data=read.csv(url("http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data"), header = FALSE)
names(data)=c('Clase','Alcohol','Acido','Ash','Alcalinity of ash','Magnesium','Total phenols','Flavanoids','Nonflavanoid phenols','Proanthocyanins','Color intensity','Hue','OD280/OD315','Proline')
Bloque 1
table(data$Clase)
##
## 1 2 3
## 59 71 48
Bloque 2
hist(data$Alcohol)

Bloque 3
library(COVID19)
## Warning: package 'COVID19' was built under R version 4.0.2
covid=covid19(country = "Ecuador")
##
## World Bank Open Data (2018), https://data.worldbank.org
##
## Hale Thomas, Sam Webster, Anna Petherick, Toby Phillips, and Beatriz
## Kira (2020). Oxford COVID-19 Government Response Tracker, Blavatnik
## School of Government.
##
## Our World in Data (2020), https://github.com
##
## Johns Hopkins Center for Systems Science and Engineering (2020),
## https://github.com
##
## Guidotti, E., Ardia, D., (2020), "COVID-19 Data Hub", Working paper,
## doi: 10.13140/RG.2.2.11649.81763.
##
## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set
## 'options(citation.bibtex.max=999)'.
##
## To hide the data sources use 'verbose = FALSE'.
Bloque 4
mean(covid$confirmed)
## [1] 19299.41
Bloque 5
corazon <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data",header=FALSE,sep=",",na.strings = '?')
names(corazon) <- c( "age", "sex", "cp", "trestbps", "chol","fbs", "restecg","thalach","exang", "oldpeak","slope", "ca", "thal", "num")
Bloque 6
hist(corazon$age)

Cargando datos de Infartos
infartos <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00519/heart_failure_clinical_records_dataset.csv",header=TRUE)
Edad de infartos
boxplot(infartos$age)
