# Analyze calibration data
# Libraries ----------
rm(list=ls())
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
# Read data and set meta-parameters ----------
N <- 5000
n.instances <- 30
dt_list <- as.list(1:n.instances)
dt_columns <- c(
#see `write.table` in https://github.com/khanna7/bc-navigation/blob/master/demography-reset.R for col names
"time",
"nintros", #deaths
"number.of.positive.bc.agents",
"number.of.hpos.agents",
"number.of.hneg.agents",
"number.of.diagnosed.cases",
"number.of.diagnostic.referrals",
"number.of.screening.referrals",
"number.of.screen.completed",
"number.of.dt.completed",
"number.of.symptomatic",
"number.of.navigated.agents",
"time.with.cancer",
"time.until.diagnosis",
"time.until.diagnosis.navigated",
"time.until.diagnosis.unnavigated",
"time.until.diagnosis.neigbor.navigated",
"number.of.diagnostic.referrals.at.t",
"number.of.screening.visits.at.t",#19
"number.of.ss0.diagnosed",#20
"number.of.ss1.diagnosed",#21
"number.of.ss2.diagnosed",#22
"number.of.ss3.diagnosed",#23
"number.of.ss0.diagnosed.navigated",#24
"number.of.ss1.diagnosed.navigated",#25
"number.of.ss2.diagnosed.navigated",#26
"number.of.ss3.diagnosed.navigated",#27
"number.of.ss0.diagnosed.unnavigated",#28
"number.of.ss1.diagnosed.unnavigated",#29
"number.of.ss2.diagnosed.unnavigated",#30
"number.of.ss3.diagnosed.unnavigated",#31
"number.of.ss0.diagnosed.neighbor_navigated", #32
"number.of.ss1.diagnosed.neighbor_navigated", #33
"number.of.ss2.diagnosed.neighbor_navigated", #34
"number.of.ss3.diagnosed.neighbor_navigated" #35
)
for (i in 1:n.instances){
dt_list[[i]] <- read.table(paste0("../data/7_5_2020_burnin100yrs/data/", i,".data"))
}
which(unlist(lapply(dt_list, nrow) != 1200))
## integer(0)
df <- bind_rows(dt_list[1:n.instances])
colnames(df) <- dt_columns
df$source <- rep(1:n.instances, each=1200)
# Compute incidence rate ----------
df <-
df %>%
mutate(number.of.bc.neg = N - number.of.positive.bc.agents)
# Compute means across variables at given time ----------
df_mean_at_time <-
df %>%
group_by(time) %>%
summarise(m_number.of.screening.visits.at.t = mean(number.of.screening.visits.at.t),
m_number.of.positive.bc.agents = mean(number.of.positive.bc.agents),
m_number.of.diagnostic.referrals.at.t = mean(number.of.diagnostic.referrals.at.t),
m_number.of.screening.referrals = mean(number.of.screening.referrals),
m_number.of.dt.completed = mean(number.of.dt.completed),
m_number.of.screen.completed = mean(number.of.screen.completed),
m_number.of.hpos.agents = mean(number.of.hpos.agents),
m_number.of.hneg.agents = mean(number.of.hneg.agents),
m_number.of.diagnosed.cases = mean(number.of.diagnosed.cases),
m_number.of.positive.bc.agents = mean(number.of.positive.bc.agents),
m_nintros = mean(nintros)
)
## `summarise()` ungrouping output (override with `.groups` argument)
# Plots ----------
ggplot(df, aes(x=time, y=number.of.positive.bc.agents))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.positive.bc.agents))

ggplot(df, aes(x=time, y=((number.of.positive.bc.agents/N)*100)))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=((m_number.of.positive.bc.agents/N)*100)))+
ylim(c(0,10))+
labs(y="Breast Cancer Prevalence (%)")

ggplot(df, aes(x=time, y=number.of.screening.visits.at.t))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.screening.visits.at.t))

ggplot(df, aes(x=time, y=number.of.diagnostic.referrals.at.t))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.diagnostic.referrals.at.t))

ggplot(df, aes(x=time, y=number.of.screening.referrals))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.screening.referrals))

ggplot(df, aes(x=time, y=number.of.diagnostic.referrals.at.t/number.of.screening.visits.at.t))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.diagnostic.referrals.at.t/m_number.of.screening.visits.at.t))+
ylim(c(0,1))

ggplot(df, aes(x=time, y=number.of.dt.completed/number.of.screen.completed))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.dt.completed/m_number.of.screen.completed))

ggplot(df, aes(x=time, y=number.of.screen.completed))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.screen.completed))

ggplot(df, aes(x=time, y=number.of.dt.completed))+
geom_line(alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.dt.completed))

ggplot(df, aes(x=time))+
geom_line(aes(y=number.of.hpos.agents), alpha=0.1)+
geom_line(aes(y=number.of.hneg.agents), alpha=0.1)+
geom_line(aes(y=number.of.positive.bc.agents), alpha=0.1)+
theme_bw()+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.hpos.agents))+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.hneg.agents))+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.positive.bc.agents))+
ylim(c(0, 150))+
annotate(geom="text", x=625, y=112, label="All cases", col="black")+
annotate(geom="text", x=625, y=90, label="Hormone-positive", col="black")+
annotate(geom="text", x=625, y=30, label="Hormone-negative", col="black")+
labs(y="number")

ggplot(df, aes(x=time, y=number.of.hneg.agents/number.of.hpos.agents))+
geom_line(alpha=0.1)+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.hneg.agents/m_number.of.hpos.agents))+
theme_bw()+
ylim(c(0,1))

ggplot(df, aes(x=time, y=number.of.diagnosed.cases))+
geom_line(alpha=0.1)+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.diagnosed.cases))+
theme_bw()

ggplot(df, aes(x=time, y=number.of.positive.bc.agents))+
geom_line(alpha=0.1)+
geom_line(data = df_mean_at_time, aes(x=time, y=m_number.of.positive.bc.agents))+
theme_bw()

ggplot(df, aes(x=time, y=nintros))+
geom_line(alpha=0.1)+
geom_line(data = df_mean_at_time, aes(x=time, y=m_nintros))+
theme_bw()
