library(raster)
## Loading required package: sp
library(sp)
dane=read.table("/home/bartosz/Pulpit/averaged_1600px_waw.dat")
X=unique(dane$V1)
Y=unique(dane$V2)
rasterDF=expand.grid(X,Y)
coordinates(rasterDF) <- ~ Var1 + Var2
gridded(rasterDF) <- TRUE
rasterDF <- raster(rasterDF)
names(dane)=c("lon","lat","z1","z2","z3")
coordinates(dane)=~lon+lat
wyjscie=setValues(rasterDF,dane$z1)
image(wyjscie-273.15, col=rainbow(40))
wgs <- CRS('+init=epsg:4326')
proj4string(wyjscie) <- wgs
writeRaster(wyjscie, filename="wyjscie.tif", format="GTiff", overwrite=TRUE)
## rgdal: version: 0.8-16, (SVN revision 498)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 1.11.1, released 2014/09/24
## Path to GDAL shared files: /usr/share/gdal/1.11
## Loaded PROJ.4 runtime: Rel. 4.8.0, 6 March 2012, [PJ_VERSION: 480]
## Path to PROJ.4 shared files: (autodetected)
## class : RasterLayer
## dimensions : 32, 50, 1600 (nrow, ncol, ncell)
## resolution : 0.01453, 0.01453 (x, y)
## extent : 20.7, 21.43, 52.01, 52.47 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
## data source : /home/bartosz/Dokumenty/dydaktyka/prognozowanie_w_hydrologiii_i_klimatologii2014/wyjscie.tif
## names : wyjscie
## values : 277.3, 287.4 (min, max)