library(pacman)
semi <- read.csv("semilla.csv")
T2010 <- subset(semi, tiempo = "2010")
T2013 <- subset(semi, tiempo = "2013")
knitr::kable(semi)
| Kilogramos | tiempo |
|---|---|
| 9 | T2010 |
| 8 | T2010 |
| 6 | T2010 |
| 9 | T2010 |
| 9 | T2010 |
| 7 | T2010 |
| 6 | T2010 |
| 5 | T2010 |
| 7 | T2010 |
| 4 | T2010 |
| 5 | T2010 |
| 3 | T2010 |
| 4 | T2010 |
| 5 | T2010 |
| 6 | T2010 |
| 5 | T2010 |
| 8 | T2013 |
| 9 | T2013 |
| 7 | T2013 |
| 6 | T2013 |
| 8 | T2013 |
| 8 | T2013 |
| 4 | T2013 |
| 6 | T2013 |
| 5 | T2013 |
| 3 | T2013 |
| 5 | T2013 |
| 4 | T2013 |
| 4 | T2013 |
| 5 | T2013 |
| 3 | T2013 |
| 4 | T2013 |
boxplot(semi$Kilogramos ~ semi$tiempo, col="orange", main = "Gráfico de caja y bigote", xlab="Año", ylab = "Kilogramos")
fivenum(T2010$Kilogramos)
## [1] 3.0 4.0 5.5 7.5 9.0
fivenum(T2013$Kilogramos)
## [1] 3.0 4.0 5.5 7.5 9.0
hist(T2010$Kilogramos, col = "purple", main = "Año 2010", ylab = "Frecuencia", xlab="Kilogramos")
summary(T2010$Kilogramos)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000 4.000 5.500 5.844 7.250 9.000
hist(T2013$Kilogramos, col = "green", main = "Año 2013", ylab = "Frecuencia", xlab= "Kilogramos")
summary(T2013$Kilogramos)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000 4.000 5.500 5.844 7.250 9.000
op <- par(mfrow = c(1,2), cex.axis= .7, cex.lab= .9)
boxplot(semi$Kilogramos ~ semi$tiempo, col="orange", main = "Gráfico de caja y bigote", xlab="Año", ylab = "Kilogramos")
barplot(tapply(semi$Kilogramos, list(semi$tiempo), mean), beside = T, main = "Gráfico de Barras", col = "orange", xlab="Año", ylab="Kilogramos")
Prueba de Normalidad de Shapro-Wil
shapiro.test(T2010$Kilogramos)
##
## Shapiro-Wilk normality test
##
## data: T2010$Kilogramos
## W = 0.92283, p-value = 0.02482
shapiro.test(T2013$Kilogramos)
##
## Shapiro-Wilk normality test
##
## data: T2013$Kilogramos
## W = 0.92283, p-value = 0.02482
Prueba de Normalidad de Kolmogorov-Smirnov
ks.test(T2010$Kilogramos, "pnorm", mean=mean(T2010$Kilogramos), sd=sd(T2010$Kilogramos))
## Warning in ks.test(T2010$Kilogramos, "pnorm", mean = mean(T2010$Kilogramos), :
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: T2010$Kilogramos
## D = 0.17129, p-value = 0.3048
## alternative hypothesis: two-sided
ks.test(T2013$Kilogramos, "pnorm", mean=mean(T2013$Kilogramos), sd=sd(T2013$Kilogramos))
## Warning in ks.test(T2013$Kilogramos, "pnorm", mean = mean(T2013$Kilogramos), :
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: T2013$Kilogramos
## D = 0.17129, p-value = 0.3048
## alternative hypothesis: two-sided
t.test(T2010$Kilogramos, T2013$Kilogramos, var.equal = T,)
##
## Two Sample t-test
##
## data: T2010$Kilogramos and T2013$Kilogramos
## t = 0, df = 62, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9508204 0.9508204
## sample estimates:
## mean of x mean of y
## 5.84375 5.84375
var.test(T2010$Kilogramos, T2013$Kilogramos)
##
## F test to compare two variances
##
## data: T2010$Kilogramos and T2013$Kilogramos
## F = 1, num df = 31, denom df = 31, p-value = 1
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.4881425 2.0485820
## sample estimates:
## ratio of variances
## 1