rm(list = ls())
setwd("c:/users/Paul/Documents/Rwork")
getwd()
## [1] "c:/users/Paul/Documents/Rwork"
library(readr)
library(qqplotr)
## Warning: package 'qqplotr' was built under R version 3.5.3
## Loading required package: ggplot2
## 
## Attaching package: 'qqplotr'
## The following objects are masked from 'package:ggplot2':
## 
##     stat_qq_line, StatQqLine
library(car)
## Warning: package 'car' was built under R version 3.5.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.5.2
library(carData)
#Load the Deer_projectdata
Deer_projectdata<- read.csv(file="Deer_project2.csv")
str(Deer_projectdata)
## 'data.frame':    80 obs. of  24 variables:
##  $ Time                : Factor w/ 4 levels "fall2018","Spring2018",..: 2 2 2 2 2 4 4 4 4 4 ...
##  $ Site                : Factor w/ 5 levels "Bishop","College",..: 3 4 1 5 2 3 4 1 5 2 ...
##  $ Deer                : Factor w/ 2 levels "Con","Excl": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Honeysuckle         : Factor w/ 2 levels "H ","NH": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Treatment           : Factor w/ 4 levels "ConH","ConNH",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Nmin                : num  1.24 0.96 1.57 1.16 2.79 1.2 0.44 0.39 0.87 1.08 ...
##  $ Deer.effect         : num  0.39 0.09 -0.29 0.13 1.34 0.67 0.03 -0.5 0.04 0.26 ...
##  $ Honeysuckle.effect  : num  NA NA NA -0.21 1.75 NA NA NA NA NA ...
##  $ NetNitr             : num  1.32 0.99 1.64 1.22 2 1.17 0.54 0.56 0.99 0.75 ...
##  $ Deer.effect.1       : num  0.16 0.01 0.01 0.52 0.64 0.48 0 -0.38 0.25 -0.02 ...
##  $ Honeysuckle.effect.1: num  NA NA NA NA NA NA NA NA NA NA ...
##  $ SMR                 : num  1.6 1.85 1.47 1.63 2.18 0.93 1.26 0.91 1.05 1.4 ...
##  $ Deer.effect.2       : num  0.33 0.07 -0.02 0.03 0.34 0.12 0.1 0.06 -0.14 0.5 ...
##  $ Honeysuckle.effect.2: num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Nitr_index          : num  1.06 1.03 1.04 1.05 0.72 0.98 1.23 1.44 1.14 0.69 ...
##  $ sqrNetNitr          : num  1.15 0.99 1.28 1.1 1.41 1.08 0.73 0.75 0.99 0.87 ...
##  $ lgNmin              : num  0.09 -0.02 0.2 0.06 0.45 0.08 -0.36 -0.41 -0.06 0.03 ...
##  $ lgSMR               : num  0.2 0.27 0.17 0.21 0.34 -0.03 0.1 -0.04 0.02 0.15 ...
##  $ sqrSMR              : num  1.26 1.36 1.21 1.28 1.48 0.96 1.12 0.95 1.02 1.18 ...
##  $ Nmin_OM             : num  29.9 22.9 36.6 27.7 66.1 ...
##  $ NetNitr_OM          : num  32 23.6 38.4 29.2 47.4 ...
##  $ NetNitr_OM_index    : num  1.07 1.03 1.05 1.06 0.72 0.98 1.24 1.43 1.14 0.69 ...
##  $ SMR_OM              : num  39 43.5 34.2 39 51.7 ...
##  $ lgSMR_OM            : num  1.59 1.64 1.53 1.59 1.71 1.66 1.8 1.62 1.69 1.87 ...
head(Deer_projectdata)
##         Time      Site Deer Honeysuckle Treatment Nmin Deer.effect
## 1 Spring2018    Kramer  Con          H       ConH 1.24        0.39
## 2 Spring2018 Rhinehart  Con          H       ConH 0.96        0.09
## 3 Spring2018    Bishop  Con          H       ConH 1.57       -0.29
## 4 Spring2018   Western  Con          H       ConH 1.16        0.13
## 5 Spring2018   College  Con          H       ConH 2.79        1.34
## 6 summer2018    Kramer  Con          H       ConH 1.20        0.67
##   Honeysuckle.effect NetNitr Deer.effect.1 Honeysuckle.effect.1  SMR
## 1                 NA    1.32          0.16                   NA 1.60
## 2                 NA    0.99          0.01                   NA 1.85
## 3                 NA    1.64          0.01                   NA 1.47
## 4              -0.21    1.22          0.52                   NA 1.63
## 5               1.75    2.00          0.64                   NA 2.18
## 6                 NA    1.17          0.48                   NA 0.93
##   Deer.effect.2 Honeysuckle.effect.2 Nitr_index sqrNetNitr lgNmin lgSMR
## 1          0.33                   NA       1.06       1.15   0.09  0.20
## 2          0.07                   NA       1.03       0.99  -0.02  0.27
## 3         -0.02                   NA       1.04       1.28   0.20  0.17
## 4          0.03                   NA       1.05       1.10   0.06  0.21
## 5          0.34                   NA       0.72       1.41   0.45  0.34
## 6          0.12                   NA       0.98       1.08   0.08 -0.03
##   sqrSMR Nmin_OM NetNitr_OM NetNitr_OM_index SMR_OM lgSMR_OM
## 1   1.26   29.87      32.02             1.07  39.01     1.59
## 2   1.36   22.86      23.60             1.03  43.45     1.64
## 3   1.21   36.63      38.36             1.05  34.16     1.53
## 4   1.28   27.69      29.22             1.06  39.00     1.59
## 5   1.48   66.10      47.39             0.72  51.66     1.71
## 6   0.96   59.11      57.80             0.98  45.89     1.66
#Checking for correlation between SMR_OM and Nmin_OM
cor<-cor.test(Deer_projectdata$SMR_OM,Deer_projectdata$Nmin_OM)
cor
## 
##  Pearson's product-moment correlation
## 
## data:  Deer_projectdata$SMR_OM and Deer_projectdata$Nmin_OM
## t = 4.4198, df = 78, p-value = 3.153e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2526577 0.6075110
## sample estimates:
##       cor 
## 0.4475308
#Checking to make sure that variances across samples are equal (Nmin_OM, lgSMR_OM, NetNitr_OM)
bartlett.test(Deer_projectdata$NetNitr_OM,Deer_projectdata$Deer)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Deer_projectdata$NetNitr_OM and Deer_projectdata$Deer
## Bartlett's K-squared = 0.73827, df = 1, p-value = 0.3902
bartlett.test(Deer_projectdata$Nmin_OM,Deer_projectdata$Deer)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Deer_projectdata$Nmin_OM and Deer_projectdata$Deer
## Bartlett's K-squared = 0.58108, df = 1, p-value = 0.4459
bartlett.test(Deer_projectdata$lgSMR_OM,Deer_projectdata$Deer)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Deer_projectdata$lgSMR_OM and Deer_projectdata$Deer
## Bartlett's K-squared = 2.4134, df = 1, p-value = 0.1203
#The outputs ofn the above codes show that variances across samples are equal (because all p-values>0.05)
#Normality check for NetNitr_OM
hist(Deer_projectdata$NetNitr_OM)

#Run a lm on NetNitr_OM
model1<-lm(NetNitr_OM~Treatment*Time, data=Deer_projectdata,na.action=na.omit)
summary(model1)
## 
## Call:
## lm(formula = NetNitr_OM ~ Treatment * Time, data = Deer_projectdata, 
##     na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -23.272  -4.274   0.052   4.610  23.818 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      24.400      3.957   6.166 5.54e-08 ***
## TreatmentConNH                    1.292      5.597   0.231 0.818175    
## TreatmentExclH                   20.472      5.597   3.658 0.000521 ***
## TreatmentExclNH                  -0.540      5.597  -0.096 0.923440    
## TimeSpring2018                    9.718      5.597   1.736 0.087378 .  
## Timespring2019                  -10.360      5.597  -1.851 0.068839 .  
## Timesummer2018                   14.978      5.597   2.676 0.009477 ** 
## TreatmentConNH:TimeSpring2018    -7.024      7.915  -0.887 0.378209    
## TreatmentExclH:TimeSpring2018   -28.176      7.915  -3.560 0.000712 ***
## TreatmentExclNH:TimeSpring2018   -9.876      7.915  -1.248 0.216724    
## TreatmentConNH:Timespring2019    -3.587      8.158  -0.440 0.661679    
## TreatmentExclH:Timespring2019   -27.122      7.915  -3.427 0.001081 ** 
## TreatmentExclNH:Timespring2019   -8.396      7.915  -1.061 0.292829    
## TreatmentConNH:Timesummer2018     3.178      7.915   0.402 0.689390    
## TreatmentExclH:Timesummer2018   -23.144      7.915  -2.924 0.004794 ** 
## TreatmentExclNH:Timesummer2018   -5.330      7.915  -0.673 0.503140    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.849 on 63 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.6895, Adjusted R-squared:  0.6156 
## F-statistic: 9.328 on 15 and 63 DF,  p-value: 5.891e-11
plot(model1)

anova(model1)
## Analysis of Variance Table
## 
## Response: NetNitr_OM
##                Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment       3  701.7  233.90  2.9870  0.03768 *  
## Time            3 8549.0 2849.67 36.3923 9.07e-14 ***
## Treatment:Time  9 1705.2  189.46  2.4196  0.01984 *  
## Residuals      63 4933.2   78.30                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model1aov<-aov(NetNitr_OM~Treatment*Time, data=Deer_projectdata)
posthoc1 <- TukeyHSD(x=model1aov,conf.level=0.95)
posthoc1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = NetNitr_OM ~ Treatment * Time, data = Deer_projectdata)
## 
## $Treatment
##                    diff        lwr        upr     p adj
## ConNH-ConH    0.2586316  -7.222455 7.73971806 0.9997249
## ExclH-ConH    0.8615000  -6.523052 8.24605228 0.9897809
## ExclNH-ConH  -6.4405000 -13.825052 0.94405228 0.1085466
## ExclH-ConNH   0.6028684  -6.878218 8.08395490 0.9965661
## ExclNH-ConNH -6.6991316 -14.180218 0.78195490 0.0949339
## ExclNH-ExclH -7.3020000 -14.686552 0.08255228 0.0537128
## 
## $Time
##                            diff        lwr        upr     p adj
## Spring2018-fall2018    -1.55100  -8.935552   5.833552 0.9450517
## spring2019-fall2018   -20.16712 -27.648206 -12.686033 0.0000000
## summer2018-fall2018     8.65400   1.269448  16.038552 0.0152687
## spring2019-Spring2018 -18.61612 -26.097206 -11.135033 0.0000001
## summer2018-Spring2018  10.20500   2.820448  17.589552 0.0029623
## summer2018-spring2019  28.82112  21.340033  36.302206 0.0000000
## 
## $`Treatment:Time`
##                                        diff          lwr         upr
## ConNH:fall2018-ConH:fall2018          1.292 -18.67526739  21.2592674
## ExclH:fall2018-ConH:fall2018         20.472   0.50473261  40.4392674
## ExclNH:fall2018-ConH:fall2018        -0.540 -20.50726739  19.4272674
## ConH:Spring2018-ConH:fall2018         9.718 -10.24926739  29.6852674
## ConNH:Spring2018-ConH:fall2018        3.986 -15.98126739  23.9532674
## ExclH:Spring2018-ConH:fall2018        2.014 -17.95326739  21.9812674
## ExclNH:Spring2018-ConH:fall2018      -0.698 -20.66526739  19.2692674
## ConH:spring2019-ConH:fall2018       -10.360 -30.32726739   9.6072674
## ConNH:spring2019-ConH:fall2018      -12.655 -33.83348526   8.5234853
## ExclH:spring2019-ConH:fall2018      -17.010 -36.97726739   2.9572674
## ExclNH:spring2019-ConH:fall2018     -19.296 -39.26326739   0.6712674
## ConH:summer2018-ConH:fall2018        14.978  -4.98926739  34.9452674
## ConNH:summer2018-ConH:fall2018       19.448  -0.51926739  39.4152674
## ExclH:summer2018-ConH:fall2018       12.306  -7.66126739  32.2732674
## ExclNH:summer2018-ConH:fall2018       9.108 -10.85926739  29.0752674
## ExclH:fall2018-ConNH:fall2018        19.180  -0.78726739  39.1472674
## ExclNH:fall2018-ConNH:fall2018       -1.832 -21.79926739  18.1352674
## ConH:Spring2018-ConNH:fall2018        8.426 -11.54126739  28.3932674
## ConNH:Spring2018-ConNH:fall2018       2.694 -17.27326739  22.6612674
## ExclH:Spring2018-ConNH:fall2018       0.722 -19.24526739  20.6892674
## ExclNH:Spring2018-ConNH:fall2018     -1.990 -21.95726739  17.9772674
## ConH:spring2019-ConNH:fall2018      -11.652 -31.61926739   8.3152674
## ConNH:spring2019-ConNH:fall2018     -13.947 -35.12548526   7.2314853
## ExclH:spring2019-ConNH:fall2018     -18.302 -38.26926739   1.6652674
## ExclNH:spring2019-ConNH:fall2018    -20.588 -40.55526739  -0.6207326
## ConH:summer2018-ConNH:fall2018       13.686  -6.28126739  33.6532674
## ConNH:summer2018-ConNH:fall2018      18.156  -1.81126739  38.1232674
## ExclH:summer2018-ConNH:fall2018      11.014  -8.95326739  30.9812674
## ExclNH:summer2018-ConNH:fall2018      7.816 -12.15126739  27.7832674
## ExclNH:fall2018-ExclH:fall2018      -21.012 -40.97926739  -1.0447326
## ConH:Spring2018-ExclH:fall2018      -10.754 -30.72126739   9.2132674
## ConNH:Spring2018-ExclH:fall2018     -16.486 -36.45326739   3.4812674
## ExclH:Spring2018-ExclH:fall2018     -18.458 -38.42526739   1.5092674
## ExclNH:Spring2018-ExclH:fall2018    -21.170 -41.13726739  -1.2027326
## ConH:spring2019-ExclH:fall2018      -30.832 -50.79926739 -10.8647326
## ConNH:spring2019-ExclH:fall2018     -33.127 -54.30548526 -11.9485147
## ExclH:spring2019-ExclH:fall2018     -37.482 -57.44926739 -17.5147326
## ExclNH:spring2019-ExclH:fall2018    -39.768 -59.73526739 -19.8007326
## ConH:summer2018-ExclH:fall2018       -5.494 -25.46126739  14.4732674
## ConNH:summer2018-ExclH:fall2018      -1.024 -20.99126739  18.9432674
## ExclH:summer2018-ExclH:fall2018      -8.166 -28.13326739  11.8012674
## ExclNH:summer2018-ExclH:fall2018    -11.364 -31.33126739   8.6032674
## ConH:Spring2018-ExclNH:fall2018      10.258  -9.70926739  30.2252674
## ConNH:Spring2018-ExclNH:fall2018      4.526 -15.44126739  24.4932674
## ExclH:Spring2018-ExclNH:fall2018      2.554 -17.41326739  22.5212674
## ExclNH:Spring2018-ExclNH:fall2018    -0.158 -20.12526739  19.8092674
## ConH:spring2019-ExclNH:fall2018      -9.820 -29.78726739  10.1472674
## ConNH:spring2019-ExclNH:fall2018    -12.115 -33.29348526   9.0634853
## ExclH:spring2019-ExclNH:fall2018    -16.470 -36.43726739   3.4972674
## ExclNH:spring2019-ExclNH:fall2018   -18.756 -38.72326739   1.2112674
## ConH:summer2018-ExclNH:fall2018      15.518  -4.44926739  35.4852674
## ConNH:summer2018-ExclNH:fall2018     19.988   0.02073261  39.9552674
## ExclH:summer2018-ExclNH:fall2018     12.846  -7.12126739  32.8132674
## ExclNH:summer2018-ExclNH:fall2018     9.648 -10.31926739  29.6152674
## ConNH:Spring2018-ConH:Spring2018     -5.732 -25.69926739  14.2352674
## ExclH:Spring2018-ConH:Spring2018     -7.704 -27.67126739  12.2632674
## ExclNH:Spring2018-ConH:Spring2018   -10.416 -30.38326739   9.5512674
## ConH:spring2019-ConH:Spring2018     -20.078 -40.04526739  -0.1107326
## ConNH:spring2019-ConH:Spring2018    -22.373 -43.55148526  -1.1945147
## ExclH:spring2019-ConH:Spring2018    -26.728 -46.69526739  -6.7607326
## ExclNH:spring2019-ConH:Spring2018   -29.014 -48.98126739  -9.0467326
## ConH:summer2018-ConH:Spring2018       5.260 -14.70726739  25.2272674
## ConNH:summer2018-ConH:Spring2018      9.730 -10.23726739  29.6972674
## ExclH:summer2018-ConH:Spring2018      2.588 -17.37926739  22.5552674
## ExclNH:summer2018-ConH:Spring2018    -0.610 -20.57726739  19.3572674
## ExclH:Spring2018-ConNH:Spring2018    -1.972 -21.93926739  17.9952674
## ExclNH:Spring2018-ConNH:Spring2018   -4.684 -24.65126739  15.2832674
## ConH:spring2019-ConNH:Spring2018    -14.346 -34.31326739   5.6212674
## ConNH:spring2019-ConNH:Spring2018   -16.641 -37.81948526   4.5374853
## ExclH:spring2019-ConNH:Spring2018   -20.996 -40.96326739  -1.0287326
## ExclNH:spring2019-ConNH:Spring2018  -23.282 -43.24926739  -3.3147326
## ConH:summer2018-ConNH:Spring2018     10.992  -8.97526739  30.9592674
## ConNH:summer2018-ConNH:Spring2018    15.462  -4.50526739  35.4292674
## ExclH:summer2018-ConNH:Spring2018     8.320 -11.64726739  28.2872674
## ExclNH:summer2018-ConNH:Spring2018    5.122 -14.84526739  25.0892674
## ExclNH:Spring2018-ExclH:Spring2018   -2.712 -22.67926739  17.2552674
## ConH:spring2019-ExclH:Spring2018    -12.374 -32.34126739   7.5932674
## ConNH:spring2019-ExclH:Spring2018   -14.669 -35.84748526   6.5094853
## ExclH:spring2019-ExclH:Spring2018   -19.024 -38.99126739   0.9432674
## ExclNH:spring2019-ExclH:Spring2018  -21.310 -41.27726739  -1.3427326
## ConH:summer2018-ExclH:Spring2018     12.964  -7.00326739  32.9312674
## ConNH:summer2018-ExclH:Spring2018    17.434  -2.53326739  37.4012674
## ExclH:summer2018-ExclH:Spring2018    10.292  -9.67526739  30.2592674
## ExclNH:summer2018-ExclH:Spring2018    7.094 -12.87326739  27.0612674
## ConH:spring2019-ExclNH:Spring2018    -9.662 -29.62926739  10.3052674
## ConNH:spring2019-ExclNH:Spring2018  -11.957 -33.13548526   9.2214853
## ExclH:spring2019-ExclNH:Spring2018  -16.312 -36.27926739   3.6552674
## ExclNH:spring2019-ExclNH:Spring2018 -18.598 -38.56526739   1.3692674
## ConH:summer2018-ExclNH:Spring2018    15.676  -4.29126739  35.6432674
## ConNH:summer2018-ExclNH:Spring2018   20.146   0.17873261  40.1132674
## ExclH:summer2018-ExclNH:Spring2018   13.004  -6.96326739  32.9712674
## ExclNH:summer2018-ExclNH:Spring2018   9.806 -10.16126739  29.7732674
## ConNH:spring2019-ConH:spring2019     -2.295 -23.47348526  18.8834853
## ExclH:spring2019-ConH:spring2019     -6.650 -26.61726739  13.3172674
## ExclNH:spring2019-ConH:spring2019    -8.936 -28.90326739  11.0312674
## ConH:summer2018-ConH:spring2019      25.338   5.37073261  45.3052674
## ConNH:summer2018-ConH:spring2019     29.808   9.84073261  49.7752674
## ExclH:summer2018-ConH:spring2019     22.666   2.69873261  42.6332674
## ExclNH:summer2018-ConH:spring2019    19.468  -0.49926739  39.4352674
## ExclH:spring2019-ConNH:spring2019    -4.355 -25.53348526  16.8234853
## ExclNH:spring2019-ConNH:spring2019   -6.641 -27.81948526  14.5374853
## ConH:summer2018-ConNH:spring2019     27.633   6.45451474  48.8114853
## ConNH:summer2018-ConNH:spring2019    32.103  10.92451474  53.2814853
## ExclH:summer2018-ConNH:spring2019    24.961   3.78251474  46.1394853
## ExclNH:summer2018-ConNH:spring2019   21.763   0.58451474  42.9414853
## ExclNH:spring2019-ExclH:spring2019   -2.286 -22.25326739  17.6812674
## ConH:summer2018-ExclH:spring2019     31.988  12.02073261  51.9552674
## ConNH:summer2018-ExclH:spring2019    36.458  16.49073261  56.4252674
## ExclH:summer2018-ExclH:spring2019    29.316   9.34873261  49.2832674
## ExclNH:summer2018-ExclH:spring2019   26.118   6.15073261  46.0852674
## ConH:summer2018-ExclNH:spring2019    34.274  14.30673261  54.2412674
## ConNH:summer2018-ExclNH:spring2019   38.744  18.77673261  58.7112674
## ExclH:summer2018-ExclNH:spring2019   31.602  11.63473261  51.5692674
## ExclNH:summer2018-ExclNH:spring2019  28.404   8.43673261  48.3712674
## ConNH:summer2018-ConH:summer2018      4.470 -15.49726739  24.4372674
## ExclH:summer2018-ConH:summer2018     -2.672 -22.63926739  17.2952674
## ExclNH:summer2018-ConH:summer2018    -5.870 -25.83726739  14.0972674
## ExclH:summer2018-ConNH:summer2018    -7.142 -27.10926739  12.8252674
## ExclNH:summer2018-ConNH:summer2018  -10.340 -30.30726739   9.6272674
## ExclNH:summer2018-ExclH:summer2018   -3.198 -23.16526739  16.7692674
##                                         p adj
## ConNH:fall2018-ConH:fall2018        1.0000000
## ExclH:fall2018-ConH:fall2018        0.0389927
## ExclNH:fall2018-ConH:fall2018       1.0000000
## ConH:Spring2018-ConH:fall2018       0.9285022
## ConNH:Spring2018-ConH:fall2018      0.9999960
## ExclH:Spring2018-ConH:fall2018      1.0000000
## ExclNH:Spring2018-ConH:fall2018     1.0000000
## ConH:spring2019-ConH:fall2018       0.8872718
## ConNH:spring2019-ConH:fall2018      0.7380404
## ExclH:spring2019-ConH:fall2018      0.1828202
## ExclNH:spring2019-ConH:fall2018     0.0688067
## ConH:summer2018-ConH:fall2018       0.3684197
## ConNH:summer2018-ConH:fall2018      0.0640835
## ExclH:summer2018-ConH:fall2018      0.6943878
## ExclNH:summer2018-ConH:fall2018     0.9568794
## ExclH:fall2018-ConNH:fall2018       0.0726094
## ExclNH:fall2018-ConNH:fall2018      1.0000000
## ConH:Spring2018-ConNH:fall2018      0.9777761
## ConNH:Spring2018-ConNH:fall2018     1.0000000
## ExclH:Spring2018-ConNH:fall2018     1.0000000
## ExclNH:Spring2018-ConNH:fall2018    1.0000000
## ConH:spring2019-ConNH:fall2018      0.7689380
## ConNH:spring2019-ConNH:fall2018     0.5902619
## ExclH:spring2019-ConNH:fall2018     0.1075871
## ExclNH:spring2019-ConNH:fall2018    0.0367902
## ConH:summer2018-ConNH:fall2018      0.5226596
## ConNH:summer2018-ConNH:fall2018     0.1145718
## ExclH:summer2018-ConNH:fall2018     0.8329376
## ExclNH:summer2018-ConNH:fall2018    0.9888961
## ExclNH:fall2018-ExclH:fall2018      0.0296560
## ConH:Spring2018-ExclH:fall2018      0.8559940
## ConNH:Spring2018-ExclH:fall2018     0.2226552
## ExclH:Spring2018-ExclH:fall2018     0.1005133
## ExclNH:Spring2018-ExclH:fall2018    0.0273342
## ConH:spring2019-ExclH:fall2018      0.0000773
## ConNH:spring2019-ExclH:fall2018     0.0000590
## ExclH:spring2019-ExclH:fall2018     0.0000008
## ExclNH:spring2019-ExclH:fall2018    0.0000002
## ConH:summer2018-ExclH:fall2018      0.9997607
## ConNH:summer2018-ExclH:fall2018     1.0000000
## ExclH:summer2018-ExclH:fall2018     0.9832572
## ExclNH:summer2018-ExclH:fall2018    0.7990551
## ConH:Spring2018-ExclNH:fall2018     0.8946306
## ConNH:Spring2018-ExclNH:fall2018    0.9999787
## ExclH:Spring2018-ExclNH:fall2018    1.0000000
## ExclNH:Spring2018-ExclNH:fall2018   1.0000000
## ConH:spring2019-ExclNH:fall2018     0.9227538
## ConNH:spring2019-ExclNH:fall2018    0.7931307
## ExclH:spring2019-ExclNH:fall2018    0.2239608
## ExclNH:spring2019-ExclNH:fall2018   0.0880685
## ConH:summer2018-ExclNH:fall2018     0.3111279
## ConNH:summer2018-ExclNH:fall2018    0.0494989
## ExclH:summer2018-ExclNH:fall2018    0.6283210
## ExclNH:summer2018-ExclNH:fall2018   0.9322756
## ConNH:Spring2018-ConH:Spring2018    0.9996038
## ExclH:Spring2018-ConH:Spring2018    0.9903368
## ExclNH:Spring2018-ConH:Spring2018   0.8831017
## ConH:spring2019-ConH:Spring2018     0.0473746
## ConNH:spring2019-ConH:Spring2018    0.0284375
## ExclH:spring2019-ConH:Spring2018    0.0011097
## ExclNH:spring2019-ConH:Spring2018   0.0002574
## ConH:summer2018-ConH:Spring2018     0.9998588
## ConNH:summer2018-ConH:Spring2018    0.9278414
## ExclH:summer2018-ConH:Spring2018    1.0000000
## ExclNH:summer2018-ConH:Spring2018   1.0000000
## ExclH:Spring2018-ConNH:Spring2018   1.0000000
## ExclNH:Spring2018-ConNH:Spring2018  0.9999669
## ConH:spring2019-ConNH:Spring2018    0.4414874
## ConNH:spring2019-ConNH:Spring2018   0.2940943
## ExclH:spring2019-ConNH:Spring2018   0.0299008
## ExclNH:spring2019-ConNH:Spring2018  0.0086845
## ConH:summer2018-ConNH:Spring2018    0.8349604
## ConNH:summer2018-ConNH:Spring2018   0.3168202
## ExclH:summer2018-ConNH:Spring2018   0.9801567
## ExclNH:summer2018-ConNH:Spring2018  0.9998982
## ExclNH:Spring2018-ExclH:Spring2018  1.0000000
## ConH:spring2019-ExclH:Spring2018    0.6862429
## ConNH:spring2019-ExclH:Spring2018   0.5046572
## ExclH:spring2019-ExclH:Spring2018   0.0780052
## ExclNH:spring2019-ExclH:Spring2018  0.0254158
## ConH:summer2018-ExclH:Spring2018    0.6135650
## ConNH:summer2018-ExclH:Spring2018   0.1546598
## ExclH:summer2018-ExclH:Spring2018   0.8922117
## ExclNH:summer2018-ExclH:Spring2018  0.9957751
## ConH:spring2019-ExclNH:Spring2018   0.9315320
## ConNH:spring2019-ExclNH:Spring2018  0.8081477
## ExclH:spring2019-ExclNH:Spring2018  0.2371400
## ExclNH:spring2019-ExclNH:Spring2018 0.0944962
## ConH:summer2018-ExclNH:Spring2018   0.2953949
## ConNH:summer2018-ExclNH:Spring2018  0.0458232
## ExclH:summer2018-ExclNH:Spring2018  0.6085470
## ExclNH:summer2018-ExclNH:Spring2018 0.9235605
## ConNH:spring2019-ConH:spring2019    1.0000000
## ExclH:spring2019-ConH:spring2019    0.9978703
## ExclNH:spring2019-ConH:spring2019   0.9631402
## ConH:summer2018-ConH:spring2019     0.0026062
## ConNH:summer2018-ConH:spring2019    0.0001528
## ExclH:summer2018-ConH:spring2019    0.0122591
## ExclNH:summer2018-ConH:spring2019   0.0634833
## ExclH:spring2019-ConNH:spring2019   0.9999940
## ExclNH:spring2019-ConNH:spring2019  0.9989048
## ConH:summer2018-ConNH:spring2019    0.0016863
## ConNH:summer2018-ConNH:spring2019   0.0001127
## ExclH:summer2018-ConNH:spring2019   0.0075276
## ExclNH:summer2018-ConNH:spring2019  0.0380989
## ExclNH:spring2019-ExclH:spring2019  1.0000000
## ConH:summer2018-ExclH:spring2019    0.0000354
## ConNH:summer2018-ExclH:spring2019   0.0000016
## ExclH:summer2018-ExclH:spring2019   0.0002112
## ExclNH:summer2018-ExclH:spring2019  0.0016199
## ConH:summer2018-ExclNH:spring2019   0.0000074
## ConNH:summer2018-ExclNH:spring2019  0.0000003
## ExclH:summer2018-ExclNH:spring2019  0.0000460
## ExclNH:summer2018-ExclNH:spring2019 0.0003825
## ConNH:summer2018-ConH:summer2018    0.9999819
## ExclH:summer2018-ConH:summer2018    1.0000000
## ExclNH:summer2018-ConH:summer2018   0.9994765
## ExclH:summer2018-ConNH:summer2018   0.9954703
## ExclNH:summer2018-ConNH:summer2018  0.8887389
## ExclNH:summer2018-ExclH:summer2018  0.9999998
plot(posthoc1)

resid1<-resid(model1)
hist(resid1)

#Run linear mixed effects model setting "Site and Time" as random effects
#Also compare the AICs
library(lme4)
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.5.3
model1b<-lmer(NetNitr_OM~Treatment + (1|Site),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model1b)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: NetNitr_OM ~ Treatment + (1 | Site)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    651.6    665.9   -319.8    639.6       73 
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.95420 -0.63641 -0.04861  0.50641  2.87370 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Site     (Intercept)   0.0     0.00   
##  Residual             192.2    13.87   
## Number of obs: 79, groups:  Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      27.9840     3.1004   9.026
## TreatmentConNH    0.2586     4.4419   0.058
## TreatmentExclH    0.8615     4.3846   0.196
## TreatmentExclNH  -6.4405     4.3846  -1.469
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.698              
## TrtmntExclH -0.707  0.494       
## TrtmntExcNH -0.707  0.494  0.500
anova(model1b)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 701.69   233.9  1.2167
resid1b<-resid(model1b)
hist(resid1b)

model1ba<-lmer(NetNitr_OM~Treatment + (1|Site/Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model1ba)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: NetNitr_OM ~ Treatment + (1 | Site/Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    625.6    642.2   -305.8    611.6       72 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5967 -0.5954 -0.1883  0.4220  3.7259 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  Time:Site (Intercept) 109.58   10.468  
##  Site      (Intercept)   0.00    0.000  
##  Residual               85.44    9.243  
## Number of obs: 79, groups:  Time:Site, 20; Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      27.9840     3.1226   8.962
## TreatmentConNH   -0.6386     2.9712  -0.215
## TreatmentExclH    0.8615     2.9230   0.295
## TreatmentExclNH  -6.4405     2.9230  -2.203
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.460              
## TrtmntExclH -0.468  0.492       
## TrtmntExcNH -0.468  0.492  0.500
anova(model1ba)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 658.25  219.41  2.5681
resid1ba<-resid(model1ba)
hist(resid1ba)

model1bb<-lmer(NetNitr_OM~Treatment + (1|Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model1bb)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: NetNitr_OM ~ Treatment + (1 | Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    603.2    617.4   -295.6    591.2       73 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4882 -0.5273 -0.1337  0.4128  3.9019 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Time     (Intercept) 105.95   10.293  
##  Residual              88.52    9.408  
## Number of obs: 79, groups:  Time, 4
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      27.9840     5.5600   5.033
## TreatmentConNH   -0.5952     3.0156  -0.197
## TreatmentExclH    0.8615     2.9752   0.290
## TreatmentExclNH  -6.4405     2.9752  -2.165
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.264              
## TrtmntExclH -0.268  0.493       
## TrtmntExcNH -0.268  0.493  0.500
anova(model1bb)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 659.98  219.99  2.4854
resid1bb<-resid(model1bb)
hist(resid1bb)

model1bc<-lmer(NetNitr_OM~Treatment + Time + (1|Site),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model1bc)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: NetNitr_OM ~ Treatment + Time + (1 | Site)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    590.8    612.1   -286.4    572.8       70 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7471 -0.5597 -0.0707  0.2644  4.1281 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Site     (Intercept)  5.13    2.265   
##  Residual             78.87    8.881   
## Number of obs: 79, groups:  Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)      31.2601     2.8179  11.093
## TreatmentConNH   -0.6373     2.8476  -0.224
## TreatmentExclH    0.8615     2.8083   0.307
## TreatmentExclNH  -6.4405     2.8083  -2.293
## TimeSpring2018   -1.5510     2.8083  -0.552
## Timespring2019  -20.2073     2.8476  -7.096
## Timesummer2018    8.6540     2.8083   3.082
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH TrtENH TS2018 Tm2019
## TretmntCnNH -0.498                                   
## TrtmntExclH -0.498  0.493                            
## TrtmntExcNH -0.498  0.493  0.500                     
## TmSprng2018 -0.498  0.000  0.000  0.000              
## Tmsprng2019 -0.498  0.027  0.000  0.000  0.493       
## Timsmmr2018 -0.498  0.000  0.000  0.000  0.500  0.493
anova(model1bc)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3  702.8  234.28  2.9705
## Time       3 8544.0 2847.99 36.1111
anova(model1b,model1ba,model1bb,model1bc)
## Data: Deer_projectdata
## Models:
## model1b: NetNitr_OM ~ Treatment + (1 | Site)
## model1bb: NetNitr_OM ~ Treatment + (1 | Time)
## model1ba: NetNitr_OM ~ Treatment + (1 | Site/Time)
## model1bc: NetNitr_OM ~ Treatment + Time + (1 | Site)
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## model1b   6 651.64 665.85 -319.82   639.64                             
## model1bb  6 603.18 617.40 -295.59   591.18 48.455      0  < 2.2e-16 ***
## model1ba  7 625.60 642.18 -305.80   611.60  0.000      1          1    
## model1bc  9 590.78 612.11 -286.39   572.78 38.818      2  3.722e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid1bc<-resid(model1bc)
hist(resid1bc)

#split-plot model
library(car)
library(emmeans)
## Warning: package 'emmeans' was built under R version 3.5.3
# This sets up your split-plot model
# Deer represents Exclosure or Control/Access
# Honeysuckle represents Removal or Control/Retention
# Site is the site (Bachelor, Reinhart, Western, College, Kramer)
# The random effect is needed to correctly account for degrees of freedom
split.plot.model1c <- lmer(NetNitr_OM ~ Deer + Honeysuckle + Deer * Honeysuckle +(1 | Time/Site),data = Deer_projectdata,contrasts = list(Deer = contr.sum,Honeysuckle = contr.sum))
summary(split.plot.model1c)
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## NetNitr_OM ~ Deer + Honeysuckle + Deer * Honeysuckle + (1 | Time/Site)
##    Data: Deer_projectdata
## 
## REML criterion at convergence: 579.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4608 -0.4972 -0.0766  0.3693  3.8333 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  Site:Time (Intercept)   2.723   1.650  
##  Time      (Intercept) 142.446  11.935  
##  Residual               89.808   9.477  
## Number of obs: 79, groups:  Site:Time, 20; Time, 4
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)          26.433      6.073   4.352
## Deer1                 1.239      1.067   1.161
## Honeysuckle1          1.982      1.067   1.857
## Deer1:Honeysuckle1   -1.669      1.067  -1.565
## 
## Correlation of Fixed Effects:
##             (Intr) Deer1  Hnysc1
## Deer1        0.002              
## Honeysuckl1 -0.002 -0.014       
## Dr1:Hnysck1 -0.002 -0.014  0.014
# This gives you the correct type 3 Anova; interpret P-values from here!
anova(split.plot.model1c, type = 3, test.statistic = "F")
## Analysis of Variance Table
##                  Df Sum Sq Mean Sq F value
## Deer              1 121.94  121.94  1.3578
## Honeysuckle       1 317.09  317.09  3.5308
## Deer:Honeysuckle  1 219.89  219.89  2.4485
# This allows you to do post-hoc comparisons;
# specifically this line give pairwise comparisons of deer*honeysuckle interaction
emmeans(split.plot.model1c, pairwise ~ Deer * Honeysuckle)
## $emmeans
##  Deer Honeysuckle emmean   SE   df lower.CL upper.CL
##  Con  H             28.0 6.34 3.57     9.50     46.5
##  Excl H             28.8 6.34 3.57    10.36     47.3
##  Con  NH            27.4 6.36 3.61     8.92     45.8
##  Excl NH            21.5 6.34 3.57     3.06     40.0
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast          estimate   SE   df t.ratio p.value
##  Con,H  - Excl,H     -0.862 3.00 56.0 -0.287  0.9916 
##  Con,H  - Con,NH      0.624 3.04 56.7  0.205  0.9969 
##  Con,H  - Excl,NH     6.441 3.00 56.0  2.149  0.1504 
##  Excl,H  - Con,NH     1.486 3.04 56.7  0.489  0.9613 
##  Excl,H  - Excl,NH    7.302 3.00 56.0  2.437  0.0818 
##  Con,NH - Excl,NH     5.816 3.04 56.7  1.913  0.2343 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
###########################################
##############################
#Run a lm on Nmin_OM
model2<-lm(Nmin_OM~Treatment* Time, data=Deer_projectdata,na.action=na.omit)
summary(model2)
## 
## Call:
## lm(formula = Nmin_OM ~ Treatment * Time, data = Deer_projectdata, 
##     na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.282  -5.568  -0.324   5.838  29.470 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      18.314      4.420   4.143 0.000102 ***
## TreatmentConNH                    2.686      6.251   0.430 0.668876    
## TreatmentExclH                   13.302      6.251   2.128 0.037203 *  
## TreatmentExclNH                   3.140      6.251   0.502 0.617181    
## TimeSpring2018                   18.316      6.251   2.930 0.004694 ** 
## Timespring2019                   -5.720      6.251  -0.915 0.363618    
## Timesummer2018                   21.128      6.251   3.380 0.001240 ** 
## TreatmentConNH:TimeSpring2018   -11.552      8.841  -1.307 0.195992    
## TreatmentExclH:TimeSpring2018   -22.200      8.841  -2.511 0.014570 *  
## TreatmentExclNH:TimeSpring2018  -14.774      8.841  -1.671 0.099575 .  
## TreatmentConNH:Timespring2019    -7.914      8.841  -0.895 0.374041    
## TreatmentExclH:Timespring2019   -18.982      8.841  -2.147 0.035577 *  
## TreatmentExclNH:Timespring2019  -11.224      8.841  -1.270 0.208826    
## TreatmentConNH:Timesummer2018    -5.278      8.841  -0.597 0.552602    
## TreatmentExclH:Timesummer2018   -18.372      8.841  -2.078 0.041712 *  
## TreatmentExclNH:Timesummer2018   -9.988      8.841  -1.130 0.262783    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.884 on 64 degrees of freedom
## Multiple R-squared:  0.6103, Adjusted R-squared:  0.5189 
## F-statistic: 6.681 on 15 and 64 DF,  p-value: 2.444e-08
anova(model2)
## Analysis of Variance Table
## 
## Response: Nmin_OM
##                Df Sum Sq Mean Sq F value    Pr(>F)    
## Treatment       3  382.6  127.52  1.3053    0.2804    
## Time            3 8584.7 2861.56 29.2907 4.858e-12 ***
## Treatment:Time  9  822.8   91.42  0.9358    0.5008    
## Residuals      64 6252.5   97.70                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid2<-resid(model2)
hist(resid2)

model2aov<-aov(Nmin_OM~Treatment*Time, data=Deer_projectdata)
posthoc2 <- TukeyHSD(x=model2aov, 'Time', conf.level=0.95)
posthoc2
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Nmin_OM ~ Treatment * Time, data = Deer_projectdata)
## 
## $Time
##                           diff        lwr        upr     p adj
## Spring2018-fall2018     6.1845  -2.060399  14.429399 0.2067939
## spring2019-fall2018   -15.2500 -23.494899  -7.005101 0.0000432
## summer2018-fall2018    12.7185   4.473601  20.963399 0.0007458
## spring2019-Spring2018 -21.4345 -29.679399 -13.189601 0.0000000
## summer2018-Spring2018   6.5340  -1.710899  14.778899 0.1672289
## summer2018-spring2019  27.9685  19.723601  36.213399 0.0000000
plot(posthoc2)

#Run linear mixed effects model setting "Site and Time" as random effects
#Also compare the AICs
library(lme4)
model2b<-lmer(Nmin_OM~Treatment + (1|Site),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model2b)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Nmin_OM ~ Treatment + (1 | Site)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    661.2    675.5   -324.6    649.2       74 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9558 -0.6375 -0.1031  0.5501  2.8230 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Site     (Intercept)   0.9988  0.9994 
##  Residual             194.7511 13.9553 
## Number of obs: 80, groups:  Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       26.745      3.152   8.484
## TreatmentConNH    -3.500      4.413  -0.793
## TreatmentExclH    -1.587      4.413  -0.360
## TreatmentExclNH   -5.857      4.413  -1.327
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.700              
## TrtmntExclH -0.700  0.500       
## TrtmntExcNH -0.700  0.500  0.500
anova(model2b)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 382.57  127.52  0.6548
resid2b<-resid(model2b)
plot(resid2b)

model2ba<-lmer(Nmin_OM~Treatment + (1|Site/Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model2ba)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Nmin_OM ~ Treatment + (1 | Site/Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    628.4    645.1   -307.2    614.4       73 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1112 -0.5855 -0.1180  0.3914  2.9520 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  Time:Site (Intercept) 118.00   10.863  
##  Site      (Intercept)   0.00    0.000  
##  Residual               77.75    8.818  
## Number of obs: 80, groups:  Time:Site, 20; Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       26.745      3.128   8.549
## TreatmentConNH    -3.500      2.788  -1.255
## TreatmentExclH    -1.587      2.788  -0.569
## TreatmentExclNH   -5.857      2.788  -2.100
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.446              
## TrtmntExclH -0.446  0.500       
## TrtmntExcNH -0.446  0.500  0.500
anova(model2ba)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 382.57  127.52  1.6402
resid2ba<-resid(model2ba)
hist(resid2ba)

model2bb<-lmer(Nmin_OM~Treatment + (1|Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model2bb)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Nmin_OM ~ Treatment + (1 | Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    614.3    628.6   -301.1    602.3       74 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0602 -0.5932 -0.1909  0.5983  3.5562 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Time     (Intercept) 102.7    10.132  
##  Residual              93.1     9.649  
## Number of obs: 80, groups:  Time, 4
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       26.745      5.506   4.857
## TreatmentConNH    -3.500      3.051  -1.147
## TreatmentExclH    -1.587      3.051  -0.520
## TreatmentExclNH   -5.857      3.051  -1.919
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.277              
## TrtmntExclH -0.277  0.500       
## TrtmntExcNH -0.277  0.500  0.500
anova(model2bb)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 382.57  127.52  1.3698
resid2bb<-resid(model2bb)
hist(resid2bb)

model2bc<-lmer(Nmin_OM~Treatment + Time + (1|Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model2bc)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Nmin_OM ~ Treatment + Time + (1 | Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    603.6    625.1   -292.8    585.6       71 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1682 -0.6116 -0.1303  0.5967  3.6243 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Time     (Intercept)  0.00    0.000   
##  Residual             88.44    9.404   
## Number of obs: 80, groups:  Time, 4
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       25.832      2.782   9.286
## TreatmentConNH    -3.500      2.974  -1.177
## TreatmentExclH    -1.587      2.974  -0.533
## TreatmentExclNH   -5.857      2.974  -1.969
## TimeSpring2018     6.184      2.974   2.080
## Timespring2019   -15.250      2.974  -5.128
## Timesummer2018    12.718      2.974   4.277
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH TrtENH TS2018 Tm2019
## TretmntCnNH -0.535                                   
## TrtmntExclH -0.535  0.500                            
## TrtmntExcNH -0.535  0.500  0.500                     
## TmSprng2018 -0.535  0.000  0.000  0.000              
## Tmsprng2019 -0.535  0.000  0.000  0.000  0.500       
## Timsmmr2018 -0.535  0.000  0.000  0.000  0.500  0.500
anova(model2bc)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3  382.6  127.52  1.4419
## Time       3 8584.7 2861.56 32.3555
anova(model2b,model2ba,model2bb,model2bc)
## Data: Deer_projectdata
## Models:
## model2b: Nmin_OM ~ Treatment + (1 | Site)
## model2bb: Nmin_OM ~ Treatment + (1 | Time)
## model2ba: Nmin_OM ~ Treatment + (1 | Site/Time)
## model2bc: Nmin_OM ~ Treatment + Time + (1 | Time)
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## model2b   6 661.16 675.45 -324.58   649.16                             
## model2bb  6 614.27 628.56 -301.14   602.27 46.890      0  < 2.2e-16 ***
## model2ba  7 628.43 645.10 -307.21   614.43  0.000      1          1    
## model2bc  9 603.62 625.06 -292.81   585.62 28.812      2  5.542e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid2bc<-resid(model2bc)
hist(resid2bc)

#split-plot model
library(car)
library(emmeans)
# This sets up your split-plot model
# Deer represents Exclosure or Control/Access
# Honeysuckle represents Removal or Control/Retention
# Site is the site (Bachelor, Reinhart, Western, College, Kramer)
# The random effect is needed to correctly account for degrees of freedom
split.plot.model2c <- lmer(Nmin_OM ~ Deer * Honeysuckle +
                             (1 | Site/Time),
                           data = Deer_projectdata,
                           contrasts = list(Deer = contr.sum,
                                            Honeysuckle = contr.sum))
summary(split.plot.model2c)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Nmin_OM ~ Deer * Honeysuckle + (1 | Site/Time)
##    Data: Deer_projectdata
## 
## REML criterion at convergence: 605.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0578 -0.5706 -0.1150  0.3815  2.8772 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  Time:Site (Intercept) 124.21   11.145  
##  Site      (Intercept)   0.00    0.000  
##  Residual               81.84    9.047  
## Number of obs: 80, groups:  Time:Site, 20; Site, 5
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         24.0093     2.6895   8.927
## Deer1                0.9857     1.0114   0.975
## Honeysuckle1         1.9425     1.0114   1.921
## Deer1:Honeysuckle1  -0.1925     1.0114  -0.190
## 
## Correlation of Fixed Effects:
##             (Intr) Deer1 Hnysc1
## Deer1       0.000              
## Honeysuckl1 0.000  0.000       
## Dr1:Hnysck1 0.000  0.000 0.000
# This gives you the correct type 3 Anova; interpret P-values from here!
anova(split.plot.model2c, type = 3, test.statistic = "F")
## Analysis of Variance Table
##                  Df  Sum Sq Mean Sq F value
## Deer              1  77.736  77.736  0.9498
## Honeysuckle       1 301.864 301.864  3.6884
## Deer:Honeysuckle  1   2.965   2.965  0.0362
# This allows you to do post-hoc comparisons;
# specifically this line give pairwise comparisons of deer*honeysuckle interaction
emmeans(split.plot.model2c, pairwise ~ Deer * Honeysuckle)
## $emmeans
##  Deer Honeysuckle emmean   SE   df lower.CL upper.CL
##  Con  H             26.7 3.21 8.01     19.3     34.1
##  Excl H             25.2 3.21 8.01     17.8     32.6
##  Con  NH            23.2 3.21 8.01     15.8     30.6
##  Excl NH            20.9 3.21 8.01     13.5     28.3
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast          estimate   SE df t.ratio p.value
##  Con,H  - Excl,H       1.59 2.86 57 0.555   0.9449 
##  Con,H  - Con,NH       3.50 2.86 57 1.223   0.6147 
##  Con,H  - Excl,NH      5.86 2.86 57 2.047   0.1831 
##  Excl,H  - Con,NH      1.91 2.86 57 0.669   0.9084 
##  Excl,H  - Excl,NH     4.27 2.86 57 1.493   0.4486 
##  Con,NH - Excl,NH      2.36 2.86 57 0.824   0.8430 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
#####################
#Run a lm on lgSMR_OM
model3<-lm(lgSMR_OM~Treatment*Time, data=Deer_projectdata,na.action=na.omit)
summary(model3)
## 
## Call:
## lm(formula = lgSMR_OM ~ Treatment * Time, data = Deer_projectdata, 
##     na.action = na.omit)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4260 -0.0690  0.0040  0.0845  0.5080 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     1.70400    0.06656  25.599  < 2e-16 ***
## TreatmentConNH                 -0.03400    0.09414  -0.361  0.71915    
## TreatmentExclH                  0.09600    0.09414   1.020  0.31166    
## TreatmentExclNH                 0.03800    0.09414   0.404  0.68780    
## TimeSpring2018                 -0.09200    0.09414  -0.977  0.33209    
## Timespring2019                 -0.25000    0.09414  -2.656  0.00998 ** 
## Timesummer2018                  0.02400    0.09414   0.255  0.79958    
## TreatmentConNH:TimeSpring2018  -0.01200    0.13313  -0.090  0.92846    
## TreatmentExclH:TimeSpring2018  -0.15400    0.13313  -1.157  0.25166    
## TreatmentExclNH:TimeSpring2018 -0.04400    0.13313  -0.331  0.74209    
## TreatmentConNH:Timespring2019   0.04600    0.13313   0.346  0.73083    
## TreatmentExclH:Timespring2019  -0.20800    0.13313  -1.562  0.12312    
## TreatmentExclNH:Timespring2019 -0.24600    0.13313  -1.848  0.06925 .  
## TreatmentConNH:Timesummer2018   0.10800    0.13313   0.811  0.42023    
## TreatmentExclH:Timesummer2018  -0.14600    0.13313  -1.097  0.27689    
## TreatmentExclNH:Timesummer2018 -0.08200    0.13313  -0.616  0.54011    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1488 on 64 degrees of freedom
## Multiple R-squared:  0.5731, Adjusted R-squared:  0.473 
## F-statistic: 5.727 on 15 and 64 DF,  p-value: 3.069e-07
plot(model3)

anova(model3)
## Analysis of Variance Table
## 
## Response: lgSMR_OM
##                Df  Sum Sq Mean Sq F value    Pr(>F)    
## Treatment       3 0.04406 0.01469  0.6630    0.5778    
## Time            3 1.63387 0.54462 24.5839 1.063e-10 ***
## Treatment:Time  9 0.22521 0.02502  1.1295    0.3556    
## Residuals      64 1.41784 0.02215                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid3<-resid(model3)
hist(resid3)

model3aov <- aov(lgSMR_OM~Treatment*Time, data=Deer_projectdata)
posthoc3 <- TukeyHSD(x=model3aov, 'Time', conf.level=0.95)
posthoc3
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = lgSMR_OM ~ Treatment * Time, data = Deer_projectdata)
## 
## $Time
##                          diff         lwr         upr     p adj
## Spring2018-fall2018   -0.1445 -0.26865718 -0.02034282 0.0161751
## spring2019-fall2018   -0.3520 -0.47615718 -0.22784282 0.0000000
## summer2018-fall2018   -0.0060 -0.13015718  0.11815718 0.9992521
## spring2019-Spring2018 -0.2075 -0.33165718 -0.08334282 0.0002332
## summer2018-Spring2018  0.1385  0.01434282  0.26265718 0.0228944
## summer2018-spring2019  0.3460  0.22184282  0.47015718 0.0000000
plot(posthoc3)

#Run linear mixed effects model setting "Site and Time" as random effects
#Also compare the AICs
library(lme4)
model3b<-lmer(SMR_OM~Treatment + (1|Site),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model3b)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: SMR_OM ~ Treatment + (1 | Site)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    749.0    763.3   -368.5    737.0       74 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3251 -0.6143 -0.1590  0.2994  6.3516 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Site     (Intercept)  24.26    4.925  
##  Residual             567.83   23.829  
## Number of obs: 80, groups:  Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       44.569      5.766   7.730
## TreatmentConNH     4.516      7.535   0.599
## TreatmentExclH    -0.865      7.535  -0.115
## TreatmentExclNH   -2.740      7.535  -0.364
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.653              
## TrtmntExclH -0.653  0.500       
## TrtmntExcNH -0.653  0.500  0.500
resid3b<-resid(model3b)
hist(resid3b)

model3ba<-lmer(SMR_OM~Treatment + (1|Site/Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model3ba)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: SMR_OM ~ Treatment + (1 | Site/Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    731.0    747.7   -358.5    717.0       73 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6168 -0.3443 -0.0654  0.1186  6.5122 
## 
## Random effects:
##  Groups    Name        Variance  Std.Dev. 
##  Time:Site (Intercept) 2.799e+02 1.673e+01
##  Site      (Intercept) 5.208e-14 2.282e-07
##  Residual              3.122e+02 1.767e+01
## Number of obs: 80, groups:  Time:Site, 20; Site, 5
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       44.569      5.441   8.191
## TreatmentConNH     4.516      5.588   0.808
## TreatmentExclH    -0.865      5.588  -0.155
## TreatmentExclNH   -2.740      5.588  -0.490
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.513              
## TrtmntExclH -0.513  0.500       
## TrtmntExcNH -0.513  0.500  0.500
resid3ba<-resid(model3ba)
hist(resid3ba)

model3bb<-lmer(SMR_OM~Treatment + (1|Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model3bb)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: SMR_OM ~ Treatment + (1 | Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    732.9    747.2   -360.4    720.9       74 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8009 -0.4992 -0.1123  0.2611  6.9564 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Time     (Intercept) 161.0    12.69   
##  Residual             431.1    20.76   
## Number of obs: 80, groups:  Time, 4
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       44.569      7.862   5.669
## TreatmentConNH     4.516      6.566   0.688
## TreatmentExclH    -0.865      6.566  -0.132
## TreatmentExclNH   -2.740      6.566  -0.417
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH
## TretmntCnNH -0.418              
## TrtmntExclH -0.418  0.500       
## TrtmntExcNH -0.418  0.500  0.500
resid3bb<-resid(model3bb)
hist(resid3bb)

anova(model3bb)
## Analysis of Variance Table
##           Df Sum Sq Mean Sq F value
## Treatment  3 568.77  189.59  0.4398
model3bc<-lmer(SMR_OM~Treatment + Time + (1|Time),na.action=na.omit,REML="FALSE",data=Deer_projectdata)
summary(model3bc)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: SMR_OM ~ Treatment + Time + (1 | Time)
##    Data: Deer_projectdata
## 
##      AIC      BIC   logLik deviance df.resid 
##    726.2    747.7   -354.1    708.2       71 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9172 -0.5260 -0.0193  0.3024  7.0591 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Time     (Intercept)   0.0     0.00   
##  Residual             409.5    20.24   
## Number of obs: 80, groups:  Time, 4
## 
## Fixed effects:
##                 Estimate Std. Error t value
## (Intercept)       56.482      5.986   9.436
## TreatmentConNH     4.516      6.399   0.706
## TreatmentExclH    -0.865      6.399  -0.135
## TreatmentExclNH   -2.740      6.399  -0.428
## TimeSpring2018   -17.826      6.399  -2.785
## Timespring2019   -31.273      6.399  -4.887
## Timesummer2018     1.450      6.399   0.227
## 
## Correlation of Fixed Effects:
##             (Intr) TrtCNH TrtmEH TrtENH TS2018 Tm2019
## TretmntCnNH -0.535                                   
## TrtmntExclH -0.535  0.500                            
## TrtmntExcNH -0.535  0.500  0.500                     
## TmSprng2018 -0.535  0.000  0.000  0.000              
## Tmsprng2019 -0.535  0.000  0.000  0.000  0.500       
## Timsmmr2018 -0.535  0.000  0.000  0.000  0.500  0.500
anova(model3bc)
## Analysis of Variance Table
##           Df  Sum Sq Mean Sq F value
## Treatment  3   568.8   189.6   0.463
## Time       3 14605.3  4868.4  11.888
anova(model3b,model3ba,model3bb,model3bc)
## Data: Deer_projectdata
## Models:
## model3b: SMR_OM ~ Treatment + (1 | Site)
## model3bb: SMR_OM ~ Treatment + (1 | Time)
## model3ba: SMR_OM ~ Treatment + (1 | Site/Time)
## model3bc: SMR_OM ~ Treatment + Time + (1 | Time)
##          Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
## model3b   6 748.98 763.27 -368.49   736.98                              
## model3bb  6 732.88 747.17 -360.44   720.88 16.1012      0    < 2e-16 ***
## model3ba  7 730.99 747.66 -358.49   716.99  3.8936      1    0.04847 *  
## model3bc  9 726.23 747.67 -354.11   708.23  8.7561      2    0.01255 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid3bc<-resid(model3bc)
hist(resid3bc)

#split-plot model
library(car)
library(emmeans)
# This sets up your split-plot model
# Deer represents Exclosure or Control/Access
# Honeysuckle represents Removal or Control/Retention
# Site is the site (Bachelor, Reinhart, Western, College, Kramer)
# The random effect is needed to correctly account for degrees of freedom
split.plot.model3c <- lmer(SMR_OM ~ Deer * Honeysuckle +
                             (1 | Site/Time),
                           data = Deer_projectdata,
                           contrasts = list(Deer = contr.sum,
                                            Honeysuckle = contr.sum))
summary(split.plot.model3c)
## Linear mixed model fit by REML ['lmerMod']
## Formula: SMR_OM ~ Deer * Honeysuckle + (1 | Site/Time)
##    Data: Deer_projectdata
## 
## REML criterion at convergence: 702.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5759 -0.3355 -0.0637  0.1156  6.3473 
## 
## Random effects:
##  Groups    Name        Variance Std.Dev.
##  Time:Site (Intercept) 294.6    17.16   
##  Site      (Intercept)   0.0     0.00   
##  Residual              328.7    18.13   
## Number of obs: 80, groups:  Time:Site, 20; Site, 5
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)         44.7971     4.3403  10.321
## Deer1                2.0301     2.0269   1.002
## Honeysuckle1        -0.6601     2.0269  -0.326
## Deer1:Honeysuckle1  -1.5976     2.0269  -0.788
## 
## Correlation of Fixed Effects:
##             (Intr) Deer1 Hnysc1
## Deer1       0.000              
## Honeysuckl1 0.000  0.000       
## Dr1:Hnysck1 0.000  0.000 0.000
# This gives you the correct type 3 Anova; interpret P-values from here!
anova(split.plot.model3c, type = 3, test.statistic = "F")
## Analysis of Variance Table
##                  Df Sum Sq Mean Sq F value
## Deer              1 329.71  329.71  1.0032
## Honeysuckle       1  34.86   34.86  0.1061
## Deer:Honeysuckle  1 204.19  204.19  0.6213
# This allows you to do post-hoc comparisons;
# specifically this line give pairwise comparisons of deer*honeysuckle interaction
emmeans(split.plot.model3c, pairwise ~ Deer * Honeysuckle)
## $emmeans
##  Deer Honeysuckle emmean   SE   df lower.CL upper.CL
##  Con  H             44.6 5.58 10.6     32.2     56.9
##  Excl H             43.7 5.58 10.6     31.4     56.0
##  Con  NH            49.1 5.58 10.6     36.7     61.4
##  Excl NH            41.8 5.58 10.6     29.5     54.2
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast          estimate   SE df t.ratio p.value
##  Con,H  - Excl,H      0.865 5.73 57  0.151  0.9988 
##  Con,H  - Con,NH     -4.516 5.73 57 -0.788  0.8598 
##  Con,H  - Excl,NH     2.740 5.73 57  0.478  0.9637 
##  Excl,H  - Con,NH    -5.380 5.73 57 -0.939  0.7843 
##  Excl,H  - Excl,NH    1.875 5.73 57  0.327  0.9878 
##  Con,NH - Excl,NH     7.255 5.73 57  1.266  0.5883 
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates