library(knitr)
library(MASS)
dates <- c("2015-01-30","2015-02-06","2015-02-13","2015-02-20","2015-02-27")
date.1 <- tail(dates,1)
forecast.matches <- read.csv(paste("forecasts_",date.1,".csv",sep=""),stringsAsFactors=F)
forecast.matches <- forecast.matches[is.na(forecast.matches$outcome)==F,]
This is the number 5 in a series of forecasts of football match outcomes, following on from my efforts last week and the previous weeks. The method of forecasts is unchanged from previous week. For next week I hope to add bookmaker prices in for reference purposes.
As with previous weeks, the dataset is all English matches recorded on http://www.soccerbase.com, which goes back to 1877 and the very first football matches. Experimentation will take place with adjusting the estimation sample size, since it is not necessarily useful to have all matches back to 1877 when forecasting matches in 2015. The Elo ranks have been calculated since the very first matches, and hence historical information is retained, to the extent that it is useful in determining a team’s current strength, back throughout footballing history.
The linear regression model is estimated here and reported:
res.eng <- read.csv(paste("historical_",date.1,".csv",sep=""))
model <- lm(outcome ~ E.1 + pts1 + pts.D + pts.D.2 + pld1 + pld.D + pld.D.2 + gs1 + gs.D + gs.D.2
+ gd1 + gd.D + gd.D.2
+ pos1 + pos.D + pos.D.2 + form1 + form.D + form.D.2 + tier1 + tier.D + tier.D.2 + season.d,
data=res.eng)
summary(model)
##
## Call:
## lm(formula = outcome ~ E.1 + pts1 + pts.D + pts.D.2 + pld1 +
## pld.D + pld.D.2 + gs1 + gs.D + gs.D.2 + gd1 + gd.D + gd.D.2 +
## pos1 + pos.D + pos.D.2 + form1 + form.D + form.D.2 + tier1 +
## tier.D + tier.D.2 + season.d, data = res.eng)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9940 -0.2859 0.1439 0.3535 0.9893
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.799e-01 5.227e-03 110.951 < 2e-16 ***
## E.1 4.850e-02 5.051e-03 9.601 < 2e-16 ***
## pts1 1.025e-03 4.318e-04 2.374 0.01758 *
## pts.D -1.440e-03 3.136e-04 -4.593 4.38e-06 ***
## pts.D.2 -1.342e-05 6.591e-06 -2.037 0.04168 *
## pld1 -1.691e-03 6.207e-04 -2.724 0.00646 **
## pld.D 1.933e-03 7.242e-04 2.669 0.00761 **
## pld.D.2 -3.570e-05 3.137e-05 -1.138 0.25508
## gs1 4.854e-04 1.741e-04 2.788 0.00531 **
## gs.D -1.877e-04 1.555e-04 -1.207 0.22724
## gs.D.2 -1.592e-06 4.776e-06 -0.333 0.73897
## gd1 -6.561e-04 2.451e-04 -2.677 0.00744 **
## gd.D 3.812e-03 1.785e-04 21.354 < 2e-16 ***
## gd.D.2 -5.486e-06 2.386e-06 -2.299 0.02150 *
## pos1 7.686e-04 3.061e-04 2.511 0.01204 *
## pos.D -1.702e-03 2.565e-04 -6.636 3.22e-11 ***
## pos.D.2 3.657e-05 1.192e-05 3.068 0.00216 **
## form1 7.018e-04 3.584e-04 1.958 0.05019 .
## form.D 2.802e-03 3.046e-04 9.200 < 2e-16 ***
## form.D.2 -7.556e-05 3.052e-05 -2.476 0.01330 *
## tier1 2.072e-03 7.798e-04 2.656 0.00790 **
## tier.D -1.065e-01 2.819e-03 -37.786 < 2e-16 ***
## tier.D.2 -5.716e-03 1.281e-03 -4.464 8.06e-06 ***
## season.d -1.104e-03 3.140e-05 -35.166 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.402 on 215905 degrees of freedom
## (38194 observations deleted due to missingness)
## Multiple R-squared: 0.05122, Adjusted R-squared: 0.05112
## F-statistic: 506.8 on 23 and 215905 DF, p-value: < 2.2e-16
The ordered logistic regression model is:
model.ord <- polr(as.factor(outcome) ~ E.1 + pts1 + pts.D + pts.D.2 + pld1 + pld.D + pld.D.2 +
gs1 + gs.D + gs.D.2 + gd1 + gd.D + gd.D.2 + pos1 + pos.D + pos.D.2 +
form1 + form.D + form.D.2 + tier1 + tier.D + tier.D.2 + season.d,
data=res.eng, method = "logistic")
summary(model.ord)
##
## Re-fitting to get Hessian
## Call:
## polr(formula = as.factor(outcome) ~ E.1 + pts1 + pts.D + pts.D.2 +
## pld1 + pld.D + pld.D.2 + gs1 + gs.D + gs.D.2 + gd1 + gd.D +
## gd.D.2 + pos1 + pos.D + pos.D.2 + form1 + form.D + form.D.2 +
## tier1 + tier.D + tier.D.2 + season.d, data = res.eng, method = "logistic")
##
## Coefficients:
## Value Std. Error t value
## E.1 2.262e-01 2.400e-02 9.4253
## pts1 4.257e-03 2.067e-03 2.0593
## pts.D -7.427e-03 1.509e-03 -4.9219
## pts.D.2 -7.617e-05 3.586e-05 -2.1241
## pld1 -9.254e-03 2.974e-03 -3.1120
## pld.D 1.009e-02 3.586e-03 2.8144
## pld.D.2 -2.098e-04 1.693e-04 -1.2391
## gs1 3.557e-03 8.445e-04 4.2116
## gs.D -1.349e-03 7.523e-04 -1.7936
## gs.D.2 -3.469e-06 2.544e-05 -0.1364
## gd1 -3.623e-03 1.184e-03 -3.0601
## gd.D 1.951e-02 8.706e-04 22.4075
## gd.D.2 9.428e-06 1.630e-05 0.5784
## pos1 3.087e-03 1.452e-03 2.1255
## pos.D -7.136e-03 1.230e-03 -5.8034
## pos.D.2 2.012e-04 5.893e-05 3.4132
## form1 3.169e-03 1.703e-03 1.8613
## form.D 1.370e-02 1.458e-03 9.3996
## form.D.2 -2.454e-04 1.482e-04 -1.6564
## tier1 1.012e-02 3.693e-03 2.7404
## tier.D -5.347e-01 1.470e-02 -36.3761
## tier.D.2 -6.419e-03 7.051e-03 -0.9104
## season.d -5.382e-03 1.512e-04 -35.6084
##
## Intercepts:
## Value Std. Error t value
## 0|0.5 -0.9335 0.0249 -37.4722
## 0.5|1 0.2213 0.0248 8.9177
##
## Residual Deviance: 435575.66
## AIC: 435625.66
## (38194 observations deleted due to missingness)
prem.matches <- forecast.matches[forecast.matches$division=="English Premier",]
prem.matches <- prem.matches[order(prem.matches$date),]
prem.matches$id <- 1:NROW(prem.matches)
par(mar=c(9,4,4,5)+.1)
plot(prem.matches$id,prem.matches$outcome,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend Premier League Matches",
ylab="Probability of Outcome")
lines(prem.matches$id,prem.matches$Ph,col=2,pch=15,type="p")
lines(prem.matches$id,prem.matches$Pd,col=3,pch=16,type="p")
lines(prem.matches$id,prem.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
abline(h=0.4,lty=3)
axis(1,at=prem.matches$id,labels=paste(prem.matches$team1,prem.matches$team2,sep=" v "),las=2,cex.axis=0.65)
for(i in 2:NROW(prem.matches)){
if(prem.matches$date[i]!=prem.matches$date[i-1]) {
lines(rep(c(i-0.5),2),c(0,1),lty=2)
}
}
The coloured dots are forecasts from the ordered logistic regression model; the black circles are the forecasts from a simple OLS linear probability model. Hence the black circles are essentially a probability of a home win occurring (given the ordinal variable defined to capture all three outcomes), whereas the red squares are the probability of a home win, the green solid circles are the probability of a draw, and the blue triangles the probability of an away win. The home bias in football is notable in that the majority of red squares lie above blue triangles.
Unlike previous weeks, I am unable to provide bookmaker odds. Hopefully this will return next week.
Next, our Championship forecasts:
champ.matches <- forecast.matches[forecast.matches$division=="English Championship",]
champ.matches <- champ.matches[order(champ.matches$date),]
champ.matches$id <- 1:NROW(champ.matches)
par(mar=c(9,4,4,5)+.1)
plot(champ.matches$id,champ.matches$outcome,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend Championship Matches",
ylab="Probability of Outcome")
lines(champ.matches$id,champ.matches$Ph,col=2,pch=15,type="p")
lines(champ.matches$id,champ.matches$Pd,col=3,pch=16,type="p")
lines(champ.matches$id,champ.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
axis(1,at=champ.matches$id,labels=paste(champ.matches$team1,champ.matches$team2,sep=" v "),las=2,cex.axis=0.65)
for(i in 2:NROW(champ.matches)){
if(champ.matches$date[i]!=champ.matches$date[i-1]) {
lines(rep(c(i-0.5),2),c(0,1),lty=2)
}
}
Next, our League One forecasts:
lg1.matches <- forecast.matches[forecast.matches$division=="English League One",]
lg1.matches <- lg1.matches[order(lg1.matches$date),]
lg1.matches$id <- 1:NROW(lg1.matches)
par(mar=c(9,4,4,5)+.1)
plot(lg1.matches$id,lg1.matches$outcome,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend League One Matches",
ylab="Probability of Outcome")
lines(lg1.matches$id,lg1.matches$Ph,col=2,pch=15,type="p")
lines(lg1.matches$id,lg1.matches$Pd,col=3,pch=16,type="p")
lines(lg1.matches$id,lg1.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
axis(1,at=lg1.matches$id,labels=paste(lg1.matches$team1,lg1.matches$team2,sep=" v "),las=2,cex.axis=0.65)
for(i in 2:NROW(lg1.matches)){
if(lg1.matches$date[i]!=lg1.matches$date[i-1]) {
lines(rep(c(i-0.5),2),c(0,1),lty=2)
}
}
Next, our League Two forecasts:
lg2.matches <- forecast.matches[forecast.matches$division=="English League Two",]
lg2.matches <- lg2.matches[order(lg2.matches$date),]
lg2.matches$id <- 1:NROW(lg2.matches)
par(mar=c(9,4,4,5)+.1)
plot(lg2.matches$id,lg2.matches$outcome,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend League Two Matches",
ylab="Probability of Outcome")
lines(lg2.matches$id,lg2.matches$Ph,col=2,pch=15,type="p")
lines(lg2.matches$id,lg2.matches$Pd,col=3,pch=16,type="p")
lines(lg2.matches$id,lg2.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
axis(1,at=lg2.matches$id,labels=paste(lg2.matches$team1,lg2.matches$team2,sep=" v "),las=2,cex.axis=0.65)
for(i in 2:NROW(lg2.matches)){
if(lg2.matches$date[i]!=lg2.matches$date[i-1]) {
lines(rep(c(i-0.5),2),c(0,1),lty=2)
}
}
Next, our Football Conference forecasts:
conf.matches <- forecast.matches[forecast.matches$division=="Football Conference",]
conf.matches$id <- 1:NROW(conf.matches)
par(mar=c(9,4,4,5)+.1)
plot(conf.matches$id,conf.matches$outcome,xaxt="n",xlab="",ylim=range(0,1),
main="Forecasts of Weekend Football Conference Matches",
ylab="Probability of Outcome")
lines(conf.matches$id,conf.matches$Ph,col=2,pch=15,type="p")
lines(conf.matches$id,conf.matches$Pd,col=3,pch=16,type="p")
lines(conf.matches$id,conf.matches$Pa,col=4,pch=17,type="p")
legend("topleft",ncol=4,pch=c(1,15,16,17),col=c(1:4),
legend=c("OLS","OL (home)","OL (draw)","OL (away)"),bty="n")
abline(h=0.5,lty=2)
abline(h=0.6,lty=3)
abline(h=0.7,lty=2)
axis(1,at=conf.matches$id,labels=paste(conf.matches$team1,conf.matches$team2,sep=" v "),las=2,cex.axis=0.65)
for(i in 2:NROW(conf.matches)){
if(conf.matches$date[i]!=conf.matches$date[i-1]) {
lines(rep(c(i-0.5),2),c(0,1),lty=2)
}
}
For transparency, all forecasts are also listed as a table:
kable(forecast.matches[order(forecast.matches$date,forecast.matches$division),
c("date","division","team1","outcome","team2","Ph","Pd","Pa")])
| date | division | team1 | outcome | team2 | Ph | Pd | Pa | |
|---|---|---|---|---|---|---|---|---|
| 65 | 2015-02-28 | Conference North | Bradford PA | 0.5345684 | Hednesford | 0.3874043 | 0.2800185 | 0.3325772 |
| 67 | 2015-02-28 | Conference North | Gainsborough | 0.7299159 | Hyde | 0.6416989 | 0.2086746 | 0.1496265 |
| 58 | 2015-02-28 | Conference South | Bath City | 0.5594964 | Hayes & Y | 0.4167182 | 0.2772055 | 0.3060763 |
| 7 | 2015-02-28 | English Championship | Birmingham | 0.4831780 | Brentford | 0.3333275 | 0.2800696 | 0.3866029 |
| 8 | 2015-02-28 | English Championship | Leeds | 0.4621558 | Watford | 0.3128561 | 0.2781165 | 0.4090274 |
| 9 | 2015-02-28 | English Championship | Reading | 0.5260220 | Nottm Forest | 0.3767587 | 0.2805805 | 0.3426608 |
| 10 | 2015-02-28 | English Championship | Bolton | 0.5387751 | Brighton | 0.3894435 | 0.2798820 | 0.3306745 |
| 11 | 2015-02-28 | English Championship | Sheff Wed | 0.4165819 | Middlesbro | 0.2661919 | 0.2689396 | 0.4648685 |
| 12 | 2015-02-28 | English Championship | Charlton | 0.5786042 | Huddersfield | 0.4375203 | 0.2741594 | 0.2883203 |
| 13 | 2015-02-28 | English Championship | Bournemouth | 0.6835386 | Blackburn | 0.5755858 | 0.2358652 | 0.1885489 |
| 14 | 2015-02-28 | English Championship | Rotherham | 0.6029844 | Millwall | 0.4647343 | 0.2689684 | 0.2662973 |
| 15 | 2015-02-28 | English Championship | Cardiff | 0.5359882 | Wolves | 0.3879016 | 0.2799860 | 0.3321124 |
| 16 | 2015-02-28 | English Championship | Fulham | 0.3545889 | Derby | 0.2246816 | 0.2543803 | 0.5209381 |
| 17 | 2015-02-28 | English Championship | Blackpool | 0.5229147 | Wigan | 0.3717485 | 0.2807557 | 0.3474958 |
| 18 | 2015-02-28 | English League One | Gillingham | 0.6291174 | Barnsley | 0.4985939 | 0.2607642 | 0.2406419 |
| 19 | 2015-02-28 | English League One | Walsall | 0.6341529 | Leyton Orient | 0.4999044 | 0.2604103 | 0.2396853 |
| 20 | 2015-02-28 | English League One | Peterborough | 0.5293366 | Bradford | 0.3808207 | 0.2803962 | 0.3387831 |
| 21 | 2015-02-28 | English League One | Crewe | 0.4227865 | Swindon | 0.2813103 | 0.2726825 | 0.4460072 |
| 22 | 2015-02-28 | English League One | Bristol C | 0.6519663 | Rochdale | 0.5267457 | 0.2526027 | 0.2206517 |
| 23 | 2015-02-28 | English League One | Chesterfield | 0.5641607 | Fleetwood | 0.4212402 | 0.2766146 | 0.3021451 |
| 24 | 2015-02-28 | English League One | Doncaster | 0.6551009 | Colchester | 0.5288558 | 0.2519451 | 0.2191992 |
| 25 | 2015-02-28 | English League One | Oldham | 0.4925525 | Preston | 0.3409428 | 0.2805037 | 0.3785536 |
| 26 | 2015-02-28 | English League One | Crawley | 0.4771042 | Sheff Utd | 0.3298671 | 0.2798211 | 0.3903118 |
| 27 | 2015-02-28 | English League One | Scunthorpe | 0.6650346 | Yeovil | 0.5435917 | 0.2471825 | 0.2092258 |
| 28 | 2015-02-28 | English League One | Coventry | 0.4022852 | MK Dons | 0.2627967 | 0.2679905 | 0.4692128 |
| 29 | 2015-02-28 | English League One | Notts Co | 0.5579959 | Port Vale | 0.4133425 | 0.2776201 | 0.3090374 |
| 30 | 2015-02-28 | English League Two | Cheltenham | 0.5153727 | Tranmere | 0.3626564 | 0.2809232 | 0.3564204 |
| 31 | 2015-02-28 | English League Two | Morecambe | 0.6102125 | Cambridge U | 0.4719721 | 0.2673713 | 0.2606566 |
| 32 | 2015-02-28 | English League Two | Southend | 0.6928631 | Carlisle | 0.5745352 | 0.2362572 | 0.1892076 |
| 33 | 2015-02-28 | English League Two | Portsmouth | 0.6332265 | Oxford | 0.5012332 | 0.2600488 | 0.2387181 |
| 34 | 2015-02-28 | English League Two | Plymouth | 0.6311329 | Bury | 0.4992988 | 0.2605741 | 0.2401270 |
| 35 | 2015-02-28 | English League Two | Hartlepool | 0.4704876 | AFC W’bledon | 0.3219292 | 0.2791270 | 0.3989438 |
| 36 | 2015-02-28 | English League Two | Mansfield | 0.5590474 | Dag & Red | 0.4107941 | 0.2779178 | 0.3112880 |
| 37 | 2015-02-28 | English League Two | Shrewsbury | 0.6476624 | Northampton | 0.5175139 | 0.2554059 | 0.2270802 |
| 38 | 2015-02-28 | English League Two | Luton | 0.6698248 | Accrington | 0.5492924 | 0.2452620 | 0.2054456 |
| 39 | 2015-02-28 | English League Two | Wycombe | 0.6378792 | Stevenage | 0.5071310 | 0.2584121 | 0.2344569 |
| 40 | 2015-02-28 | English League Two | Burton | 0.6841056 | Newport Co | 0.5642462 | 0.2400242 | 0.1957297 |
| 41 | 2015-02-28 | English League Two | York | 0.5810377 | Exeter | 0.4413042 | 0.2735172 | 0.2851786 |
| 1 | 2015-02-28 | English Premier | Man Utd | 0.6746362 | Sunderland | 0.5636092 | 0.2402531 | 0.1961377 |
| 2 | 2015-02-28 | English Premier | Stoke | 0.6152447 | Hull | 0.4788361 | 0.2657764 | 0.2553876 |
| 3 | 2015-02-28 | English Premier | Newcastle | 0.6578525 | Aston Villa | 0.5330454 | 0.2506211 | 0.2163335 |
| 4 | 2015-02-28 | English Premier | Burnley | 0.5167122 | Swansea | 0.3686132 | 0.2808356 | 0.3505512 |
| 5 | 2015-02-28 | English Premier | West Ham | 0.6247039 | C Palace | 0.4956715 | 0.2615440 | 0.2427845 |
| 6 | 2015-02-28 | English Premier | West Brom | 0.4508265 | Southampton | 0.2996084 | 0.2762085 | 0.4241831 |
| 108 | 2015-02-28 | FA Trophy | Torquay | 0.6235778 | Wrexham | 0.4936205 | 0.2620834 | 0.2442961 |
| 42 | 2015-02-28 | Football Conference | Kidderminster | 0.5210316 | Halifax | 0.3697750 | 0.2808087 | 0.3494163 |
| 43 | 2015-02-28 | Football Conference | Forest Green | 0.7312417 | Southport | 0.6321884 | 0.2128761 | 0.1549354 |
| 44 | 2015-02-28 | Football Conference | Eastleigh | 0.5610380 | Macclesfield | 0.4186385 | 0.2769595 | 0.3044020 |
| 45 | 2015-02-28 | Football Conference | Grimsby | 0.6960080 | Braintree | 0.5804417 | 0.2340364 | 0.1855218 |
| 46 | 2015-02-28 | Football Conference | Gateshead | 0.5570392 | Bristol R | 0.4117591 | 0.2778066 | 0.3104343 |
| 47 | 2015-02-28 | Football Conference | Telford | 0.5987608 | Alfreton | 0.4680931 | 0.2682382 | 0.2636687 |
| 48 | 2015-02-28 | Football Conference | Nuneaton | 0.5363582 | Welling | 0.3889621 | 0.2799150 | 0.3311229 |
| 49 | 2015-02-28 | Football Conference | Lincoln | 0.5265296 | Woking | 0.3769570 | 0.2805724 | 0.3424706 |
| 50 | 2015-02-28 | Football Conference | Altrincham | 0.4371341 | Barnet | 0.2948031 | 0.2753850 | 0.4298120 |
| 51 | 2015-02-28 | Football Conference | Aldershot | 0.6437962 | Dartford | 0.5163482 | 0.2557513 | 0.2279006 |
| 88 | 2015-02-28 | Ryman Premier | Canvey Isl. | 0.7367840 | Lewes | 0.6457307 | 0.2068659 | 0.1474035 |
| 92 | 2015-02-28 | Ryman Premier | Kingstonian | 0.5070606 | Margate | 0.3593405 | 0.2809350 | 0.3597245 |
| 113 | 2015-03-01 | Capital One Cup | Chelsea | 0.6891186 | Tottenham | 0.5791662 | 0.2345195 | 0.1863142 |
| 111 | 2015-03-01 | English Championship | Norwich | 0.6353205 | Ipswich | 0.5089153 | 0.2579068 | 0.2331780 |
| 109 | 2015-03-01 | English Premier | Arsenal | 0.6892428 | Everton | 0.5769860 | 0.2353408 | 0.1876732 |
| 110 | 2015-03-01 | English Premier | Liverpool | 0.5530661 | Man City | 0.4090913 | 0.2781094 | 0.3127993 |
| 120 | 2015-03-03 | English Championship | Brighton | 0.4314617 | Derby | 0.2858237 | 0.2736517 | 0.4405247 |
| 121 | 2015-03-03 | English Championship | Watford | 0.7566742 | Fulham | 0.6657292 | 0.1976588 | 0.1366120 |
| 122 | 2015-03-03 | English Championship | Bolton | 0.5752779 | Reading | 0.4345151 | 0.2746505 | 0.2908344 |
| 123 | 2015-03-03 | English Championship | Bournemouth | 0.6522505 | Wolves | 0.5356861 | 0.2497743 | 0.2145396 |
| 124 | 2015-03-03 | English Championship | Middlesbro | 0.7767498 | Millwall | 0.6874511 | 0.1872322 | 0.1253167 |
| 125 | 2015-03-03 | English Championship | Rotherham | 0.5264397 | Cardiff | 0.3765347 | 0.2805896 | 0.3428758 |
| 126 | 2015-03-03 | English Championship | Charlton | 0.5213576 | Nottm Forest | 0.3719351 | 0.2807502 | 0.3473147 |
| 127 | 2015-03-03 | English Championship | Brentford | 0.6548279 | Huddersfield | 0.5312011 | 0.2512069 | 0.2175920 |
| 128 | 2015-03-03 | English League One | Swindon | 0.6557259 | Gillingham | 0.5380512 | 0.2490077 | 0.2129411 |
| 129 | 2015-03-03 | English League One | Bradford | 0.7033176 | Crawley | 0.5930978 | 0.2291388 | 0.1777635 |
| 130 | 2015-03-03 | English League One | Rochdale | 0.6848131 | Crewe | 0.5814755 | 0.2336435 | 0.1848811 |
| 131 | 2015-03-03 | English League One | Colchester | 0.5833012 | Notts Co | 0.4414780 | 0.2734871 | 0.2850349 |
| 132 | 2015-03-03 | English League One | Leyton Orient | 0.4437169 | Bristol C | 0.3002615 | 0.2763149 | 0.4234236 |
| 133 | 2015-03-03 | English League One | Port Vale | 0.5754844 | Oldham | 0.4340118 | 0.2747311 | 0.2912571 |
| 134 | 2015-03-03 | English League One | Preston | 0.6649853 | Doncaster | 0.5426999 | 0.2474791 | 0.2098210 |
| 135 | 2015-03-03 | English League One | Sheff Utd | 0.6608273 | Peterborough | 0.5381018 | 0.2489912 | 0.2129070 |
| 136 | 2015-03-03 | English League One | Barnsley | 0.6193181 | Coventry | 0.4836673 | 0.2646078 | 0.2517249 |
| 137 | 2015-03-03 | English League One | MK Dons | 0.6909149 | Chesterfield | 0.5864530 | 0.2317336 | 0.1818135 |
| 138 | 2015-03-03 | English League One | Yeovil | 0.4893323 | Walsall | 0.3361970 | 0.2802512 | 0.3835518 |
| 139 | 2015-03-03 | English League One | Fleetwood | 0.6060399 | Scunthorpe | 0.4664404 | 0.2685999 | 0.2649598 |
| 140 | 2015-03-03 | English League Two | Carlisle | 0.6245568 | Cheltenham | 0.4928702 | 0.2622791 | 0.2448507 |
| 141 | 2015-03-03 | English League Two | Northampton | 0.6051598 | Portsmouth | 0.4700798 | 0.2677973 | 0.2621229 |
| 142 | 2015-03-03 | English League Two | Stevenage | 0.5255878 | Plymouth | 0.3740050 | 0.2806840 | 0.3453111 |
| 143 | 2015-03-03 | English League Two | Tranmere | 0.4821008 | Wycombe | 0.3327604 | 0.2800311 | 0.3872085 |
| 144 | 2015-03-03 | English League Two | AFC W’bledon | 0.5663443 | Southend | 0.4225887 | 0.2764306 | 0.3009806 |
| 145 | 2015-03-03 | English League Two | Cambridge U | 0.6111897 | York | 0.4773780 | 0.2661216 | 0.2565004 |
| 146 | 2015-03-03 | English League Two | Newport Co | 0.6286907 | Mansfield | 0.4959244 | 0.2614770 | 0.2425986 |
| 147 | 2015-03-03 | English League Two | Oxford | 0.5653115 | Morecambe | 0.4198828 | 0.2767963 | 0.3033210 |
| 148 | 2015-03-03 | English League Two | Accrington | 0.4605932 | Shrewsbury | 0.3110566 | 0.2778879 | 0.4110555 |
| 149 | 2015-03-03 | English League Two | Bury | 0.5817337 | Luton | 0.4385534 | 0.2739867 | 0.2874599 |
| 150 | 2015-03-03 | English League Two | Dag & Red | 0.6700500 | Hartlepool | 0.5514574 | 0.2445214 | 0.2040212 |
| 117 | 2015-03-03 | English Premier | Hull | 0.5976004 | Sunderland | 0.4594272 | 0.2700830 | 0.2704898 |
| 118 | 2015-03-03 | English Premier | Aston Villa | 0.5018653 | West Brom | 0.3485137 | 0.2807849 | 0.3707014 |
| 119 | 2015-03-03 | English Premier | Southampton | 0.6833099 | C Palace | 0.5681834 | 0.2385981 | 0.1932185 |
| 151 | 2015-03-03 | Football Conference | Dartford | 0.4352029 | Woking | 0.2887899 | 0.2742527 | 0.4369575 |
| 152 | 2015-03-03 | Football Conference | Aldershot | 0.5012632 | Dover | 0.3496135 | 0.2808136 | 0.3695729 |
| 153 | 2015-03-03 | Football Conference | Braintree | 0.4919412 | Macclesfield | 0.3416240 | 0.2805350 | 0.3778410 |
| 169 | 2015-03-03 | Football Conference | Gateshead | 0.6556959 | Wrexham | 0.5306163 | 0.2513917 | 0.2179920 |
| 170 | 2015-03-03 | Football Conference | Southport | 0.4234686 | Halifax | 0.2773261 | 0.2717712 | 0.4509027 |
| 180 | 2015-03-04 | English Championship | Leeds | 0.4814554 | Ipswich | 0.3305677 | 0.2798740 | 0.3895582 |
| 181 | 2015-03-04 | English Championship | Sheff Wed | 0.5495841 | Blackburn | 0.4004524 | 0.2789893 | 0.3205582 |
| 182 | 2015-03-04 | English Championship | Birmingham | 0.6649123 | Blackpool | 0.5466588 | 0.2461546 | 0.2071867 |
| 183 | 2015-03-04 | English Championship | Norwich | 0.7610387 | Wigan | 0.6716537 | 0.1948580 | 0.1334883 |
| 173 | 2015-03-04 | English Premier | West Ham | 0.4430861 | Chelsea | 0.2934449 | 0.2751392 | 0.4314159 |
| 174 | 2015-03-04 | English Premier | QPR | 0.3887221 | Arsenal | 0.2483394 | 0.2634833 | 0.4881773 |
| 175 | 2015-03-04 | English Premier | Liverpool | 0.7099428 | Burnley | 0.6027116 | 0.2252949 | 0.1719935 |
| 176 | 2015-03-04 | English Premier | Stoke | 0.5878472 | Everton | 0.4460348 | 0.2726775 | 0.2812877 |
| 177 | 2015-03-04 | English Premier | Tottenham | 0.6287765 | Swansea | 0.4981668 | 0.2608790 | 0.2409543 |
| 178 | 2015-03-04 | English Premier | Man City | 0.7147847 | Leicester | 0.6223172 | 0.2171384 | 0.1605444 |
| 179 | 2015-03-04 | English Premier | Newcastle | 0.4820790 | Man Utd | 0.3318232 | 0.2799655 | 0.3882113 |