First we will calculate the summary statistics for all question stems.

Overall (N=22)
set1_dept_colleagues
   Sum 72.000
   Mean (SD) 3.273 (1.279)
   Median 3.500
set1_hospital_admin
   Sum 55.000
   Mean (SD) 2.895 (1.449)
   Median 3.000
set1_consult_time
   Sum 95.000
   Mean (SD) 4.318 (0.839)
   Median 5.000
set1_workload
   Sum 99.000
   Mean (SD) 4.500 (0.740)
   Median 5.000
set1_comply
   Sum 97.000
   Mean (SD) 4.619 (0.669)
   Median 5.000
set2_happy
   Sum 62.000
   Mean (SD) 2.952 (1.284)
   Median 3.000
set2_supported
   Sum 69.000
   Mean (SD) 3.450 (1.234)
   Median 4.000
set2_guidance
   Sum 78.000
   Mean (SD) 3.714 (1.231)
   Median 4.000
set2_relevant_issues
   Sum 75.000
   Mean (SD) 3.571 (1.248)
   Median 4.000
set2_adequate_time
   Sum 85.000
   Mean (SD) 4.048 (1.203)
   Median 4.000
set3_pt_wellbeing
   Sum 91.000
   Mean (SD) 4.136 (0.990)
   Median 4.000
set3_legal_liability
   Sum 82.000
   Mean (SD) 3.727 (1.316)
   Median 4.000
set3_pt_phy_interaction
   Sum 99.000
   Mean (SD) 4.500 (0.913)
   Median 5.000
set3_communication
   Sum 102.000
   Mean (SD) 4.636 (0.492)
   Median 5.000
set3_rapport
   Sum 88.000
   Mean (SD) 4.000 (1.234)
   Median 4.000
set4_seek_care
   Sum 55.000
   Mean (SD) 3.056 (1.392)
   Median 3.000
set4_pt_burden
   Sum 81.000
   Mean (SD) 3.682 (1.460)
   Median 4.000
set4_pt_satisfaction
   Sum 90.000
   Mean (SD) 4.091 (1.065)
   Median 4.000
set4_pt_reflection
   Sum 80.000
   Mean (SD) 3.810 (1.123)
   Median 4.000
set4_pt_expectations
   Sum 89.000
   Mean (SD) 4.045 (1.214)
   Median 5.000
set4_care_seeking
   Sum 74.000
   Mean (SD) 3.524 (1.365)
   Median 3.000
set4_holistic_care
   Sum 83.000
   Mean (SD) 3.952 (1.071)
   Median 4.000
set5_decision_making
   Sum 83.000
   Mean (SD) 4.150 (0.933)
   Median 4.000
set5_focus_consult
   Sum 82.000
   Mean (SD) 3.905 (1.091)
   Median 4.000
set5_burden_hcw
   Sum 93.000
   Mean (SD) 4.227 (0.869)
   Median 4.000
set5_coordination
   Sum 75.000
   Mean (SD) 3.750 (1.251)
   Median 4.000
set5_outcomes
   Sum 83.000
   Mean (SD) 3.952 (1.284)
   Median 4.000
set5_physician_role
   Sum 77.000
   Mean (SD) 3.500 (1.406)
   Median 4.000
set6_issue_type
   Sum 92.000
   Mean (SD) 4.381 (0.973)
   Median 5.000
set6_cost
   Sum 82.000
   Mean (SD) 3.727 (1.386)
   Median 4.000
set6_problem_finding
   Sum 89.000
   Mean (SD) 4.238 (0.995)
   Median 4.000
set6_value
   Sum 68.000
   Mean (SD) 3.238 (1.446)
   Median 4.000
set6_care_indivisualisation
   Sum 89.000
   Mean (SD) 4.045 (1.133)
   Median 4.000

Plot the bar charts of the ratings. In this bar chart series, we show the category specific frequency of the the ratings provided by the experts for each option.

Plot the rating provided by each rater for each option.

Check the aggreement between variables. We will first need to transpose the dataframe. The we will be able to apply the functions that calculate aggreement between raters. In this case each option is a subject for which rating is provided by multiple raters.

## 
## Call:
## cat_adjusted(.data = agg_data, object = option, rater = name, 
##     score = rating, weighting = "linear")
## 
## Objects =    33
## Raters =     22
## Categories =     {1, 2, 3, 4, 5}
## Weighting =  linear
## 
## Chance-Adjusted Categorical Agreement with Bootstrapped CIs
## 
##         Observed   Expected   Adjusted   2.5 %   97.5 %
## alpha      0.694      0.676      0.055   0.018    0.089
## gamma      0.692      0.538      0.333   0.253    0.421
## irsq       0.692      0.674      0.054   0.019    0.085
## kappa      0.692      0.672      0.061   0.028    0.092
## pi         0.692      0.674      0.055   0.018    0.089
## s          0.692      0.600      0.230   0.171    0.297

We now calculate the category specific aggrement indices.

## 
## Call:
## cat_specific(.data = agg_data, object = option, rater = name, 
##     score = rating)
## 
## Objects =    33
## Raters =     22
## Categories =     {1, 2, 3, 4, 5}
## 
## Category-Specific Agreement with Bootstrapped CIs
## 
##     Estimate   2.5 %   97.5 %
## 1      0.074   0.038    0.100
## 2      0.150   0.112    0.185
## 3      0.123   0.101    0.145
## 4      0.266   0.240    0.288
## 5      0.442   0.388    0.489

We now calculate agreement across categories for each of the 33 questions.

Create a plot of the agreement values for categories in each question

## Warning: Removed 22 rows containing missing values (geom_point).

Make the above plot faceted by the question set.

## Warning: Removed 22 rows containing missing values (geom_point).

Create a dataframe with sum, average, lower bound mean - 2SD and agreement scores across response categories for each option.

Now we take a look at the free text inputs provided by the experts.