# BiBliotecas
library(readxl)
library(astsa)
library(tidyverse)
library(forecast)
library(tidyquant)
library(tscount)
library(gridExtra)
\[ a = 1 \\ c = 2 \\ g = 3 \\ t = 4 \]
1 RNA Australia X China.
res <- Australia_RNA %>% filter(Australia_RNA$RNA_num!=China_Wuhan_RNA$RNA_num) %>%
bind_cols(China_Wuhan_RNA %>% filter(China_Wuhan_RNA$RNA_num!=Australia_RNA$RNA_num)) %>%
transmute(Tempo = Time, RNA_Australia = RNA_num,
RNA_China = RNA_num1)
res
##
## A C G T
## A 2702 1650 1752 2789
## C 1576 996 1189 1708
## G 1719 1032 1058 2038
## T 2896 1795 1853 3029
##
## Pearson's Chi-squared test
##
## data: M1
## X-squared = 43.399, df = 9, p-value = 1.821e-06
ccf(x = Australia_RNA$RNA_num %>% ts(start = 1, end = nrow(Australia_RNA)),
y = China_Wuhan_RNA$RNA_num %>% ts(start = 1, end = nrow(China_Wuhan_RNA)), lag.max = 30, main = "AutocorrelaĂ§Ă£o Cruzada entre os RNA", type = 'correlation', ylab='CCF(X,Y)')
1.1 AplicaĂ§Ă£o do modelo
m1<-Logit_ts(y = Australia_RNA$RNA_num, Termo_Ar = c(1), Intercept = T,
xreg = China_Wuhan_RNA$RNA_num %>% as.matrix())
m1$df_pred %>% filter(fitted != y_real)
## [1] 33.78664
## V1 V2 V3 V4
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.2530 1st Qu.:0.1491 1st Qu.:0.1839 1st Qu.:0.2635
## Median :0.2795 Median :0.1645 Median :0.1931 Median :0.3342
## Mean :0.2986 Mean :0.1836 Mean :0.1963 Mean :0.3214
## 3rd Qu.:0.3254 3rd Qu.:0.2230 3rd Qu.:0.2604 3rd Qu.:0.3417
## Max. :0.3836 Max. :0.2302 Max. :0.2787 Max. :0.3830
2 RNA Alemanha X China.
res <- Alemanha_RNA %>% filter(Alemanha_RNA$RNA_num!=China_Wuhan_RNA$RNA_num) %>%
bind_cols(China_Wuhan_RNA %>% filter(China_Wuhan_RNA$RNA_num!=Alemanha_RNA$RNA_num)) %>%
transmute(Tempo = Time, RNA_Alemanha = RNA_num,
RNA_China = RNA_num1)
res
##
## A C G T
## A 2673 1622 1726 2875
## C 1613 1000 983 1877
## G 1760 1185 1077 1826
## T 2847 1666 2066 2986
##
## Pearson's Chi-squared test
##
## data: M1
## X-squared = 60.08, df = 9, p-value = 1.294e-09
ccf(x = Alemanha_RNA$RNA_num %>% ts(start = 1, end = nrow(Alemanha_RNA)),
y = China_Wuhan_RNA$RNA_num %>% ts(start = 1, end = nrow(China_Wuhan_RNA)), lag.max = 30, main = "AutocorrelaĂ§Ă£o Cruzada entre os RNA", type = 'correlation', ylab='CCF(X,Y)')
2.1 AplicaĂ§Ă£o do modelo
m2<-Logit_ts(y = Australia_RNA$RNA_num, Termo_Ar = c(1), Intercept = T,
xreg = China_Wuhan_RNA$RNA_num %>% as.matrix())
m2$df_pred %>% filter(fitted != y_real)
## [1] 33.78664
## V1 V2 V3 V4
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.2530 1st Qu.:0.1491 1st Qu.:0.1839 1st Qu.:0.2635
## Median :0.2795 Median :0.1645 Median :0.1931 Median :0.3342
## Mean :0.2986 Mean :0.1836 Mean :0.1963 Mean :0.3214
## 3rd Qu.:0.3254 3rd Qu.:0.2230 3rd Qu.:0.2604 3rd Qu.:0.3417
## Max. :0.3836 Max. :0.2301 Max. :0.2787 Max. :0.3830
3 RNA USA X China.
res <- USA_RNA %>% filter(USA_RNA$RNA_num != China_Wuhan_RNA$RNA_num) %>%
bind_cols(China_Wuhan_RNA %>% filter(China_Wuhan_RNA$RNA_num != USA_RNA$RNA_num)) %>%
transmute(Tempo = Time, RNA_USA = RNA_num, RNA_China = RNA_num1)
res
##
## A C G T
## A 2602 1682 1769 2839
## C 1589 1021 1173 1691
## G 1738 990 1033 2083
## T 2964 1780 1877 2951
##
## Pearson's Chi-squared test
##
## data: M1
## X-squared = 65.627, df = 9, p-value = 1.089e-10
ccf(x = USA_RNA$RNA_num %>% ts(start = 1, end = nrow(USA_RNA)),
y = China_Wuhan_RNA$RNA_num %>% ts(start = 1, end = nrow(China_Wuhan_RNA)), lag.max = 30, main = "AutocorrelaĂ§Ă£o Cruzada entre os RNA", type = 'correlation', ylab='CCF(X,Y)')
3.1 AplicaĂ§Ă£o do modelo
m3<-Logit_ts(y = USA_RNA$RNA_num, Termo_Ar = c(1), Intercept = T,
xreg = China_Wuhan_RNA$RNA_num %>% as.matrix())
m3$df_pred %>% filter(fitted != y_real)
## [1] 33.98811
## V1 V2 V3 V4
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.2482 1st Qu.:0.1476 1st Qu.:0.1833 1st Qu.:0.2698
## Median :0.2765 Median :0.1629 Median :0.1962 Median :0.3313
## Mean :0.2986 Mean :0.1838 Mean :0.1962 Mean :0.3214
## 3rd Qu.:0.3201 3rd Qu.:0.2266 3rd Qu.:0.2566 3rd Qu.:0.3498
## Max. :0.3849 Max. :0.2275 Max. :0.2821 Max. :0.3911
4 RNA França X China.
res <- Franca_RNA %>% filter(Franca_RNA$RNA_num != China_Wuhan_RNA$RNA_num) %>%
bind_cols(China_Wuhan_RNA %>% filter(China_Wuhan_RNA$RNA_num != Franca_RNA$RNA_num)) %>%
transmute(Tempo = Time, RNA_Franca = RNA_num, RNA_China = RNA_num1)
res
##
## A C G T
## A 2660 1608 1769 2857
## C 1593 1019 1014 1848
## G 1795 1148 1025 1878
## T 2845 1698 2044 2981
##
## Pearson's Chi-squared test
##
## data: M1
## X-squared = 48.989, df = 9, p-value = 1.668e-07
acf(Franca_RNA$RNA_num %>% ts(start = 1, end = nrow(Franca_RNA)), max.lag = 30, main = 'JapĂ£o RNA')
ccf(x = Franca_RNA$RNA_num %>% ts(start = 1, end = nrow(Franca_RNA)),
y = China_Wuhan_RNA$RNA_num %>% ts(start = 1, end = nrow(China_Wuhan_RNA)), lag.max = 30, main = "AutocorrelaĂ§Ă£o Cruzada entre os RNA" , type = 'correlation', ylab='CCF(X,Y)')
4.1 AplicaĂ§Ă£o do modelo
m4<-Logit_ts(y = Franca_RNA$RNA_num, Termo_Ar = c(1), Intercept = T,
xreg = China_Wuhan_RNA$RNA_num %>% as.matrix())
m4$df_pred %>% filter(fitted != y_real)
## [1] 34.01498
## V1 V2 V3 V4
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.2491 1st Qu.:0.1518 1st Qu.:0.1815 1st Qu.:0.2590
## Median :0.2753 Median :0.1649 Median :0.1930 Median :0.3358
## Mean :0.2986 Mean :0.1838 Mean :0.1963 Mean :0.3213
## 3rd Qu.:0.3201 3rd Qu.:0.2212 3rd Qu.:0.2628 3rd Qu.:0.3400
## Max. :0.3804 Max. :0.2331 Max. :0.2771 Max. :0.3804
5 RNA Brasil X China.
res <- Brasil_RNA %>% filter(Brasil_RNA$RNA_num != China_Wuhan_RNA$RNA_num) %>%
bind_cols(China_Wuhan_RNA %>% filter(China_Wuhan_RNA$RNA_num != Brasil_RNA$RNA_num)) %>%
transmute(Tempo = Time, RNA_Brasil = RNA_num, RNA_China = RNA_num1)
res
##
## A C G T
## A 2740 1601 1741 2810
## C 1546 1044 1032 1853
## G 1793 1145 1029 1877
## T 2814 1683 2050 3024
##
## Pearson's Chi-squared test
##
## data: M1
## X-squared = 55.688, df = 9, p-value = 9.003e-09
acf(Brasil_RNA$RNA_num %>% ts(start = 1, end = nrow(Brasil_RNA)), max.lag = 30, main = 'Brasil RNA')
ccf(x = Brasil_RNA$RNA_num %>% ts(start = 1, end = nrow(Brasil_RNA)),
y = China_Wuhan_RNA$RNA_num %>% ts(start = 1, end = nrow(China_Wuhan_RNA)), lag.max = 30, main = "AutocorrelaĂ§Ă£o Cruzada entre os RNA" , type = 'correlation', ylab='CCF(X,Y)')
5.1 AplicaĂ§Ă£o do modelo
m5<-Logit_ts(y = Brasil_RNA$RNA_num, Termo_Ar = c(1), Intercept = T,
xreg = China_Wuhan_RNA$RNA_num %>% as.matrix())
m5$df_pred %>% filter(fitted != y_real)
## [1] 33.98476
## V1 V2 V3 V4
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.2520 1st Qu.:0.1534 1st Qu.:0.1812 1st Qu.:0.2618
## Median :0.2808 Median :0.1670 Median :0.1932 Median :0.3356
## Mean :0.2986 Mean :0.1838 Mean :0.1962 Mean :0.3213
## 3rd Qu.:0.3259 3rd Qu.:0.2182 3rd Qu.:0.2628 3rd Qu.:0.3437
## Max. :0.3882 Max. :0.2360 Max. :0.2771 Max. :0.3836