##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * mean_PHQ + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 31525.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4084 -0.5642 0.0455 0.6241 3.9505
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 84.89 9.214
## Residual 260.71 16.146
## Number of obs: 3719, groups: subject, 122
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 65.954161 3.047723 1759.126150 21.640
## roaming_entropy 1.749769 0.559914 3682.040776 3.125
## mean_PHQ -1.402934 0.281392 412.103784 -4.986
## distance -0.002102 0.001044 3627.192398 -2.013
## time_of_day 0.018986 0.015770 3612.971348 1.204
## dowMonday -2.528646 0.981234 3600.534573 -2.577
## dowSaturday 7.581644 1.100096 3603.545224 6.892
## dowSunday -2.630516 1.085938 3609.077015 -2.422
## dowThursday -5.455206 1.122286 3600.524203 -4.861
## dowTuesday -4.835666 0.999901 3597.882790 -4.836
## dowWednesday -4.110997 0.951179 3600.521697 -4.322
## precipi -2.014930 1.289243 3607.530513 -1.563
## mean_temp -0.117744 0.029129 3630.329575 -4.042
## roaming_entropy:mean_PHQ 0.028922 0.081375 3704.991956 0.355
## Pr(>|t|)
## (Intercept) < 0.0000000000000002 ***
## roaming_entropy 0.00179 **
## mean_PHQ 0.00000091121794 ***
## distance 0.04419 *
## time_of_day 0.22870
## dowMonday 0.01001 *
## dowSaturday 0.00000000000648 ***
## dowSunday 0.01547 *
## dowThursday 0.00000121904219 ***
## dowTuesday 0.00000137927378 ***
## dowWednesday 0.00001588023034 ***
## precipi 0.11817
## mean_temp 0.00005406488456 ***
## roaming_entropy:mean_PHQ 0.72230
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * mean_PHQ + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 28926.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4414 -0.5587 0.0497 0.6166 4.0115
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 90.45 9.511
## Residual 254.46 15.952
## Number of obs: 3418, groups: subject, 120
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 64.975433 2.910655 1357.734578 22.323
## novel_locations 0.027014 0.008655 3351.023381 3.121
## mean_PHQ -1.463504 0.224442 135.120358 -6.521
## distance -0.003047 0.001050 3331.428250 -2.902
## time_of_day 0.015223 0.016288 3313.878740 0.935
## dowMonday -3.203729 1.046262 3302.299002 -3.062
## dowSaturday 4.984499 1.115113 3300.844063 4.470
## dowSunday -4.825541 1.105963 3300.202782 -4.363
## dowThursday -6.264021 1.168901 3302.502194 -5.359
## dowTuesday -5.716636 1.063305 3299.760129 -5.376
## dowWednesday -4.994372 1.011724 3301.620030 -4.936
## precipi -2.846142 1.324880 3307.506878 -2.148
## mean_temp -0.043571 0.029997 3330.460508 -1.453
## novel_locations:mean_PHQ 0.002804 0.001258 3369.557866 2.229
## Pr(>|t|)
## (Intercept) < 0.0000000000000002 ***
## novel_locations 0.00182 **
## mean_PHQ 0.00000000129 ***
## distance 0.00373 **
## time_of_day 0.35006
## dowMonday 0.00222 **
## dowSaturday 0.00000808689 ***
## dowSunday 0.00001320982 ***
## dowThursday 0.00000008948 ***
## dowTuesday 0.00000008132 ***
## dowWednesday 0.00000083480 ***
## precipi 0.03177 *
## mean_temp 0.14645
## novel_locations:mean_PHQ 0.02589 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * mean_PHQ + distance + time_of_day +
## dow + precipi + mean_temp + (1 + novel_locations * mean_PHQ | subject)
## Data: df
##
## REML criterion at convergence: 28933.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5461 -0.5553 0.0515 0.6085 3.9666
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subject (Intercept) 184.22628751 13.572998
## novel_locations 0.00319603 0.056533 -0.59
## mean_PHQ 0.42622131 0.652856 -0.24 -0.56
## novel_locations:mean_PHQ 0.00001604 0.004005 0.92 -0.42 -0.51
## Residual 245.76927538 15.677030
## Number of obs: 3418, groups: subject, 120
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 64.458997 3.241295 231.055883 19.887
## novel_locations 0.035241 0.012451 38.616092 2.830
## mean_PHQ -1.451721 0.316474 22.778086 -4.587
## distance -0.003143 0.001057 3165.100457 -2.974
## time_of_day 0.012846 0.016137 3307.486746 0.796
## dowMonday -3.218710 1.036259 3301.851977 -3.106
## dowSaturday 5.062240 1.108489 3309.574768 4.567
## dowSunday -4.664823 1.097712 3307.017578 -4.250
## dowThursday -6.309197 1.155838 3289.469929 -5.459
## dowTuesday -5.775711 1.051967 3287.995893 -5.490
## dowWednesday -4.999911 1.001769 3296.127144 -4.991
## precipi -2.769215 1.312937 3309.932461 -2.109
## mean_temp -0.038626 0.030145 3207.988612 -1.281
## novel_locations:mean_PHQ 0.002136 0.001869 35.758274 1.143
## Pr(>|t|)
## (Intercept) < 0.0000000000000002 ***
## novel_locations 0.007342 **
## mean_PHQ 0.000133 ***
## distance 0.002961 **
## time_of_day 0.426052
## dowMonday 0.001912 **
## dowSaturday 0.0000051330 ***
## dowSunday 0.0000220079 ***
## dowThursday 0.0000000516 ***
## dowTuesday 0.0000000431 ***
## dowWednesday 0.0000006316 ***
## precipi 0.035004 *
## mean_temp 0.200168
## novel_locations:mean_PHQ 0.260741
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## [[1]]
##
## [[2]]
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * mean_GAD + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 31526.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4104 -0.5626 0.0459 0.6254 3.9562
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 85.51 9.247
## Residual 260.75 16.148
## Number of obs: 3719, groups: subject, 122
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 65.935825 3.045623 1777.090700 21.649
## roaming_entropy 1.689322 0.565658 3674.071506 2.986
## mean_GAD -1.562147 0.316466 459.738223 -4.936
## distance -0.002126 0.001044 3625.968513 -2.036
## time_of_day 0.018688 0.015768 3612.074199 1.185
## dowMonday -2.504094 0.981402 3599.719842 -2.552
## dowSaturday 7.592777 1.100101 3602.413956 6.902
## dowSunday -2.595145 1.085993 3608.377391 -2.390
## dowThursday -5.457167 1.122350 3599.517011 -4.862
## dowTuesday -4.828083 0.999936 3596.897196 -4.828
## dowWednesday -4.103667 0.951286 3599.397213 -4.314
## precipi -2.017732 1.289320 3606.447064 -1.565
## mean_temp -0.118248 0.029128 3629.473797 -4.060
## roaming_entropy:mean_GAD 0.057192 0.089889 3699.863529 0.636
## Pr(>|t|)
## (Intercept) < 0.0000000000000002 ***
## roaming_entropy 0.00284 **
## mean_GAD 0.00000111601527 ***
## distance 0.04186 *
## time_of_day 0.23602
## dowMonday 0.01077 *
## dowSaturday 0.00000000000604 ***
## dowSunday 0.01692 *
## dowThursday 0.00000121011537 ***
## dowTuesday 0.00000143371821 ***
## dowWednesday 0.00001647750885 ***
## precipi 0.11768
## mean_temp 0.00005019984292 ***
## roaming_entropy:mean_GAD 0.52465
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * mean_GAD + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 28928.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4905 -0.5566 0.0493 0.6239 4.0170
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 91.08 9.544
## Residual 254.57 15.955
## Number of obs: 3418, groups: subject, 120
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 64.633740 2.904084 1361.937799 22.256
## novel_locations 0.028431 0.008648 3331.379835 3.288
## mean_GAD -1.559323 0.245369 137.190202 -6.355
## distance -0.003041 0.001051 3330.371573 -2.894
## time_of_day 0.015434 0.016287 3313.019165 0.948
## dowMonday -3.128469 1.046859 3301.316949 -2.988
## dowSaturday 4.973104 1.115370 3299.790382 4.459
## dowSunday -4.769374 1.106684 3299.304098 -4.310
## dowThursday -6.254014 1.169210 3301.527607 -5.349
## dowTuesday -5.706540 1.063648 3298.924628 -5.365
## dowWednesday -4.962278 1.012003 3300.652394 -4.903
## precipi -2.836727 1.325089 3306.463104 -2.141
## mean_temp -0.042928 0.030001 3329.524168 -1.431
## novel_locations:mean_GAD 0.002834 0.001359 3352.012425 2.085
## Pr(>|t|)
## (Intercept) < 0.0000000000000002 ***
## novel_locations 0.00102 **
## mean_GAD 0.00000000287 ***
## distance 0.00382 **
## time_of_day 0.34340
## dowMonday 0.00282 **
## dowSaturday 0.00000852038 ***
## dowSunday 0.00001683211 ***
## dowThursday 0.00000009450 ***
## dowTuesday 0.00000008650 ***
## dowWednesday 0.00000098728 ***
## precipi 0.03236 *
## mean_temp 0.15256
## novel_locations:mean_GAD 0.03714 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * mean_GAD + distance + time_of_day +
## dow + precipi + mean_temp + (1 + novel_locations * mean_GAD | subject)
## Data: df
##
## REML criterion at convergence: 29571.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6216 -0.5643 0.0398 0.6231 3.7230
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subject (Intercept) 147.7155 12.1538
## novel_locations 25.2150 5.0215 -0.22
## mean_GAD 3.8957 1.9738 -0.68 0.80
## novel_locations:mean_GAD 0.4215 0.6492 0.21 -1.00 -0.80
## Residual 242.2600 15.5647
## Number of obs: 3418, groups: subject, 120
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 63.171088 3.027028 1025.663221 20.869
## novel_locations -0.018478 0.462965 884.263447 -0.040
## mean_GAD -1.397980 0.278841 24.973914 -5.014
## distance -0.002774 0.001089 3083.516544 -2.547
## time_of_day 0.006273 0.016133 3296.856553 0.389
## dowMonday -2.745794 1.039565 3296.462154 -2.641
## dowSaturday 5.436609 1.113931 3290.394638 4.881
## dowSunday -4.367892 1.103975 3292.012322 -3.957
## dowThursday -6.229593 1.157065 3290.167168 -5.384
## dowTuesday -5.696919 1.053743 3288.609150 -5.406
## dowWednesday -4.685674 1.004088 3286.427243 -4.667
## precipi -2.741929 1.319903 3299.165808 -2.077
## mean_temp -0.036487 0.030905 3274.847373 -1.181
## novel_locations:mean_GAD 0.010071 0.059837 2052.104490 0.168
## Pr(>|t|)
## (Intercept) < 0.0000000000000002 ***
## novel_locations 0.9682
## mean_GAD 0.0000360891 ***
## distance 0.0109 *
## time_of_day 0.6974
## dowMonday 0.0083 **
## dowSaturday 0.0000011081 ***
## dowSunday 0.0000776556 ***
## dowThursday 0.0000000780 ***
## dowTuesday 0.0000000689 ***
## dowWednesday 0.0000031846 ***
## precipi 0.0378 *
## mean_temp 0.2378
## novel_locations:mean_GAD 0.8664
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## [[1]]
##
## [[2]]
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: roaming_entropy ~ extraversion + (1 | subject)
## Data: df
##
## REML criterion at convergence: 28099.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1625 -0.5693 0.0915 0.6151 5.2291
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 0.1100 0.3316
## Residual 0.6643 0.8150
## Number of obs: 11424, groups: subject, 125
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.208596 0.141160 120.059077 15.646 <0.0000000000000002 ***
## extraversion 0.012105 0.006458 120.662406 1.874 0.0633 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## extraversin -0.976
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_locations ~ extraversion + (1 | subject)
## Data: df
##
## REML criterion at convergence: 119310.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6244 -0.6097 -0.3239 0.3166 10.2028
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 313.9 17.72
## Residual 4198.8 64.80
## Number of obs: 10650, groups: subject, 125
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 50.0088 7.9494 122.7778 6.291 0.00000000506 ***
## extraversion 0.4358 0.3646 123.3309 1.195 0.234
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## extraversin -0.976
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * extraversion + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 29189.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5027 -0.5662 0.0503 0.6252 4.0144
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 107.2 10.35
## Residual 253.1 15.91
## Number of obs: 3449, groups: subject, 121
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 42.577301 5.290161 212.007014 8.048
## novel_locations -0.006261 0.023438 3384.321815 -0.267
## extraversion 0.674328 0.215015 132.463157 3.136
## distance -0.003079 0.001045 3357.210037 -2.948
## time_of_day 0.015030 0.016208 3339.112645 0.927
## dowMonday -3.286361 1.037741 3329.217831 -3.167
## dowSaturday 4.930361 1.108230 3328.246559 4.449
## dowSunday -4.733130 1.098916 3327.402054 -4.307
## dowThursday -6.236369 1.161594 3329.513765 -5.369
## dowTuesday -5.770183 1.057256 3327.004310 -5.458
## dowWednesday -4.913494 1.004669 3328.975922 -4.891
## precipi -2.785708 1.318109 3333.989630 -2.113
## mean_temp -0.038158 0.029908 3354.647017 -1.276
## novel_locations:extraversion 0.002256 0.001067 3375.473275 2.113
## Pr(>|t|)
## (Intercept) 0.0000000000000593 ***
## novel_locations 0.78939
## extraversion 0.00211 **
## distance 0.00322 **
## time_of_day 0.35383
## dowMonday 0.00155 **
## dowSaturday 0.0000089153562083 ***
## dowSunday 0.0000170195955796 ***
## dowThursday 0.0000000846915899 ***
## dowTuesday 0.0000000517665970 ***
## dowWednesday 0.0000010525822563 ***
## precipi 0.03464 *
## mean_temp 0.20209
## novel_locations:extraversion 0.03464 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * extraversion + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 31790.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4274 -0.5672 0.0384 0.6265 3.9711
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 104.3 10.21
## Residual 259.2 16.10
## Number of obs: 3750, groups: subject, 123
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 47.729380 6.275473 437.649328 7.606
## roaming_entropy -0.050015 1.583387 3729.508472 -0.032
## extraversion 0.505650 0.269013 341.973243 1.880
## distance -0.002001 0.001038 3648.944420 -1.929
## time_of_day 0.016349 0.015690 3636.152217 1.042
## dowMonday -2.607721 0.973723 3625.640615 -2.678
## dowSaturday 7.605785 1.092456 3628.024804 6.962
## dowSunday -2.615999 1.078754 3632.901415 -2.425
## dowThursday -5.404813 1.115674 3625.739879 -4.844
## dowTuesday -4.900161 0.994562 3623.170408 -4.927
## dowWednesday -4.113523 0.944801 3625.885312 -4.354
## precipi -2.048762 1.282778 3631.721459 -1.597
## mean_temp -0.115417 0.029024 3652.587262 -3.977
## roaming_entropy:extraversion 0.089606 0.072292 3722.339256 1.240
## Pr(>|t|)
## (Intercept) 0.000000000000175 ***
## roaming_entropy 0.97480
## extraversion 0.06101 .
## distance 0.05386 .
## time_of_day 0.29749
## dowMonday 0.00744 **
## dowSaturday 0.000000000003962 ***
## dowSunday 0.01536 *
## dowThursday 0.000001322844244 ***
## dowTuesday 0.000000872570604 ***
## dowWednesday 0.000013746163100 ***
## precipi 0.11032
## mean_temp 0.000071244825178 ***
## roaming_entropy:extraversion 0.21524
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## PA_avg ~ novel_locations * conscientiousness + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 29196.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4597 -0.5562 0.0448 0.6197 4.0048
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 110.4 10.51
## Residual 253.4 15.92
## Number of obs: 3449, groups: subject, 121
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 40.363403 5.778809 199.203347 6.985
## novel_locations 0.044797 0.025021 3382.114240 1.790
## conscientiousness 0.740187 0.226642 133.301920 3.266
## distance -0.002961 0.001045 3357.651668 -2.835
## time_of_day 0.015143 0.016215 3339.058454 0.934
## dowMonday -3.234309 1.038348 3329.225253 -3.115
## dowSaturday 5.009620 1.108620 3328.151699 4.519
## dowSunday -4.704073 1.099575 3327.125160 -4.278
## dowThursday -6.177445 1.162119 3329.464173 -5.316
## dowTuesday -5.736069 1.057818 3326.845697 -5.423
## dowWednesday -4.885313 1.005289 3328.834717 -4.860
## precipi -2.781294 1.319067 3333.910303 -2.109
## mean_temp -0.040681 0.029903 3354.517460 -1.360
## novel_locations:conscientiousness -0.000141 0.001066 3379.224018 -0.132
## Pr(>|t|)
## (Intercept) 0.0000000000417 ***
## novel_locations 0.07348 .
## conscientiousness 0.00139 **
## distance 0.00461 **
## time_of_day 0.35041
## dowMonday 0.00186 **
## dowSaturday 0.0000064358362 ***
## dowSunday 0.0000193816623 ***
## dowThursday 0.0000001132622 ***
## dowTuesday 0.0000000629482 ***
## dowWednesday 0.0000012305218 ***
## precipi 0.03506 *
## mean_temp 0.17378
## novel_locations:conscientiousness 0.89478
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## PA_avg ~ roaming_entropy * conscientiousness + distance + time_of_day +
## dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 31792.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4376 -0.5630 0.0393 0.6218 3.9689
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 106.2 10.3
## Residual 259.2 16.1
## Number of obs: 3750, groups: subject, 123
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 47.789110 6.838262 431.578667 6.988
## roaming_entropy -0.079446 1.737170 3716.529737 -0.046
## conscientiousness 0.477380 0.280852 346.861159 1.700
## distance -0.001926 0.001037 3649.228218 -1.857
## time_of_day 0.016311 0.015691 3636.349199 1.040
## dowMonday -2.587456 0.973721 3626.006042 -2.657
## dowSaturday 7.630781 1.092801 3628.253893 6.983
## dowSunday -2.632471 1.078784 3633.279914 -2.440
## dowThursday -5.390159 1.115603 3626.056899 -4.832
## dowTuesday -4.920531 0.994660 3623.488507 -4.947
## dowWednesday -4.094780 0.944971 3626.130381 -4.333
## precipi -2.017958 1.282971 3632.137127 -1.573
## mean_temp -0.115418 0.029022 3652.202969 -3.977
## roaming_entropy:conscientiousness 0.084910 0.074827 3712.144554 1.135
## Pr(>|t|)
## (Intercept) 0.00000000001060 ***
## roaming_entropy 0.96353
## conscientiousness 0.09007 .
## distance 0.06338 .
## time_of_day 0.29864
## dowMonday 0.00791 **
## dowSaturday 0.00000000000343 ***
## dowSunday 0.01473 *
## dowThursday 0.00000141041756 ***
## dowTuesday 0.00000078813106 ***
## dowWednesday 0.00001509193636 ***
## precipi 0.11583
## mean_temp 0.00007114400604 ***
## roaming_entropy:conscientiousness 0.25656
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ novel_locations * negative_emotionality + distance +
## time_of_day + dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 29182.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4819 -0.5589 0.0498 0.6163 4.0054
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 96.72 9.834
## Residual 253.35 15.917
## Number of obs: 3449, groups: subject, 121
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 70.6284036 3.7144571 421.3246835
## novel_locations 0.0297628 0.0148457 3364.0524151
## negative_emotionality -0.9160412 0.1747697 133.1477423
## distance -0.0029718 0.0010442 3359.1758264
## time_of_day 0.0148913 0.0162127 3340.8317028
## dowMonday -3.2410113 1.0381005 3329.8555576
## dowSaturday 5.0052627 1.1082629 3328.5693237
## dowSunday -4.7265574 1.0995918 3327.7542890
## dowThursday -6.1711969 1.1620106 3329.9869523
## dowTuesday -5.7559029 1.0576919 3327.2743906
## dowWednesday -4.9241165 1.0052293 3329.3343432
## precipi -2.8045862 1.3188314 3334.9422215
## mean_temp -0.0415865 0.0298952 3357.3802585
## novel_locations:negative_emotionality 0.0008171 0.0009104 3375.8520132
## t value Pr(>|t|)
## (Intercept) 19.014 < 0.0000000000000002 ***
## novel_locations 2.005 0.04506 *
## negative_emotionality -5.241 0.0000006088 ***
## distance -2.846 0.00445 **
## time_of_day 0.918 0.35842
## dowMonday -3.122 0.00181 **
## dowSaturday 4.516 0.0000065110 ***
## dowSunday -4.298 0.0000176916 ***
## dowThursday -5.311 0.0000001163 ***
## dowTuesday -5.442 0.0000000565 ***
## dowWednesday -4.899 0.0000010117 ***
## precipi -2.127 0.03353 *
## mean_temp -1.391 0.16429
## novel_locations:negative_emotionality 0.897 0.36953
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PA_avg ~ roaming_entropy * negative_emotionality + distance +
## time_of_day + dow + precipi + mean_temp + (1 | subject)
## Data: df
##
## REML criterion at convergence: 31778.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4355 -0.5617 0.0456 0.6229 3.9545
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 92.5 9.618
## Residual 259.3 16.101
## Number of obs: 3750, groups: subject, 123
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 73.884540 4.236885 760.218856
## roaming_entropy 0.817329 0.977351 3699.157195
## negative_emotionality -1.030486 0.221532 385.989053
## distance -0.001932 0.001037 3652.802048
## time_of_day 0.015941 0.015688 3638.550678
## dowMonday -2.601384 0.973657 3626.808107
## dowSaturday 7.604069 1.092454 3629.482595
## dowSunday -2.626867 1.078635 3635.206242
## dowThursday -5.359157 1.115750 3626.774416
## dowTuesday -4.905235 0.994575 3624.069654
## dowWednesday -4.141860 0.944934 3626.979671
## precipi -2.069004 1.282957 3633.552940
## mean_temp -0.117669 0.029011 3655.100640
## roaming_entropy:negative_emotionality 0.072289 0.061258 3706.091560
## t value Pr(>|t|)
## (Intercept) 17.438 < 0.0000000000000002 ***
## roaming_entropy 0.836 0.40306
## negative_emotionality -4.652 0.00000453103899 ***
## distance -1.863 0.06256 .
## time_of_day 1.016 0.30965
## dowMonday -2.672 0.00758 **
## dowSaturday 6.961 0.00000000000401 ***
## dowSunday -2.435 0.01492 *
## dowThursday -4.803 0.00000162476139 ***
## dowTuesday -4.932 0.00000085050345 ***
## dowWednesday -4.383 0.00001202474365 ***
## precipi -1.613 0.10690
## mean_temp -4.056 0.00005095113659 ***
## roaming_entropy:negative_emotionality 1.180 0.23805
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling