin1 -0.260713 0.060318 -4.322 1.62e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.196 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.05622, Adjusted R-squared: 0.05309
## F-statistic: 17.98 on 7 and 2113 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance *
## genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8188 -0.6463 0.2127 0.9083 2.2244
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.42137 0.16616 26.609 < 2e-16 ***
## cmn_help -0.12040 0.02302 -5.230 1.87e-07 ***
## genfin1 0.07180 0.32495 0.221 0.825155
## cmn_hetero 0.01653 0.01761 0.939 0.347913
## cmn_importance -0.12093 0.02649 -4.565 5.27e-06 ***
## cmn_violence 0.09403 0.03743 2.513 0.012060 *
## cmn_risks 0.15937 0.04211 3.784 0.000158 ***
## cmn_stoic -0.02032 0.01926 -1.055 0.291602
## cmn_help:genfin1 0.04286 0.04300 0.997 0.319088
## genfin1:cmn_hetero 0.03636 0.03253 1.118 0.263801
## genfin1:cmn_importance -0.05637 0.04857 -1.161 0.245971
## genfin1:cmn_violence -0.14220 0.06549 -2.171 0.030024 *
## genfin1:cmn_risks -0.02799 0.08328 -0.336 0.736803
## genfin1:cmn_stoic 0.03901 0.03508 1.112 0.266263
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.195 on 2107 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.06043, Adjusted R-squared: 0.05463
## F-statistic: 10.42 on 13 and 2107 DF, p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
Y <- dm$belong2
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence +
## cmn_risks + cmn_stoic + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7304 -0.7137 0.1595 0.9333 2.3728
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.54517 0.14154 32.112 < 2e-16 ***
## cmn_help -0.12706 0.01908 -6.661 3.46e-11 ***
## cmn_hetero 0.03229 0.01453 2.223 0.026317 *
## cmn_importance -0.12214 0.02174 -5.618 2.19e-08 ***
## cmn_violence 0.06315 0.03011 2.097 0.036102 *
## cmn_risks 0.10130 0.03566 2.840 0.004550 **
## cmn_stoic 0.02408 0.01575 1.529 0.126434
## genfin1 -0.20371 0.05922 -3.440 0.000594 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.174 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.05719, Adjusted R-squared: 0.05406
## F-statistic: 18.31 on 7 and 2113 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance *
## genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7922 -0.7131 0.1509 0.9233 2.4218
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.4694654 0.1627987 27.454 < 2e-16 ***
## cmn_help -0.1361137 0.0225575 -6.034 1.88e-09 ***
## genfin1 -0.0131085 0.3183785 -0.041 0.967162
## cmn_hetero 0.0167258 0.0172544 0.969 0.332474
## cmn_importance -0.1097277 0.0259514 -4.228 2.46e-05 ***
## cmn_violence 0.1333569 0.0366683 3.637 0.000283 ***
## cmn_risks 0.0916255 0.0412615 2.221 0.026484 *
## cmn_stoic -0.0009974 0.0188700 -0.053 0.957851
## cmn_help:genfin1 0.0342446 0.0421347 0.813 0.416458
## genfin1:cmn_hetero 0.0465312 0.0318729 1.460 0.144468
## genfin1:cmn_importance -0.0438108 0.0475910 -0.921 0.357382
## genfin1:cmn_violence -0.2086403 0.0641662 -3.252 0.001166 **
## genfin1:cmn_risks 0.0401736 0.0815933 0.492 0.622513
## genfin1:cmn_stoic 0.0696919 0.0343747 2.027 0.042745 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.171 on 2107 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.06533, Adjusted R-squared: 0.05956
## F-statistic: 11.33 on 13 and 2107 DF, p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
Y <- dm$id
fit1 <- lm(Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence + cmn_risks + cmn_stoic + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ cmn_help + cmn_hetero + cmn_importance + cmn_violence +
## cmn_risks + cmn_stoic + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4245 -0.5402 0.0820 0.6555 2.0771
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.30490 0.10845 39.694 < 2e-16 ***
## cmn_help -0.05683 0.01462 -3.888 0.000104 ***
## cmn_hetero 0.01978 0.01113 1.777 0.075779 .
## cmn_importance -0.13100 0.01666 -7.863 5.91e-15 ***
## cmn_violence 0.04538 0.02307 1.967 0.049363 *
## cmn_risks 0.11811 0.02733 4.322 1.62e-05 ***
## cmn_stoic 0.01570 0.01207 1.300 0.193577
## genfin1 -0.14427 0.04538 -3.179 0.001498 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8999 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.05803, Adjusted R-squared: 0.05491
## F-statistic: 18.6 on 7 and 2113 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ cmn_help*genfin + cmn_hetero*genfin + cmn_importance*genfin + cmn_violence*genfin + cmn_risks*genfin + cmn_stoic*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ cmn_help * genfin + cmn_hetero * genfin + cmn_importance *
## genfin + cmn_violence * genfin + cmn_risks * genfin + cmn_stoic *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3977 -0.5386 0.0945 0.6461 2.0345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.221539 0.124937 33.789 < 2e-16 ***
## cmn_help -0.070147 0.017311 -4.052 5.26e-05 ***
## genfin1 0.108984 0.244334 0.446 0.655611
## cmn_hetero 0.016882 0.013242 1.275 0.202466
## cmn_importance -0.121944 0.019916 -6.123 1.09e-09 ***
## cmn_violence 0.088404 0.028140 3.142 0.001704 **
## cmn_risks 0.121193 0.031665 3.827 0.000133 ***
## cmn_stoic 0.001622 0.014481 0.112 0.910808
## cmn_help:genfin1 0.048664 0.032336 1.505 0.132485
## genfin1:cmn_hetero 0.004842 0.024460 0.198 0.843105
## genfin1:cmn_importance -0.031406 0.036523 -0.860 0.389944
## genfin1:cmn_violence -0.131752 0.049243 -2.676 0.007519 **
## genfin1:cmn_risks -0.011768 0.062617 -0.188 0.850946
## genfin1:cmn_stoic 0.040171 0.026380 1.523 0.127967
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8987 on 2107 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.06321, Adjusted R-squared: 0.05743
## F-statistic: 10.94 on 13 and 2107 DF, p-value: < 2.2e-16
plot_model(fit2, type = "int")
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
Y <- dm$belong1
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8818 -0.5569 0.1913 0.7437 2.6469
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.57718 0.15893 9.924 < 2e-16 ***
## car_fin 0.07653 0.02737 2.796 0.00522 **
## car_inno 0.60550 0.02977 20.342 < 2e-16 ***
## car_lead -0.05764 0.02419 -2.383 0.01727 *
## genfin1 -0.31487 0.05312 -5.928 3.57e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.097 on 2116 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2057, Adjusted R-squared: 0.2042
## F-statistic: 137 on 4 and 2116 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8156 -0.5530 0.1863 0.7581 2.5884
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.804640 0.184592 9.776 < 2e-16 ***
## car_fin 0.074190 0.031777 2.335 0.019652 *
## genfin1 -1.192298 0.360765 -3.305 0.000966 ***
## car_inno 0.583891 0.034705 16.824 < 2e-16 ***
## car_lead -0.088894 0.028789 -3.088 0.002043 **
## car_fin:genfin1 -0.009596 0.062433 -0.154 0.877858
## genfin1:car_inno 0.106804 0.067629 1.579 0.114427
## genfin1:car_lead 0.110785 0.053108 2.086 0.037094 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.094 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2102, Adjusted R-squared: 0.2076
## F-statistic: 80.32 on 7 and 2113 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$belong2
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9675 -0.6848 0.1291 0.8332 2.6357
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4100754 0.1634888 14.742 < 2e-16 ***
## car_fin -0.0002179 0.0281588 -0.008 0.994
## car_inno 0.4819622 0.0306205 15.740 < 2e-16 ***
## car_lead -0.0250846 0.0248819 -1.008 0.313
## genfin1 -0.2410332 0.0546400 -4.411 1.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.128 on 2116 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.129, Adjusted R-squared: 0.1274
## F-statistic: 78.36 on 4 and 2116 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9675 -0.6698 0.1344 0.8652 2.5372
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.44286 0.19018 12.845 <2e-16 ***
## car_fin 0.02558 0.03274 0.781 0.4348
## genfin1 -0.41352 0.37169 -1.113 0.2660
## car_inno 0.45631 0.03576 12.762 <2e-16 ***
## car_lead -0.03498 0.02966 -1.179 0.2384
## car_fin:genfin1 -0.10707 0.06432 -1.665 0.0961 .
## genfin1:car_inno 0.10861 0.06968 1.559 0.1192
## genfin1:car_lead 0.04525 0.05471 0.827 0.4083
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.127 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.1312, Adjusted R-squared: 0.1283
## F-statistic: 45.59 on 7 and 2113 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$id
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2549 -0.4935 0.0651 0.5664 2.3597
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.20087 0.11964 18.395 < 2e-16 ***
## car_fin 0.04022 0.02061 1.952 0.0511 .
## car_inno 0.46656 0.02241 20.821 < 2e-16 ***
## car_lead -0.04055 0.01821 -2.227 0.0261 *
## genfin1 -0.17824 0.03999 -4.458 8.72e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8255 on 2116 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2062, Adjusted R-squared: 0.2047
## F-statistic: 137.4 on 4 and 2116 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2512 -0.4999 0.0744 0.5707 2.2784
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.28722 0.13908 16.445 <2e-16 ***
## car_fin 0.04453 0.02394 1.860 0.0631 .
## genfin1 -0.50896 0.27182 -1.872 0.0613 .
## car_inno 0.46533 0.02615 17.796 <2e-16 ***
## car_lead -0.06894 0.02169 -3.178 0.0015 **
## car_fin:genfin1 -0.02799 0.04704 -0.595 0.5519
## genfin1:car_inno 0.02270 0.05096 0.445 0.6560
## genfin1:car_lead 0.09888 0.04001 2.471 0.0135 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8245 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2093, Adjusted R-squared: 0.2067
## F-statistic: 79.9 on 7 and 2113 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$engpc
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3046 -0.6491 0.1531 0.7854 2.4226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.42331 0.15252 15.888 < 2e-16 ***
## car_fin 0.04839 0.02627 1.842 0.06559 .
## car_inno 0.44361 0.02857 15.529 < 2e-16 ***
## car_lead -0.07059 0.02321 -3.041 0.00239 **
## genfin1 -0.28460 0.05097 -5.583 2.67e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.052 on 2116 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.1268, Adjusted R-squared: 0.1252
## F-statistic: 76.83 on 4 and 2116 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3500 -0.6573 0.1573 0.7865 2.3324
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.50734 0.17731 14.141 < 2e-16 ***
## car_fin 0.06328 0.03052 2.073 0.038290 *
## genfin1 -0.62358 0.34653 -1.800 0.072082 .
## car_inno 0.43486 0.03334 13.045 < 2e-16 ***
## car_lead -0.10266 0.02765 -3.712 0.000211 ***
## car_fin:genfin1 -0.07097 0.05997 -1.184 0.236738
## genfin1:car_inno 0.05495 0.06496 0.846 0.397736
## genfin1:car_lead 0.11562 0.05101 2.267 0.023520 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.051 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.1301, Adjusted R-squared: 0.1273
## F-statistic: 45.16 on 7 and 2113 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$engint
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7655 -0.4462 0.2248 0.5694 2.5256
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.27070 0.13331 17.034 < 2e-16 ***
## car_fin 0.09006 0.02296 3.923 9.04e-05 ***
## car_inno 0.57673 0.02497 23.099 < 2e-16 ***
## car_lead -0.11173 0.02029 -5.507 4.09e-08 ***
## genfin1 -0.07702 0.04455 -1.729 0.084 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9198 on 2116 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2325, Adjusted R-squared: 0.231
## F-statistic: 160.2 on 4 and 2116 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7683 -0.4343 0.2291 0.5568 2.4986
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.371802 0.155146 15.288 < 2e-16 ***
## car_fin 0.086199 0.026708 3.227 0.00127 **
## genfin1 -0.460260 0.303217 -1.518 0.12918
## car_inno 0.571343 0.029169 19.587 < 2e-16 ***
## car_lead -0.127433 0.024196 -5.267 1.53e-07 ***
## car_fin:genfin1 0.006643 0.052474 0.127 0.89927
## genfin1:car_inno 0.031756 0.056841 0.559 0.57644
## genfin1:car_lead 0.053983 0.044636 1.209 0.22664
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9197 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2337, Adjusted R-squared: 0.2311
## F-statistic: 92.04 on 7 and 2113 DF, p-value: < 2.2e-16
Y <- dm$engrec
fit1 <- lm(Y ~ car_fin + car_inno + car_lead + genfin, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ car_fin + car_inno + car_lead + genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4418 -0.7369 0.0748 0.8346 3.1289
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.90860 0.17273 11.049 < 2e-16 ***
## car_fin -0.01780 0.02975 -0.598 0.54977
## car_inno 0.37933 0.03235 11.725 < 2e-16 ***
## car_lead 0.06067 0.02629 2.308 0.02111 *
## genfin1 -0.17311 0.05773 -2.999 0.00274 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.192 on 2116 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.09266, Adjusted R-squared: 0.09094
## F-statistic: 54.02 on 4 and 2116 DF, p-value: < 2.2e-16
fit2 <- lm(Y ~ car_fin*genfin + car_inno*genfin + car_lead*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ car_fin * genfin + car_inno * genfin + car_lead *
## genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4552 -0.7284 0.0687 0.8419 3.0600
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.98252 0.20093 9.867 <2e-16 ***
## car_fin -0.01590 0.03459 -0.460 0.6458
## genfin1 -0.44304 0.39270 -1.128 0.2594
## car_inno 0.38979 0.03778 10.318 <2e-16 ***
## car_lead 0.02329 0.03134 0.743 0.4575
## car_fin:genfin1 -0.01964 0.06796 -0.289 0.7726
## genfin1:car_inno -0.01860 0.07362 -0.253 0.8005
## genfin1:car_lead 0.12704 0.05781 2.198 0.0281 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.191 on 2113 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.09497, Adjusted R-squared: 0.09197
## F-statistic: 31.68 on 7 and 2113 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
##
## [[3]]
Y <- dm$belong1
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8450 -0.5205 0.1801 0.6795 2.9054
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.86866 0.14048 6.183 7.42e-10 ***
## engbel 0.04108 0.04593 0.894 0.371
## engemp 0.70089 0.03929 17.841 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.018 on 2261 degrees of freedom
## Multiple R-squared: 0.3188, Adjusted R-squared: 0.3182
## F-statistic: 529 on 2 and 2261 DF, p-value: < 2.2e-16
plot_model(fit1, type="pred")
## $engbel
##
## $engemp
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5884 -0.5130 0.2116 0.6158 3.2477
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.95143 0.16800 5.663 1.69e-08 ***
## engbel 0.11386 0.05512 2.066 0.0390 *
## genfin1 -0.63179 0.31835 -1.985 0.0473 *
## engemp 0.62564 0.04679 13.372 < 2e-16 ***
## engbel:genfin1 -0.14098 0.10477 -1.346 0.1786
## genfin1:engemp 0.21236 0.09017 2.355 0.0186 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.001 on 2115 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.3384, Adjusted R-squared: 0.3368
## F-statistic: 216.4 on 5 and 2115 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$belong2
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1916 -0.5346 0.1484 0.8084 2.8185
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17147 0.14527 8.064 1.18e-15 ***
## engbel 0.19890 0.04750 4.187 2.93e-05 ***
## engemp 0.47112 0.04062 11.597 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.052 on 2261 degrees of freedom
## Multiple R-squared: 0.239, Adjusted R-squared: 0.2383
## F-statistic: 355 on 2 and 2261 DF, p-value: < 2.2e-16
plot_model(fit1, type="pred")
## $engbel
##
## $engemp
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.1059 -0.5381 0.1536 0.7366 3.0409
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.17458 0.17457 6.728 2.20e-11 ***
## engbel 0.26114 0.05728 4.559 5.43e-06 ***
## genfin1 -0.36217 0.33081 -1.095 0.2737
## engemp 0.42033 0.04862 8.646 < 2e-16 ***
## engbel:genfin1 -0.18283 0.10887 -1.679 0.0932 .
## genfin1:engemp 0.21694 0.09369 2.315 0.0207 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.04 on 2115 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.2597, Adjusted R-squared: 0.258
## F-statistic: 148.4 on 5 and 2115 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]
Y <- dm$id
fit1 <- lm(Y ~ engbel + engemp, d=dm)
summary(fit1)
##
## Call:
## lm(formula = Y ~ engbel + engemp, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6420 -0.4213 0.0719 0.5209 2.3605
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.41539 0.10341 13.687 < 2e-16 ***
## engbel 0.13151 0.03381 3.889 0.000103 ***
## engemp 0.47097 0.02892 16.287 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.749 on 2261 degrees of freedom
## Multiple R-squared: 0.3425, Adjusted R-squared: 0.3419
## F-statistic: 588.8 on 2 and 2261 DF, p-value: < 2.2e-16
plot_model(fit1, type="pred")
## $engbel
##
## $engemp
fit2 <- lm(Y ~ engbel*genfin + engemp*genfin, d=dm)
summary(fit2)
##
## Call:
## lm(formula = Y ~ engbel * genfin + engemp * genfin, data = dm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7013 -0.4303 0.0698 0.5204 2.4427
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.51458 0.12486 12.130 < 2e-16 ***
## engbel 0.17431 0.04097 4.255 2.18e-05 ***
## genfin1 -0.54998 0.23661 -2.324 0.02020 *
## engemp 0.41572 0.03477 11.955 < 2e-16 ***
## engbel:genfin1 -0.09656 0.07787 -1.240 0.21513
## genfin1:engemp 0.17632 0.06702 2.631 0.00858 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.744 on 2115 degrees of freedom
## (143 observations deleted due to missingness)
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.354
## F-statistic: 233.3 on 5 and 2115 DF, p-value: < 2.2e-16
plot_model(fit2, type="int")
## [[1]]
##
## [[2]]