Tabla de Regresion - Diego Lara Chuquilin

link="https://docs.google.com/spreadsheets/d/e/2PACX-1vRq_z7dcVQae82F92aErK8S6f3Tv0E0hI_8tiNFRqRy3Lp4gyj0Tf8HCcBSWeboQgCquoB4D56DhOdx/pub?output=csv"
midata=read.csv(link, stringsAsFactors = F)
install.packages("papeR")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.0'
## (as 'lib' is unspecified)
library(papeR)
## Loading required package: car
## Loading required package: carData
## Loading required package: xtable
## Registered S3 method overwritten by 'papeR':
##   method    from
##   Anova.lme car
## 
## Attaching package: 'papeR'
## The following object is masked from 'package:utils':
## 
##     toLatex
summary(midata)
##  poblacioncienmil        nbi        consejocomunal      priorizado    
##  Min.   : 0.00158   Min.   : 5.36   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.: 0.07422   1st Qu.:28.35   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median : 0.13998   Median :41.30   Median :0.00000   Median :0.0000  
##  Mean   : 0.40470   Mean   :42.96   Mean   :0.05474   Mean   :0.2518  
##  3rd Qu.: 0.26255   3rd Qu.:55.48   3rd Qu.:0.00000   3rd Qu.:1.0000  
##  Max.   :69.26836   Max.   :98.81   Max.   :1.00000   Max.   :1.0000  
##                     NA's   :30                                        
##     uribista        ejecucion       apropiaciondolar      pctopo      
##  Min.   :0.0000   Min.   :0.00000   Min.   :  0.000   Min.   : 0.000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:  0.000   1st Qu.: 5.922  
##  Median :1.0000   Median :0.00000   Median :  0.000   Median :20.308  
##  Mean   :0.6278   Mean   :0.03741   Mean   :  8.276   Mean   :27.874  
##  3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:  9.385   3rd Qu.:45.711  
##  Max.   :1.0000   Max.   :1.00000   Max.   :132.643   Max.   :99.419  
##  NA's   :204                                          NA's   :7
str(midata)
## 'data.frame':    1096 obs. of  8 variables:
##  $ poblacioncienmil: num  20.9155 0.2406 0.0398 0.0558 0.2723 ...
##  $ nbi             : num  12.2 33.8 28.5 33.1 27.1 ...
##  $ consejocomunal  : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ priorizado      : num  0 1 0 0 0 0 0 0 1 0 ...
##  $ uribista        : num  0 1 1 1 1 1 1 1 1 NA ...
##  $ ejecucion       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ apropiaciondolar: num  102.17 4.19 1.59 0 0 ...
##  $ pctopo          : num  14.82 14.51 15.08 6.15 47.31 ...
newOrder=c("apropiaciondolar","pctopo","uribista","priorizado","consejocomunal","ejecucion","poblacioncienmil","nbi")
midata=midata[,newOrder]
summary(midata)
##  apropiaciondolar      pctopo          uribista        priorizado    
##  Min.   :  0.000   Min.   : 0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:  0.000   1st Qu.: 5.922   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :  0.000   Median :20.308   Median :1.0000   Median :0.0000  
##  Mean   :  8.276   Mean   :27.874   Mean   :0.6278   Mean   :0.2518  
##  3rd Qu.:  9.385   3rd Qu.:45.711   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :132.643   Max.   :99.419   Max.   :1.0000   Max.   :1.0000  
##                    NA's   :7        NA's   :204                      
##  consejocomunal      ejecucion       poblacioncienmil        nbi       
##  Min.   :0.00000   Min.   :0.00000   Min.   : 0.00158   Min.   : 5.36  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.: 0.07422   1st Qu.:28.35  
##  Median :0.00000   Median :0.00000   Median : 0.13998   Median :41.30  
##  Mean   :0.05474   Mean   :0.03741   Mean   : 0.40470   Mean   :42.96  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.: 0.26255   3rd Qu.:55.48  
##  Max.   :1.00000   Max.   :1.00000   Max.   :69.26836   Max.   :98.81  
##                                                         NA's   :30
str(midata)
## 'data.frame':    1096 obs. of  8 variables:
##  $ apropiaciondolar: num  102.17 4.19 1.59 0 0 ...
##  $ pctopo          : num  14.82 14.51 15.08 6.15 47.31 ...
##  $ uribista        : num  0 1 1 1 1 1 1 1 1 NA ...
##  $ priorizado      : num  0 1 0 0 0 0 0 0 1 0 ...
##  $ consejocomunal  : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ ejecucion       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ poblacioncienmil: num  20.9155 0.2406 0.0398 0.0558 0.2723 ...
##  $ nbi             : num  12.2 33.8 28.5 33.1 27.1 ...
names(midata)
## [1] "apropiaciondolar" "pctopo"           "uribista"         "priorizado"      
## [5] "consejocomunal"   "ejecucion"        "poblacioncienmil" "nbi"
mipividaton=lm(apropiaciondolar~.,data=midata)
summary(mipividaton)
## 
## Call:
## lm(formula = apropiaciondolar ~ ., data = midata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -60.201  -8.207  -5.875   2.505  92.488 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      14.13182    1.67651   8.429  < 2e-16 ***
## pctopo           -0.03096    0.02126  -1.456  0.14563    
## uribista         -2.57184    1.09188  -2.355  0.01872 *  
## priorizado       -2.21395    1.18715  -1.865  0.06253 .  
## consejocomunal   14.05017    2.32452   6.044 2.23e-09 ***
## ejecucion         2.95688    2.80758   1.053  0.29255    
## poblacioncienmil  1.83866    0.20024   9.182  < 2e-16 ***
## nbi              -0.09292    0.02941  -3.160  0.00163 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.38 on 868 degrees of freedom
##   (220 observations deleted due to missingness)
## Multiple R-squared:  0.1751, Adjusted R-squared:  0.1684 
## F-statistic: 26.32 on 7 and 868 DF,  p-value: < 2.2e-16
install.packages("stargazer")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/4.0'
## (as 'lib' is unspecified)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(mipividaton, title = "Resultados de la regresión lineal", dep.var.labels=c("Apropiación presupuestal"), covariate.labels=c("Población (100.000 habitantes)","Necesidades básicas insatisfechas","Consejo Comunal con Ejecución","Prioridad técnica","Alcaldes coalición uribista","Consejo Comunal con ejecución", "Porcentaje Votos oposición"))
## 
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Sun, Jul 05, 2020 - 23:31:58
## \begin{table}[!htbp] \centering 
##   \caption{Resultados de la regresión lineal} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}}lc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
##  & \multicolumn{1}{c}{\textit{Dependent variable:}} \\ 
## \cline{2-2} 
## \\[-1.8ex] & Apropiación presupuestal \\ 
## \hline \\[-1.8ex] 
##  Población (100.000 habitantes) & $-$0.031 \\ 
##   & (0.021) \\ 
##   & \\ 
##  Necesidades básicas insatisfechas & $-$2.572$^{**}$ \\ 
##   & (1.092) \\ 
##   & \\ 
##  Consejo Comunal con Ejecución & $-$2.214$^{*}$ \\ 
##   & (1.187) \\ 
##   & \\ 
##  Prioridad técnica & 14.050$^{***}$ \\ 
##   & (2.325) \\ 
##   & \\ 
##  Alcaldes coalición uribista & 2.957 \\ 
##   & (2.808) \\ 
##   & \\ 
##  Consejo Comunal con ejecución & 1.839$^{***}$ \\ 
##   & (0.200) \\ 
##   & \\ 
##  Porcentaje Votos oposición & $-$0.093$^{***}$ \\ 
##   & (0.029) \\ 
##   & \\ 
##  Constant & 14.132$^{***}$ \\ 
##   & (1.677) \\ 
##   & \\ 
## \hline \\[-1.8ex] 
## Observations & 876 \\ 
## R$^{2}$ & 0.175 \\ 
## Adjusted R$^{2}$ & 0.168 \\ 
## Residual Std. Error & 15.378 (df = 868) \\ 
## F Statistic & 26.316$^{***}$ (df = 7; 868) \\ 
## \hline 
## \hline \\[-1.8ex] 
## \textit{Note:}  & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\ 
## \end{tabular} 
## \end{table}