#GRAPH2 ## Load the libraries
# install.packages("tidyverse")
library(readr)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#Load and process nations data Load the nations data, and add a column showing GDP in trillions of dollars.
nations <- read_csv("nations.csv") %>%
mutate(gdp_tn = gdp_percap*population/10)
## Parsed with column specification:
## cols(
## iso2c = col_character(),
## iso3c = col_character(),
## country = col_character(),
## year = col_double(),
## gdp_percap = col_double(),
## population = col_double(),
## birth_rate = col_double(),
## neonat_mortal_rate = col_double(),
## region = col_character(),
## income = col_character()
## )
getwd()
## [1] "C:/Users/Salifou Sylla/Desktop/DATA110"
data2 <- nations %>%
group_by(year,region) %>%
summarize(gdp_tn = sum(gdp_tn, na.rm = TRUE)) %>%
arrange(year,region)
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
The arrange step is important, the data has to be in order when drawing a time series - otherwise any line drawn through the data will follow the path of the data order, not the correct time order.
Now draw a basic chart with default settings:
plot2 <- ggplot(data2, aes(x = year, y = gdp_tn, fill = region)) +
xlab("YEAR") +
ylab("GDP ($ trillion)") +
ggtitle("GDP COMPARISON BY REGIONS") +
geom_area(color="white") +
scale_fill_brewer(palette="Set2")
plot2