# create a folder for the data
#if(!file.exists("./data")){dir.create("./data")}
#Get Data From the Web
#fileUrl <-"https://data.baltimorecity.gov/api/views/k5ry-ef3g/rows.csv?accessType=DOWNLOAD"
#download.file(fileUrl, destfile = "./data/restData.csv")
restData <-read.csv("./data/restData.csv")
###Create Sequences to Index Operations:
#create different types of sequences
s1 <- seq(1,10,by=2); s1
## [1] 1 3 5 7 9
s2 <-seq(1,10,length=3);s2
## [1] 1.0 5.5 10.0
# sequence to loop over the data
x <-c(1,3,8,25,100); seq(along=x)
## [1] 1 2 3 4 5
###Create a new Variable
# Create a new variable from Subset Data
restData$nearMe = restData$neighborhood %in% c("Roland Park", "Homeland")
#Inspect
table(restData$nearMe)
##
## FALSE TRUE
## 1314 13
######Create Binary Variables
#upload data
restData$ZipWrong = ifelse(restData$zipCode <0, TRUE, FALSE)
#Show Results
table(restData$ZipWrong,restData$zipCode <0 )
##
## FALSE TRUE
## FALSE 1326 0
## TRUE 0 1
#old school
restData$zipGroups = cut(restData$zipCode, breaks = quantile(restData$zipCode))
table(restData$zipGroups)
##
## (-2.123e+04,2.12e+04] (2.12e+04,2.122e+04] (2.122e+04,2.123e+04]
## 337 375 282
## (2.123e+04,2.129e+04]
## 332
table(restData$zipGroups, restData$zipCode)
##
## -21226 21201 21202 21205 21206 21207 21208 21209 21210
## (-2.123e+04,2.12e+04] 0 136 201 0 0 0 0 0 0
## (2.12e+04,2.122e+04] 0 0 0 27 30 4 1 8 23
## (2.122e+04,2.123e+04] 0 0 0 0 0 0 0 0 0
## (2.123e+04,2.129e+04] 0 0 0 0 0 0 0 0 0
##
## 21211 21212 21213 21214 21215 21216 21217 21218 21220
## (-2.123e+04,2.12e+04] 0 0 0 0 0 0 0 0 0
## (2.12e+04,2.122e+04] 41 28 31 17 54 10 32 69 0
## (2.122e+04,2.123e+04] 0 0 0 0 0 0 0 0 1
## (2.123e+04,2.129e+04] 0 0 0 0 0 0 0 0 0
##
## 21222 21223 21224 21225 21226 21227 21229 21230 21231
## (-2.123e+04,2.12e+04] 0 0 0 0 0 0 0 0 0
## (2.12e+04,2.122e+04] 0 0 0 0 0 0 0 0 0
## (2.122e+04,2.123e+04] 7 56 199 19 0 0 0 0 0
## (2.123e+04,2.129e+04] 0 0 0 0 18 4 13 156 127
##
## 21234 21237 21239 21251 21287
## (-2.123e+04,2.12e+04] 0 0 0 0 0
## (2.12e+04,2.122e+04] 0 0 0 0 0
## (2.122e+04,2.123e+04] 0 0 0 0 0
## (2.123e+04,2.129e+04] 7 1 3 2 1
#Hmisc method with cut() to create factor variables
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
restData$zipGroup =cut2(restData$zipCode, g=4)
table(restData$zipGroup)
##
## [-21226,21205) [ 21205,21220) [ 21220,21227) [ 21227,21287]
## 338 375 300 314
library(Hmisc); library(plyr)
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:Hmisc':
##
## is.discrete, summarize
# Add the new variables to the Data Frame
restData2 = mutate(restData, zipGroups=cut2(zipCode, g=4))
table(restData2$zipGroups)
##
## [-21226,21205) [ 21205,21220) [ 21220,21227) [ 21227,21287]
## 338 375 300 314
head(restData2)
## name zipCode neighborhood councilDistrict policeDistrict
## 1 410 21206 Frankford 2 NORTHEASTERN
## 2 1919 21231 Fells Point 1 SOUTHEASTERN
## 3 SAUTE 21224 Canton 1 SOUTHEASTERN
## 4 #1 CHINESE KITCHEN 21211 Hampden 14 NORTHERN
## 5 #1 chinese restaurant 21223 Millhill 9 SOUTHWESTERN
## 6 19TH HOLE 21218 Clifton Park 14 NORTHEASTERN
## Location.1 X2010.Census.Neighborhoods
## 1 4509 BELAIR ROAD\nBaltimore, MD NA
## 2 1919 FLEET ST\nBaltimore, MD NA
## 3 2844 HUDSON ST\nBaltimore, MD NA
## 4 3998 ROLAND AVE\nBaltimore, MD NA
## 5 2481 frederick ave\nBaltimore, MD NA
## 6 2722 HARFORD RD\nBaltimore, MD NA
## X2010.Census.Wards.Precincts Zip.Codes nearMe ZipWrong zipGroups
## 1 NA NA FALSE FALSE [ 21205,21220)
## 2 NA NA FALSE FALSE [ 21227,21287]
## 3 NA NA FALSE FALSE [ 21220,21227)
## 4 NA NA FALSE FALSE [ 21205,21220)
## 5 NA NA FALSE FALSE [ 21220,21227)
## 6 NA NA FALSE FALSE [ 21205,21220)
## zipGroup
## 1 [ 21205,21220)
## 2 [ 21227,21287]
## 3 [ 21220,21227)
## 4 [ 21205,21220)
## 5 [ 21220,21227)
## 6 [ 21205,21220)
This is an R Markdown document, feel free to reach out for finer details.