# set global chunk options:
library(knitr)
opts_chunk$set(cache=FALSE, fig.align='center')
Show sample calculation.
All of the following analyzes are for vasculars only
# Calculate significant indicator species for each grouping
env.dis.inval.3<-multipatt(abd.sp.allsp, vasc.env.clust.3$cluster, control=how(nperm=999))
summary(env.dis.inval.3)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: IndVal.g
## Significance level (alpha): 0.05
##
## Total number of species: 125
## Selected number of species: 52
## Number of species associated to 1 group: 42
## Number of species associated to 2 groups: 10
##
## List of species associated to each combination:
##
## Group 1 #sps. 11
## stat p.value
## CarSci 0.682 0.001 ***
## CarBig 0.537 0.001 ***
## ArcAlp 0.535 0.001 ***
## DryInt 0.458 0.001 ***
## BisViv 0.424 0.003 **
## RhoLap 0.356 0.001 ***
## SalUva 0.345 0.002 **
## CarCap 0.315 0.005 **
## JunTri 0.267 0.016 *
## PyrGra 0.267 0.014 *
## CarDef 0.218 0.050 *
##
## Group 2 #sps. 22
## stat p.value
## CarVag 0.759 0.001 ***
## EquSyl 0.647 0.001 ***
## MitNud 0.638 0.001 ***
## CarGyn 0.600 0.001 ***
## GauHis 0.517 0.001 ***
## RubArc 0.484 0.002 **
## EquArv 0.470 0.001 ***
## RubCha 0.470 0.001 ***
## OrtSec 0.466 0.001 ***
## VacOxy 0.457 0.001 ***
## PetFri 0.422 0.001 ***
## LarLar 0.403 0.002 **
## KalPol 0.389 0.003 **
## SalArc 0.389 0.003 **
## EurRad 0.374 0.001 ***
## AnePar 0.325 0.023 *
## SalPla 0.305 0.017 *
## AchMil 0.285 0.024 *
## CarAqu 0.285 0.028 *
## MaiTri 0.285 0.021 *
## AndPol 0.264 0.037 *
## CarLim 0.264 0.042 *
##
## Group 3 #sps. 9
## stat p.value
## LycAno 0.651 0.001 ***
## VacCes 0.646 0.001 ***
## SolMac 0.628 0.001 ***
## VacMyr 0.595 0.001 ***
## TriBor 0.557 0.001 ***
## AveFle 0.429 0.015 *
## RibGla 0.408 0.001 ***
## RubIda 0.318 0.008 **
## AlnVir 0.308 0.037 *
##
## Group 1+2 #sps. 3
## stat p.value
## SalVes 0.588 0.002 **
## SolMul 0.356 0.042 *
## TriCes 0.354 0.019 *
##
## Group 1+3 #sps. 2
## stat p.value
## VacUli 0.792 0.001 ***
## BetGla 0.710 0.001 ***
##
## Group 2+3 #sps. 5
## stat p.value
## CorCan 0.775 0.001 ***
## LinBor 0.710 0.001 ***
## PicMar 0.680 0.001 ***
## GeoLiv 0.590 0.001 ***
## PicGla 0.495 0.017 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(env.dis.inval.3, alpha=1)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: IndVal.g
## Significance level (alpha): 1
##
## Total number of species: 125
## Selected number of species: 104
## Number of species associated to 1 group: 85
## Number of species associated to 2 groups: 19
##
## List of species associated to each combination:
##
## Group 1 #sps. 20
## stat p.value
## CarSci 0.682 0.001 ***
## CarBig 0.537 0.001 ***
## ArcAlp 0.535 0.001 ***
## DryInt 0.458 0.001 ***
## BisViv 0.424 0.003 **
## RhoLap 0.356 0.001 ***
## SalUva 0.345 0.002 **
## CarCap 0.315 0.005 **
## JunTri 0.267 0.016 *
## PyrGra 0.267 0.014 *
## CarDef 0.218 0.050 *
## DiaLap 0.218 0.057 .
## DipCom 0.196 0.128
## HupApr 0.164 0.394
## AntAlp 0.154 0.251
## AntMon 0.154 0.251
## ArnAng 0.154 0.251
## CarCat 0.154 0.241
## PoaArc 0.154 0.247
## TriSpi 0.154 0.234
##
## Group 2 #sps. 49
## stat p.value
## CarVag 0.759 0.001 ***
## EquSyl 0.647 0.001 ***
## MitNud 0.638 0.001 ***
## CarGyn 0.600 0.001 ***
## GauHis 0.517 0.001 ***
## RubArc 0.484 0.002 **
## EquArv 0.470 0.001 ***
## RubCha 0.470 0.001 ***
## OrtSec 0.466 0.001 ***
## VacOxy 0.457 0.001 ***
## PetFri 0.422 0.001 ***
## LarLar 0.403 0.002 **
## KalPol 0.389 0.003 **
## SalArc 0.389 0.003 **
## EurRad 0.374 0.001 ***
## VioAdu 0.359 0.118
## AnePar 0.325 0.023 *
## SalPla 0.305 0.017 *
## AchMil 0.285 0.024 *
## CarAqu 0.285 0.028 *
## MaiTri 0.285 0.021 *
## AndPol 0.264 0.037 *
## CarLim 0.264 0.042 *
## EquVar 0.241 0.066 .
## LonVil 0.241 0.072 .
## LisCor 0.240 0.124
## CysMon 0.216 0.133
## EquSci 0.216 0.132
## AbiBal 0.201 0.295
## CarDis 0.187 0.256
## MyrGal 0.187 0.257
## AgrMer 0.152 0.379
## CarMag 0.152 0.339
## CarTri 0.152 0.385
## CasSep 0.152 0.357
## EriVir 0.152 0.367
## FraVir 0.152 0.367
## LuzPar 0.152 0.352
## RhiMin 0.152 0.344
## SchPur 0.152 0.367
## CarLep 0.108 1.000
## CarUtr 0.108 1.000
## DasFru 0.108 1.000
## EpiHor 0.108 1.000
## MonUni 0.108 1.000
## PacAur 0.108 1.000
## SalPed 0.108 1.000
## SelSel 0.108 1.000
## TriAlp 0.108 1.000
##
## Group 3 #sps. 16
## stat p.value
## LycAno 0.651 0.001 ***
## VacCes 0.646 0.001 ***
## SolMac 0.628 0.001 ***
## VacMyr 0.595 0.001 ***
## TriBor 0.557 0.001 ***
## AveFle 0.429 0.015 *
## RibGla 0.408 0.001 ***
## RubIda 0.318 0.008 **
## AlnVir 0.308 0.037 *
## ChaAng 0.204 0.127
## DryExp 0.204 0.116
## AmeBar 0.144 0.512
## CerAlp 0.144 0.513
## MinBif 0.144 0.513
## SalArg 0.144 0.508
## SalHum 0.144 0.523
##
## Group 1+2 #sps. 8
## stat p.value
## SalVes 0.588 0.002 **
## SolMul 0.356 0.042 *
## TriCes 0.354 0.019 *
## VioRen 0.352 0.099 .
## SalGla 0.250 0.175
## BarAlp 0.234 0.227
## ElyTra 0.175 0.716
## SteBor 0.125 0.739
##
## Group 1+3 #sps. 2
## stat p.value
## VacUli 0.792 0.001 ***
## BetGla 0.710 0.001 ***
##
## Group 2+3 #sps. 9
## stat p.value
## CorCan 0.775 0.001 ***
## LinBor 0.710 0.001 ***
## PicMar 0.680 0.001 ***
## GeoLiv 0.590 0.001 ***
## PicGla 0.495 0.017 *
## CalCan 0.273 0.225
## VibEdu 0.173 0.750
## PyrAsa 0.150 0.811
## CarBru 0.122 1.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(env.dis.inval.3, invalcomp=TRUE)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: IndVal.g
## Significance level (alpha): 0.05
##
## Total number of species: 125
## Selected number of species: 52
## Number of species associated to 1 group: 42
## Number of species associated to 2 groups: 10
##
## List of species associated to each combination:
##
## Group 1 #sps. 11
## stat p.value
## CarSci 0.682 0.001 ***
## CarBig 0.537 0.001 ***
## ArcAlp 0.535 0.001 ***
## DryInt 0.458 0.001 ***
## BisViv 0.424 0.003 **
## RhoLap 0.356 0.001 ***
## SalUva 0.345 0.002 **
## CarCap 0.315 0.005 **
## JunTri 0.267 0.016 *
## PyrGra 0.267 0.014 *
## CarDef 0.218 0.050 *
##
## Group 2 #sps. 22
## stat p.value
## CarVag 0.759 0.001 ***
## EquSyl 0.647 0.001 ***
## MitNud 0.638 0.001 ***
## CarGyn 0.600 0.001 ***
## GauHis 0.517 0.001 ***
## RubArc 0.484 0.002 **
## EquArv 0.470 0.001 ***
## RubCha 0.470 0.001 ***
## OrtSec 0.466 0.001 ***
## VacOxy 0.457 0.001 ***
## PetFri 0.422 0.001 ***
## LarLar 0.403 0.002 **
## KalPol 0.389 0.003 **
## SalArc 0.389 0.003 **
## EurRad 0.374 0.001 ***
## AnePar 0.325 0.023 *
## SalPla 0.305 0.017 *
## AchMil 0.285 0.024 *
## CarAqu 0.285 0.028 *
## MaiTri 0.285 0.021 *
## AndPol 0.264 0.037 *
## CarLim 0.264 0.042 *
##
## Group 3 #sps. 9
## stat p.value
## LycAno 0.651 0.001 ***
## VacCes 0.646 0.001 ***
## SolMac 0.628 0.001 ***
## VacMyr 0.595 0.001 ***
## TriBor 0.557 0.001 ***
## AveFle 0.429 0.015 *
## RibGla 0.408 0.001 ***
## RubIda 0.318 0.008 **
## AlnVir 0.308 0.037 *
##
## Group 1+2 #sps. 3
## stat p.value
## SalVes 0.588 0.002 **
## SolMul 0.356 0.042 *
## TriCes 0.354 0.019 *
##
## Group 1+3 #sps. 2
## stat p.value
## VacUli 0.792 0.001 ***
## BetGla 0.710 0.001 ***
##
## Group 2+3 #sps. 5
## stat p.value
## CorCan 0.775 0.001 ***
## LinBor 0.710 0.001 ***
## PicMar 0.680 0.001 ***
## GeoLiv 0.590 0.001 ***
## PicGla 0.495 0.017 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Analyzing species ecological preferences with correlation indices
# Negative values indicate that a species tends to 'avoid' certain habitats
env.dis.inval.3.phi<-multipatt(abd.sp.allsp, vasc.env.clust.3$cluster, func="r.g", control=how(nperm=999))
summary(env.dis.inval.3.phi)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: r.g
## Significance level (alpha): 0.05
##
## Total number of species: 125
## Selected number of species: 49
## Number of species associated to 1 group: 43
## Number of species associated to 2 groups: 6
##
## List of species associated to each combination:
##
## Group 1 #sps. 12
## stat p.value
## VacUli 0.423 0.001 ***
## CarSci 0.419 0.001 ***
## ArcAlp 0.331 0.001 ***
## CarBig 0.278 0.001 ***
## SalUva 0.255 0.002 **
## RhoLap 0.244 0.004 **
## DryInt 0.237 0.005 **
## BisViv 0.235 0.002 **
## PyrGra 0.216 0.011 *
## JunTri 0.211 0.007 **
## CarDef 0.178 0.047 *
## CarCap 0.174 0.041 *
##
## Group 2 #sps. 23
## stat p.value
## CarVag 0.498 0.001 ***
## CarGyn 0.419 0.001 ***
## MitNud 0.407 0.001 ***
## PicMar 0.392 0.001 ***
## VacOxy 0.371 0.001 ***
## EquSyl 0.364 0.001 ***
## RubCha 0.351 0.001 ***
## EquArv 0.322 0.001 ***
## LarLar 0.306 0.001 ***
## PetFri 0.305 0.001 ***
## OrtSec 0.302 0.001 ***
## RubArc 0.264 0.004 **
## SalArc 0.263 0.003 **
## KalPol 0.251 0.002 **
## EurRad 0.251 0.004 **
## MaiTri 0.221 0.015 *
## RhoGro 0.214 0.018 *
## SalPla 0.213 0.012 *
## AchMil 0.212 0.012 *
## AndPol 0.211 0.026 *
## AnePar 0.207 0.012 *
## GauHis 0.205 0.010 **
## CarAqu 0.181 0.034 *
##
## Group 3 #sps. 8
## stat p.value
## VacCes 0.377 0.001 ***
## VacMyr 0.361 0.001 ***
## SolMac 0.316 0.001 ***
## TriBor 0.311 0.001 ***
## RibGla 0.256 0.001 ***
## LycAno 0.247 0.002 **
## AveFle 0.161 0.040 *
## RubIda 0.153 0.022 *
##
## Group 1+2 #sps. 1
## stat p.value
## SalVes 0.237 0.008 **
##
## Group 1+3 #sps. 1
## stat p.value
## BetGla 0.324 0.001 ***
##
## Group 2+3 #sps. 4
## stat p.value
## CorCan 0.353 0.001 ***
## GeoLiv 0.237 0.002 **
## PicGla 0.218 0.008 **
## LinBor 0.213 0.011 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
round(head(env.dis.inval.3.phi$str),3)
## 1 2 3 1+2 1+3 2+3
## AchMil -0.106 0.212 -0.106 0.106 -0.212 0.106
## AgrMer -0.062 0.124 -0.062 0.062 -0.124 0.062
## AlnVir -0.032 -0.114 0.146 -0.146 0.114 0.032
## AmeBar -0.059 -0.059 0.118 -0.118 0.059 0.059
## AndPol -0.106 0.211 -0.106 0.106 -0.211 0.106
## AnePar -0.067 0.207 -0.140 0.140 -0.207 0.067
#Indicator species analysis without site groups combinations
env.dis.indvalori.3<-multipatt(abd.sp.allsp, vasc.env.clust.3$cluster, duleg=TRUE, control=how(nperm=999))
summary(env.dis.indvalori.3)
##
## Multilevel pattern analysis
## ---------------------------
##
## Association function: IndVal.g
## Significance level (alpha): 0.05
##
## Total number of species: 125
## Selected number of species: 50
## Number of species associated to 1 group: 50
## Number of species associated to 2 groups: 0
##
## List of species associated to each combination:
##
## Group 1 #sps. 11
## stat p.value
## VacUli 0.771 0.001 ***
## CarSci 0.682 0.001 ***
## CarBig 0.537 0.001 ***
## ArcAlp 0.535 0.001 ***
## DryInt 0.458 0.001 ***
## BisViv 0.424 0.001 ***
## RhoLap 0.356 0.002 **
## SalUva 0.345 0.001 ***
## CarCap 0.315 0.002 **
## JunTri 0.267 0.015 *
## PyrGra 0.267 0.009 **
##
## Group 2 #sps. 28
## stat p.value
## CarVag 0.759 0.001 ***
## PicMar 0.662 0.001 ***
## EquSyl 0.647 0.001 ***
## MitNud 0.638 0.001 ***
## CarGyn 0.600 0.001 ***
## RhoGro 0.595 0.002 **
## LinBor 0.587 0.006 **
## GauHis 0.517 0.001 ***
## EmpNig 0.491 0.033 *
## RubArc 0.484 0.002 **
## EquArv 0.470 0.001 ***
## RubCha 0.470 0.001 ***
## OrtSec 0.466 0.001 ***
## VacOxy 0.457 0.001 ***
## GeoLiv 0.454 0.037 *
## PetFri 0.422 0.001 ***
## PicGla 0.411 0.038 *
## LarLar 0.403 0.001 ***
## KalPol 0.389 0.002 **
## SalArc 0.389 0.003 **
## EurRad 0.374 0.002 **
## VioAdu 0.359 0.031 *
## AnePar 0.325 0.024 *
## SalPla 0.305 0.015 *
## AchMil 0.285 0.028 *
## CarAqu 0.285 0.034 *
## MaiTri 0.285 0.019 *
## AndPol 0.264 0.041 *
##
## Group 3 #sps. 11
## stat p.value
## LycAno 0.651 0.001 ***
## VacCes 0.646 0.001 ***
## SolMac 0.628 0.001 ***
## CorCan 0.609 0.001 ***
## VacMyr 0.595 0.001 ***
## TriBor 0.557 0.001 ***
## BetGla 0.533 0.011 *
## AveFle 0.429 0.008 **
## RibGla 0.408 0.001 ***
## RubIda 0.318 0.008 **
## AlnVir 0.308 0.022 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Get values corresponding to each cluster; these are numeric
env.no.na<-subset(env.dis.inval.3.phi$str, !(is.na(env.dis.inval.3.phi$str[,1])))
env.dist.inv.1.3<-env.no.na[,1]
env.dist.inv.2.3<-env.no.na[,2]
env.dist.inv.3.3<-env.no.na[,3]
names(which(env.dis.inval.3.phi$str[,1]=="NaN"))
## [1] "MoeMac" "ParKot" "PhyCae" "SteLon" "AreHum" "BetMin" "BetPum"
## [8] "CarBel" "CarGla" "CopLap" "CorTri" "LuzSpi" "PoaAlp" "SalHer"
## [15] "SalMyr"
# drop tips from vascular phylogeny so that it matches species with usable indicator species
#drop extra tips from tree
trans.ind.3.tree<-drop.tip(trans.one.tree,c("MoeMac", "ParKot", "PhyCae", "SteLon", "AreHum", "BetMin", "BetPum", "CarBel", "CarGla", "CopLap", "CorTri", "LuzSpi", "PoaAlp", "SalHer", "SalMyr"))
#set colours for map
env.1.3.map<-contMap(trans.ind.3.tree,env.dist.inv.1.3,lwd=4,res=100, fsize=0.35, ftype="b", sig=2)
env.2.3.map<-contMap(trans.ind.3.tree,env.dist.inv.2.3,lwd=4,res=100, fsize=0.35, ftype="b", sig=2)
env.3.3.map<-contMap(trans.ind.3.tree,env.dist.inv.3.3,lwd=4,res=100, fsize=0.35, ftype="b", sig=2)
#plot contMaps side-by-side
#dev.new(width=11.8, height=8)
par(mfrow=c(1,3), mar=c(4, 4, 0, 1), mai=c(4, 0, 0, 0))
#Black and white ContMap
env.1.3.map$cols[]<-grey(seq(1,0,length.out=length(env.1.3.map$cols)))
plot(env.1.3.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.1.3.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
#Black and white ContMap for angiosperms only
env.2.3.map$cols[]<-grey(seq(1,0,length.out=length(env.2.3.map$cols)))
plot(env.2.3.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.2.3.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.3.3.map$cols[]<-grey(seq(1,0,length.out=length(env.3.3.map$cols)))
plot(env.3.3.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.3.3.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
#plot all contMaps side-by-side for four clusters
#dev.new(width=11.8, height=8)
par(mfrow=c(1,4), mar=c(4, 4, 0, 1), mai=c(4, 0, 0, 0))
#Black and white ContMap
env.1.4.map$cols[]<-grey(seq(1,0,length.out=length(env.1.4.map$cols)))
plot(env.1.4.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.1.4.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.2.4.map$cols[]<-grey(seq(1,0,length.out=length(env.2.4.map$cols)))
plot(env.2.4.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.2.4.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.3.4.map$cols[]<-grey(seq(1,0,length.out=length(env.3.4.map$cols)))
plot(env.3.4.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.3.4.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.4.4.map$cols[]<-grey(seq(1,0,length.out=length(env.4.4.map$cols)))
plot(env.4.4.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.4.4.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
#plot all angiosperm contMaps side-by-side for four clusters
#dev.new(width=11.8, height=8)
par(mfrow=c(1,5), mar=c(4, 4, 0, 1), mai=c(4, 0, 0, 0))
#Black and white ContMap
env.1.5.map$cols[]<-grey(seq(1,0,length.out=length(env.1.5.map$cols)))
plot(env.1.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.1.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.2.5.map$cols[]<-grey(seq(1,0,length.out=length(env.2.5.map$cols)))
plot(env.2.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.2.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.3.5.map$cols[]<-grey(seq(1,0,length.out=length(env.3.5.map$cols)))
plot(env.3.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.3.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.4.5.map$cols[]<-grey(seq(1,0,length.out=length(env.4.5.map$cols)))
plot(env.4.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.4.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.5.5.map$cols[]<-grey(seq(1,0,length.out=length(env.5.5.map$cols)))
plot(env.5.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, env.5.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
I only completed an analysis for five clusters since that is the number I reduced the groupings to when I aggregated the preexisting clusters from before.
#plot all contMaps side-by-side for fiveclusters
#dev.new(width=11.8, height=8)
par(mfrow=c(1,5), mar=c(4, 4, 0, 1), mai=c(4, 0, 0, 0))
#Black and white ContMap
tc.1.5.map$cols[]<-grey(seq(1,0,length.out=length(tc.1.5.map$cols)))
plot(tc.1.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, tc.1.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
tc.2.5.map$cols[]<-grey(seq(1,0,length.out=length(tc.2.5.map$cols)))
plot(tc.2.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, tc.2.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
tc.3.5.map$cols[]<-grey(seq(1,0,length.out=length(tc.3.5.map$cols)))
plot(tc.3.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, tc.3.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
tc.4.5.map$cols[]<-grey(seq(1,0,length.out=length(tc.4.5.map$cols)))
plot(tc.4.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, tc.4.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
tc.5.5.map$cols[]<-grey(seq(1,0,length.out=length(tc.5.5.map$cols)))
plot(tc.5.5.map,outline=TRUE,lwd=3, res=10, ftype="b",sig=2,legend=FALSE, fsize=0.35)
#add.color.bar(420, tc.5.5.map$cols, lims=c(0,0.106),title="Species contribution to beta diversity", digits=3, prompt=TRUE, lwd=3, outline=TRUE, fsize=0.6, ftype="b")
env.clust.K.3
## Group 1 Group 2 Group 3
## Env.dist 0.019 0.02 0.013
env.clust.K.4
## Group 1 Group 2 Group 3 Group 4
## Env.dist 0.019 0.015 0.021 0.02
tc.env.clust.K.5
## Group 1 Group 2 Group 3 Group 4 Group 5
## Env.dist 0.015 0.019 0.014 0.017 0.019
## Tammy class 0.014 0.018 0.021 0.019 0.019