Pada Latihan ini kita akan membuat association rules dari data yang digunakan diambil dari Weka dataset. Dataset dapat diakses pada data/supermarket.csv. supermarket.csv merupakan dataset yang berisi daftar pembelian barang setiap transaksinya.
Objek supermarket memiliki 2 column : TID dan Name.
## TID name
## Min. : 1 bread and cake : 3330
## 1st Qu.:1162 fruit : 2962
## Median :2324 vegetables : 2961
## Mean :2317 milk cream : 2939
## 3rd Qu.:3476 baking needs : 2795
## Max. :4627 frozen foods : 2717
## (Other) :61922
Objek supermarket ada 79626 observasi
## 'data.frame': 79626 obs. of 2 variables:
## $ TID : int 1 1 1 1 1 1 1 1 1 1 ...
## $ name: Factor w/ 100 levels "750ml red imp ",..: 5 11 7 53 10 16 23 24 85 27 ...
Jawaban : bread and cake adalah barang yang paling sering di beli, sebanyak 3,330.
Jawaban : ini daftar banyak barang yang dibeli setiap transaksi, dengan TID = 1285, memiliki jumlah barang yang dibeli paling banyak, sebanyak 47.
## 'data.frame': 79626 obs. of 2 variables:
## $ TID : int 1 1 1 1 1 1 1 1 1 1 ...
## $ name: Factor w/ 100 levels "750ml red imp ",..: 5 11 7 53 10 16 23 24 85 27 ...
## $`1`
## [1] baby needs bread and cake baking needs juice sat cord ms
## [5] biscuits canned vegetables cleaners polishers coffee
## [9] sauces gravy pkle confectionary dishcloths scour frozen foods
## [13] razor blades party snack foods tissues paper prd wrapping
## [17] mens toiletries cheese milk cream margarine
## [21] small goods fruit vegetables 750ml white nz
## 100 Levels: 750ml red imp 750ml red nz 750ml white imp ... wrapping
##
## $`2`
## [1] canned fish meat canned fruit canned vegetables sauces gravy pkle
## [5] deod disinfectant frozen foods pet foods laundry needs
## [9] tissues paper prd deodorants soap haircare milk cream
## [13] fruit vegetables
## 100 Levels: 750ml red imp 750ml red nz 750ml white imp ... wrapping
##
## $`3`
## [1] bread and cake baking needs juice sat cord ms biscuits
## [5] canned fruit sauces gravy pkle puddings deserts wrapping
## [9] health food other small goods dairy foods beef
## [13] lamb fruit vegetables stationary
## 100 Levels: 750ml red imp 750ml red nz 750ml white imp ... wrapping
# your code
supermarket_transaction <- as(supermarket_list, "transactions")
supermarket_transaction %>%
head(3) %>%
inspect()## items transactionID
## [1] {750ml white nz ,
## baby needs ,
## baking needs ,
## biscuits,
## bread and cake ,
## canned vegetables ,
## cheese,
## cleaners polishers,
## coffee,
## confectionary,
## dishcloths scour,
## frozen foods ,
## fruit,
## juice sat cord ms,
## margarine,
## mens toiletries ,
## milk cream,
## party snack foods ,
## razor blades ,
## sauces gravy pkle,
## small goods ,
## tissues paper prd ,
## vegetables,
## wrapping} 1
## [2] {canned fish meat ,
## canned fruit ,
## canned vegetables ,
## deod disinfectant,
## deodorants soap,
## frozen foods ,
## fruit,
## haircare,
## laundry needs ,
## milk cream,
## pet foods ,
## sauces gravy pkle,
## tissues paper prd ,
## vegetables} 2
## [3] {baking needs ,
## beef,
## biscuits,
## bread and cake ,
## canned fruit ,
## dairy foods ,
## fruit,
## health food other ,
## juice sat cord ms,
## lamb,
## puddings deserts,
## sauces gravy pkle,
## small goods ,
## stationary,
## vegetables,
## wrapping} 3
## [1] 100 4601
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.75 0.1 1 none FALSE TRUE 5 0.1 1
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 460
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[100 item(s), 4601 transaction(s)] done [0.01s].
## sorting and recoding items ... [47 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 7 done [0.06s].
## writing ... [9958 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
Jawaban: Dihasilkan 9,958 rules, dengan perincian: rule dengan 2 item , sebanyak 41 rules rule dengan 3 item , sebanyak 720 rules rule dengan 4 item, sebanyak 3,440 rules rule dengan 5 item, sebanyak 4,367 rules rule dengan 6 item, sebanyak 1,320 rules rule dengan 7 item, sebanyak 70 rules.
## set of 9958 rules
##
## rule length distribution (lhs + rhs):sizes
## 2 3 4 5 6 7
## 41 720 3440 4367 1320 70
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.000 4.000 5.000 4.644 5.000 7.000
##
## summary of quality measures:
## support confidence coverage lift
## Min. :0.1002 Min. :0.7500 Min. :0.1098 Min. :1.042
## 1st Qu.:0.1067 1st Qu.:0.7716 1st Qu.:0.1324 1st Qu.:1.196
## Median :0.1161 Median :0.7995 Median :0.1452 Median :1.252
## Mean :0.1259 Mean :0.8080 Mean :0.1563 Mean :1.260
## 3rd Qu.:0.1332 3rd Qu.:0.8408 3rd Qu.:0.1674 3rd Qu.:1.313
## Max. :0.5079 Max. :0.9205 Max. :0.6438 Max. :1.594
## count
## Min. : 461.0
## 1st Qu.: 491.0
## Median : 534.0
## Mean : 579.2
## 3rd Qu.: 613.0
## Max. :2337.0
##
## mining info:
## data ntransactions support confidence
## supermarket_transaction 4601 0.1 0.75
## lhs rhs support confidence coverage lift count
## [1] {baking needs ,
## biscuits,
## bread and cake ,
## juice sat cord ms,
## sauces gravy pkle} => {party snack foods } 0.1010650 0.8072917 0.1251902 1.594141 465
## [2] {laundry needs ,
## wrapping} => {tissues paper prd } 0.1038905 0.7697262 0.1349707 1.576106 478
## [3] {biscuits,
## bread and cake ,
## frozen foods ,
## juice sat cord ms,
## sauces gravy pkle} => {party snack foods } 0.1056292 0.7928222 0.1332319 1.565569 486
Interpretasi: rule dengan 5 item {baking needs ,
biscuits,
bread and cake ,
juice sat cord ms,
sauces gravy pkle} => {party snack foods } meningkatkan peluang pembelian {party snack foods }PALING TINGGI.
## lhs rhs support confidence coverage lift count
## [1] {biscuits,
## frozen foods ,
## milk cream,
## pet foods ,
## vegetables} => {bread and cake } 0.1032384 0.9205426 0.1121495 1.271897 475
## [2] {baking needs ,
## biscuits,
## fruit,
## margarine,
## milk cream,
## vegetables} => {bread and cake } 0.1008476 0.9188119 0.1097587 1.269506 464
## [3] {biscuits,
## frozen foods ,
## margarine,
## milk cream,
## vegetables} => {bread and cake } 0.1167138 0.9179487 0.1271463 1.268313 537
Interpretasi: rule {biscuits,
frozen foods ,
milk cream,
pet foods ,
vegetables} => {bread and cake } memiliki nilai confidence PALING TINGGI 0.9205426, yang mana pembelian biscuits,frozen foods ,milk cream, pet foods , vegetables, memiliki kemungkinan 92,05% untuk pembelian bread and cake.
# your code
plot(supermarket_rules,
method = "graph",
measure = "lift",
engine = "htmlwidget" # membuat grafik interaktif
)Kesimpulan: 1. Party Snack Foods adalah item yang PALING BANYAK di beli. tissues paper prd merupakan item KEDUA PALING BANYAK di beli. 2. Pembelian item2 ini : {biscuits,frozen foods , milk cream, pet foods , vegetables} meningkatkan peluang pembeliaan Party Snack Foods.