Intro Stuff

setwd("C:/Users/Jerome/Documents/Data_Science_110/Datasets")
library(tidyverse)
## -- Attaching packages ----------------------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.1     v dplyr   1.0.0
## v tidyr   1.1.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## -- Conflicts -------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
lcn_fpf_co_names <- read.csv("lcn_fpf_co_names.csv")

Run Regression on Full Data Set

fit4 <- lm(MEASURE ~ as.factor(UrbRur) +as.factor(Educ) +as.factor(Wealth), data = lcn_fpf_co_names)
summary(fit4)
## 
## Call:
## lm(formula = MEASURE ~ as.factor(UrbRur) + as.factor(Educ) + 
##     as.factor(Wealth), data = lcn_fpf_co_names)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.614 -20.592   7.934  15.424  49.724 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        41.66065    0.50126  83.112  < 2e-16 ***
## as.factor(UrbRur)2  0.06121    0.41911   0.146   0.8839    
## as.factor(Educ)1   -0.31553    0.37293  -0.846   0.3975    
## as.factor(Educ)2    4.38239    0.84769   5.170 2.37e-07 ***
## as.factor(Educ)3    0.32681    0.55807   0.586   0.5581    
## as.factor(Educ)4    1.21807    1.23126   0.989   0.3225    
## as.factor(Educ)5    4.33243    2.16209   2.004   0.0451 *  
## as.factor(Wealth)2  0.12967    0.42736   0.303   0.7616    
## as.factor(Wealth)3  2.10815    0.47627   4.426 9.63e-06 ***
## as.factor(Wealth)4  3.72918    0.58120   6.416 1.43e-10 ***
## as.factor(Wealth)5  7.58124    0.80801   9.383  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.73 on 19711 degrees of freedom
## Multiple R-squared:  0.01143,    Adjusted R-squared:  0.01093 
## F-statistic: 22.79 on 10 and 19711 DF,  p-value: < 2.2e-16
print(fit4)
## 
## Call:
## lm(formula = MEASURE ~ as.factor(UrbRur) + as.factor(Educ) + 
##     as.factor(Wealth), data = lcn_fpf_co_names)
## 
## Coefficients:
##        (Intercept)  as.factor(UrbRur)2    as.factor(Educ)1    as.factor(Educ)2  
##           41.66065             0.06121            -0.31553             4.38239  
##   as.factor(Educ)3    as.factor(Educ)4    as.factor(Educ)5  as.factor(Wealth)2  
##            0.32681             1.21807             4.33243             0.12967  
## as.factor(Wealth)3  as.factor(Wealth)4  as.factor(Wealth)5  
##            2.10815             3.72918             7.58124