Author: Charleen D. Adams



Abbreviations and definitions



Background

I previously perfomred a cross-tissue expression quantitative trait loci (eQTL) analysis with Gene-Tissue Expression (GTEx) eGene summary data (top-hit eQTLs), which revealed some differences in eQTLs based on whether ribosomal proteins (RPs) were located in the mitochondria or cytosol. Specifically, eQTLs were more likely than chance to decrease expression if cytosolic and increase expression if mitochondrial: https://rpubs.com/Charleen_D_Adams/609097

The shorterm goal of the present analysis is to determine whether use of the GTEx transcripts per million (TPM) data can be used to glean any more information about potential differences between mitochondrial vs cytosolic RPs.

The longterm goal is to use these two analyses as pilot data to request the individual-level genetic data from GTex (which we may already have) to generate a cross-RP eQTL polygenic score for eQTLs decreasing RP expression. The motivation behind this is the RP haploinsufficiency observed in Diamond-Blackfan Anemia (DBA) having an impact on TP53 and cancer predisposition.

I have run various preliminary Mendelian randomization (MR) analyses using eQTL summmary data for the RPs (e.g., see this for cytosolic RPs and breast cancer: https://rpubs.com/Charleen_D_Adams/618226). An issue with cis-based eQTL summary data instrumenting exposures in MR is that all SNPs in linkage disequilibrium (LD) are pruned (dropped). By definition, SNPs in cis with a gene are going to be mostly in LD, which means that pleiotropy cannot be tested for by using multiple SNPs. While there are various exisiting methods for MR with eQTL GTEx data (including those that use colocalization and some using multivariable MR), none have instrumented an organelle, which makes this analysis unique and pioneering.

Methods

I downloaded the public TPM expression data from GTEx. After importing it into R and converting ensembl IDs to entrez ID symbols, I imported GTEx’s file that has the sample annotations. I used this to subset for samples denotating breast and Prostate, Lung, Colorectal, and Ovary (PLCO)-relevant tissues: prostate, lung, colon (sigmoid and transverse), and ovary. Since GTEx’s TPM data are already normalized, I only log2-transformed the data (expression data need to be normalized by gene length, but this step was done by them).

I ran Pearson correlations between a set of 150 RPs with select cancer-relevant genes (TP53, MYC, MKI67, ESR1, ESR2, ESRRA, ESRRB, ESRRG) and genes associated with the nucleolus.

I selected the correlations that were Bonferroni-significant (dividing 0.05 by the number of tests run, which was slightly different between tissues). Then I ran Fisher’s exact tests of RP location (mitochondria vs cytosol) and absolute strength of the correlations (dichotomized at >=0.50) between the RPs and the nucleolar/cancer geneset correlations.

(Side notes: The Fisher’s exact tests were only run for the nucleolar/cancer geneset for which the dichotomized variables created for the 2x2 tables contained two levels; i.e., nucleolar/cancer genes for which the dichotomized variables were invariant (only one level) were dropped. I also ran stratified tests in breast, the tissue I started with, by whether the correlations were positive or inverse, but since this didn’t reveal noticeably different sets of genes than by running the primary analysis on the absolute strength of the correlations, I didn’t take the stratified analyses forward for the other tissues.)

I then looked up each of the false-discovery rate (FDR)-significant sets of Fisher’s exact results for the five cancers in the Geneset Enrichment Analysis (GSEA) browser to determine whether the sets identified were enriched for pathways other than those related to nucleolar function. For breast tissue, the FDR set identified enrichment for BRCA1-PUNJANA genes. Fascinatingly, this set was not identified as enriched in lung, ovary, prostate, or colorectal tissue.

I still need more time to think through the interpretation. There is a difference between the strength of the correlation of RPs with nucleolar genes in breast depending on whether the RPs are located in the mitochondria or cytosol. This might be relevant for breast cancer eitiology.



Background

The list for the nucleolar genes came from the Human Protein Atlas: https://www.proteinatlas.org/humanproteome/tissue

I verified that the list of RPs from Human Protein Atlas were not pseudogenes by looking them up in Ensembl. (I’ve read there are over 2000 known RP pseudogenes…)



Number of samples for each tissue

read.url <- function(url, ...){
  tmpFile <- tempfile()
  download.file(url, destfile = tmpFile, method = "curl")
  url.data <- fread(tmpFile, ...)
  return(url.data)
}

samples_v8=read.url("https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt")

PLCO_samples=samples_v8[SMTSD == "Breast - Mammary Tissue" | SMTSD == "Lung" |
                      SMTSD == "Ovary" | SMTSD == "Prostate" | SMTSD == "Colon - Sigmoid" |
                      SMTSD == "Colon - Transverse"]
table(PLCO_samples$SMTSD)
## 
## Breast - Mammary Tissue         Colon - Sigmoid      Colon - Transverse 
##                     480                     389                     432 
##                    Lung                   Ovary                Prostate 
##                     867                     195                     262


Overlap of FDR-significant Fisher’s exact nucleolar/cancer subsets results for breast, lung, ovary, prostate, and colorectal cancer

library(RBGL)
library(graph)
library(Vennerable)

breast_fdr=read.csv('/n/home04/cdadams/TPM/fishers_6-28.csv')
breast_fdr_sig=breast_fdr[which(breast_fdr$fdr<0.05),]
dim(breast_fdr_sig)
## [1] 108   4
lung_fdr=read.csv('/n/home04/cdadams/TPM/lung/fishers3_lung2_6-29.csv')
lung_fdr_sig=lung_fdr[which(lung_fdr$fdr<0.05),]
dim(lung_fdr_sig)
## [1] 476   4
ovary_fdr=read.csv('/n/home04/cdadams/TPM/ovary/fishers3_ovary2_6-29.csv')
ovary_fdr_sig=ovary_fdr[which(ovary_fdr$fdr<0.05),]
dim(ovary_fdr_sig)
## [1] 393   4
prostate_fdr=read.csv('/n/home04/cdadams/TPM/prostate/fishers3_prostate2_6-29.csv')
prostate_fdr_sig=prostate_fdr[which(prostate_fdr$fdr<0.05),]
dim(prostate_fdr_sig)
## [1] 26  4
colon_fdr=read.csv('/n/home04/cdadams/TPM/colon/fishers3_colon2_6-29.csv')
colon_fdr_sig=prostate_fdr[which(colon_fdr$fdr<0.05),]
dim(colon_fdr_sig)
## [1] 167   4
geneList <- list(Breast=breast_fdr_sig$gene, Lung=lung_fdr_sig$gene, Ovary=ovary_fdr_sig$gene,
                 Prostate=prostate_fdr_sig$gene, Colon=colon_fdr_sig$gene)

Overlap_PLCO_fisher <- Venn(geneList)

plot(Overlap_PLCO_fisher, doWeights = FALSE )

# Plot removing colon

geneList_no_colon <- list(Breast=breast_fdr_sig$gene, Lung=lung_fdr_sig$gene,             Ovary=ovary_fdr_sig$gene, Prostate=prostate_fdr_sig$gene)

Overlap_PLCO_fisher_no_colon <- Venn(geneList_no_colon)

plot(Overlap_PLCO_fisher_no_colon, doWeights = FALSE )



TL; DR (lists of the FDR-significant nucleolar genes by tissue)

library(RBGL)
library(graph)
library(Vennerable)

breast_fdr=read.csv('/n/home04/cdadams/TPM/fishers_6-28.csv')
breast_fdr_sig=breast_fdr[which(breast_fdr$fdr<0.05),]
breast_fdr_sig$gene
##   [1] IMP3       POP5       TXN2       RPL26L1    GOLGA3     XPO6      
##   [7] DOLK       ASNA1      PPP1CA     PGRMC1     HINT2      CPT2      
##  [13] DCXR       RPS19BP1   ANAPC11    HDDC2      RBM28      TNPO2     
##  [19] RRN3       DDX28      LSM3       DDX42      DDX5       RPP40     
##  [25] IK         SCD        FAM32A     NUDT8      PLEKHM1    POLR2I    
##  [31] SNAPIN     PPP1R7     IMP4       C1QBP      EWSR1      BMS1      
##  [37] TSR2       LARP4B     STOX1      TOX4       PHTF1      SDHAF2    
##  [43] CENPBD1    DDX41      SMUG1      ZFP91      BCKDHB     ZNF330    
##  [49] CDKN2AIPNL UBR3       POP7       ATXN1L     AGTPBP1    CDK8      
##  [55] MESP1      DNAJC21    NUP188     KIF3B      UBE2R2     IDH3G     
##  [61] EBNA1BP2   ANP32B     ATP13A3    YPEL2      EXOSC4     ARL6IP4   
##  [67] POP4       MDM2       PIK3CB     RETSAT     TAF1B      RPF1      
##  [73] FAM204A    GIN1       DEDD       ARID5A     ALG14      PTBP1     
##  [79] MAD2L1BP   SRP68      PDHA1      PPIL1      PAFAH1B2   FBXW11    
##  [85] TAOK2      SNX15      NAA10      KIF2A      NUB1       KLLN      
##  [91] SPON1      C19orf53   IQSEC1     MAP1S      GDE1       POLR1B    
##  [97] METTL1     HNRNPM     NOP10      SRP54      NSUN5      MPND      
## [103] SETD7      ACAT2      ZNF275     TEX264     DDX56      DDX19A    
## 1082 Levels: AATF ABCB8 ABCC4 ABCC8 ABCF3 ABHD14B ABL1 ABT1 ACADVL ... ZXDC
lung_fdr=read.csv('/n/home04/cdadams/TPM/lung/fishers3_lung2_6-29.csv')
lung_fdr_sig=lung_fdr[which(lung_fdr$fdr<0.05),]
lung_fdr_sig$gene
##   [1] POP4       EXOSC1     TRMT5      ELP3       NSUN5      PPP1R7    
##   [7] DIEXF      SMUG1      NVL        UTP14C     POLR3K     CCDC58    
##  [13] ALG14      NOL9       RBBP5      GLE1       ACTR10     COX10     
##  [19] TSEN15     TOE1       REXO4      TMA16      TRMT10A    IMP3      
##  [25] MCRS1      NUDT19     RPP30      GTF3C3     SDHAF2     TTC27     
##  [31] COIL       RPL26L1    C12orf43   TXN2       PIGO       NOL11     
##  [37] POP5       FCF1       ABCF3      FTSJ3      LLPH       WDR18     
##  [43] RPP21      ZNF202     MTX2       SURF2      MPHOSPH10  RBM34     
##  [49] SNAPC5     ZNF696     RAD17      UBXN8      CDKN2AIPNL SDAD1     
##  [55] PRMT6      ZCCHC9     RNF20      MAD2L1BP   FAM32A     ESF1      
##  [61] DDX49      TSG101     PWP1       LSM3       C7orf26    EXOSC5    
##  [67] DOLK       RPF1       NOL7       TSEN2      RPP38      ARID5A    
##  [73] GTPBP10    APEX1      CENPBD1    ASNA1      GAR1       ABT1      
##  [79] AGPS       CLN6       DDX28      TMEM179B   MFSD9      DDX1      
##  [85] RPL7L1     NUFIP1     CPT2       RNFT1      UBLCP1     CIAPIN1   
##  [91] POLR1B     TGDS       TEX264     TP53       POP7       NOL8      
##  [97] ABCB8      DDX50      HDHD3      ANAPC11    DNTTIP1    NUDT8     
## [103] RNPEPL1    UTP3       WDR12      THUMPD3    RPP40      EXOSC6    
## [109] PBDC1      DDX55      C1D        PPP1CA     DHX57      HOMEZ     
## [115] EEF1E1     SENP3      DGCR8      EXOSC3     FRG1       EXOSC2    
## [121] DOHH       METTL5     DDX59      HS1BP3     GEMIN2     UTP6      
## [127] BRF2       ZXDC       CCDC137    GSKIP      TBC1D13    C18orf21  
## [133] ELMOD2     UTP23      EXOSC9     APTX       SURF6      YPEL2     
## [139] LYAR       ZNF668     CYB5R1     ANKS6      THTPA      UTP14A    
## [145] KNOP1      SNX15      CKAP5      UBTF       SNAPIN     GLOD4     
## [151] DTD1       ZNF622     PRRG2      RRP36      C1orf109   COQ5      
## [157] PES1       MPHOSPH6   SMARCB1    EXOSC7     RRP15      SLC29A2   
## [163] UTP15      CTCF       ATP6V1G1   HINT2      RPS19BP1   PSPC1     
## [169] PPP1R3D    SNRNP35    SLC30A5    TYW1       AMDHD2     PAK1IP1   
## [175] BRIX1      RETSAT     SMC2       DDX52      CETN3      CDK4      
## [181] NIP7       KAT5       POLE3      TLDC1      DDX41      EXOSC4    
## [187] KRCC1      GMPR2      WDR3       ZNF583     JRK        PNRC1     
## [193] DROSHA     PPIL1      MPND       OLA1       NLE1       UTP20     
## [199] C6orf89    MFSD1      ORC4       DDX31      EBNA1BP2   PARN      
## [205] ZNF324B    STEAP3     TFIP11     FEN1       ZNF691     GIN1      
## [211] PARP1      FAM131A    NKIRAS2    RRP9       CHD2       NAT10     
## [217] RPF2       ZFP41      DCUN1D5    ATF6B      C1QBP      CUL2      
## [223] P3H4       RPAP2      NOC4L      UBE2R2     PML        ZBED9     
## [229] C22orf46   USP46      VEPH1      C16orf58   YY1AP1     NIFK      
## [235] ZNF16      TAF1D      VRK1       ZNF483     PAPSS1     RRP1B     
## [241] DCXR       PIH1D1     COX7A2L    RRS1       GDE1       TBL3      
## [247] MED1       TTF1       DNAL4      CDKN1A     FGFR1      ZNF77     
## [253] MMP24      POLR1A     DCAF13     NUDT16     RRN3       SMIM20    
## [259] ZBTB14     TRIM41     ABL1       GTF2H5     KIF3B      ESRRA     
## [265] TGS1       DHX33      NUDT14     HES7       TMX1       LRRC40    
## [271] NOM1       ZNF71      PDCD11     SETD4      NOP56      WDR74     
## [277] YPEL4      SNX30      HLTF       ARL14EP    DDX19B     ZNF507    
## [283] PHLDA1     IRAK4      SRSF5      URB2       NCAPD2     NCOA4     
## [289] FEZ2       IMP4       TOX4       MAK16      UBFD1      SCAF11    
## [295] SDCBP2     DCTN3      DDX18      PELI1      TRAF6      PCDHAC1   
## [301] HIRIP3     NMD3       POP1       H2AFY      SCD        OARD1     
## [307] CEBPA      CRIPT      ATXN1      UTP18      KIF20B     DHX9      
## [313] NF2        DDX6       DDX20      FXYD1      TMEM187    PYCARD    
## [319] PNKP       NHP2       CCDC149    DDX19A     RSL1D1     DYNC1I2   
## [325] C1orf210   EIF6       SKP2       MACROD2    ZNF57      LSM6      
## [331] HELQ       PCTP       PRR19      KRR1       USP36      TRIB3     
## [337] ATP13A3    SIRT7      VSIG4      AATF       HDDC2      IPMK      
## [343] CPNE3      SF3B3      NSMAF      UBE2T      DDX5       NSUN2     
## [349] DDX54      PSTK       CLDND1     NOC2L      DFFB       KDM5A     
## [355] FILIP1     NAA10      ACAT2      GPR137     IRX2       WDR82     
## [361] ZCCHC10    KAT6A      CCT5       NFX1       ZNF362     BAZ2A     
## [367] KLHL7      DENND5B    DCAF17     NOA1       HEATR1     DHX37     
## [373] TICAM1     CHTOP      MED16      NUCKS1     TERF1      SPRN      
## [379] MAPK13     GPATCH4    ZNF860     PCGF5      VASN       ASXL1     
## [385] IPPK       ZNF816     SSRP1      SRP68      CUTC       RCN2      
## [391] NPM3       VMP1       CSTB       KATNBL1    TTLL1      ACOX1     
## [397] PARP10     BMI1       PPID       MESP1      MOB1B      METTL1    
## [403] ISG20      DDX3X      CYTH1      MRTO4      GCFC2      WDR46     
## [409] FAM105A    PNO1       UPF3B      CASP8AP2   SRP19      ZNF354A   
## [415] EXOSC8     RRNAD1     WDSUB1     SYDE2      SRPK2      YWHAZ     
## [421] SS18L2     SBDS       RLF        ZNF444     WASL       NBAS      
## [427] ZNF571     EIF3A      CMAS       SPIN1      CDV3       NPM1      
## [433] FBXO11     YWHAB      ZNF865     ATF3       TEX10      NUP153    
## [439] SMPDL3A    CDCA7L     C7orf50    DNAJA2     ENC1       NOL12     
## [445] MAFB       BEND3      PHF2       TSR1       SPTBN1     STAU2     
## [451] NOP10      ERCC6      S100A13    SP5        VRK3       CCND2     
## [457] ZNF800     CENPH      PTTG2      GRWD1      IFI16      HECTD1    
## [463] ZNF627     MALT1      MIDN       SNAPC3     PHF6       PCID2     
## [469] ATXN7      KIAA0319L  SLBP       PIK3CB     TAF1B      ZNF554    
## [475] ZPR1       NBN       
## 972 Levels: AATF ABCB8 ABCC4 ABCF3 ABHD14B ABL1 ABT1 ACAT2 ACIN1 ACOX1 ... ZXDC
ovary_fdr=read.csv('/n/home04/cdadams/TPM/ovary/fishers3_ovary2_6-29.csv')
ovary_fdr_sig=ovary_fdr[which(ovary_fdr$fdr<0.05),]
ovary_fdr_sig$gene
##   [1] TRIM41     TRMT5      MFSD9      NVL        NUDT16     POLR3K    
##   [7] PPID       TDP2       SNAPIN     COIL       PYCARD     SMUG1     
##  [13] ZNF583     DAXX       CCDC137    COQ5       SKP2       CPT2      
##  [19] C18orf21   GLE1       TMEM187    POP7       PRKRIP1    EXOSC3    
##  [25] PDCD7      UTP23      MPHOSPH10  PPP1R3D    TGDS       TSEN2     
##  [31] NBAS       DDX20      ZBTB14     GTF3C3     HLTF       TLDC1     
##  [37] CCDC86     BRIX1      RAD17      EXOSC1     CHTOP      PRMT6     
##  [43] ZNF507     DDX55      NGDN       RBBP6      DOLK       RBBP5     
##  [49] GEMIN2     RPP30      ARL14EP    HINT2      CKAP5      POLR1B    
##  [55] HIRIP3     KRCC1      SIRT7      TAF1       SREK1IP1   DCTN3     
##  [61] ZNF397     ZNF696     LSM6       C1orf109   NOL9       DLG3      
##  [67] PJA1       TBC1D13    EXOSC5     NOP56      DKC1       TTF1      
##  [73] LRWD1      SPC24      TUT1       ESF1       C22orf46   PRKDC     
##  [79] EMG1       KANSL3     RPP40      CD3EAP     POP5       FTSJ3     
##  [85] CASP8AP2   NCAPD2     CDKN2AIP   UTP14C     FKBP15     PIN4      
##  [91] WDR36      BCKDHB     EXOSC2     HNRNPM     GTPBP10    RPL7L1    
##  [97] ZNF461     CCT5       DDX28      SENP3      IK         WDR18     
## [103] EXOSC7     MCRS1      EXOSC9     PARP1      SAP30L     NIFK      
## [109] EBNA1BP2   C9orf3     RNFT1      MCEE       UBE2T      IPPK      
## [115] SURF6      RRP1B      EXOSC4     ANKS6      GRWD1      GPALPP1   
## [121] CLN6       RPAP2      RBM34      POP4       DIEXF      C16orf58  
## [127] NOP16      ELMOD2     SF3B3      FCF1       NOP2       KDM2B     
## [133] HOMEZ      ACSL5      BCAS3      GPATCH4    DDA1       LLPH      
## [139] DHX57      PCTP       ZCCHC9     EWSR1      IMP3       ZMYM4     
## [145] MAK16      TGS1       ABCF3      ZNF668     STAT1      PTPN6     
## [151] BYSL       NOL11      EEF1E1     EXOSC6     CDKN2AIPNL DOHH      
## [157] TP53       BLCAP      NSUN2      NUFIP1     GPR137     ZC3H14    
## [163] C11orf68   AKAP8      VRK3       WDR46      DROSHA     DSN1      
## [169] HDDC2      UBTF       ZFX        UBLCP1     KRI1       CENPBD1   
## [175] NAT10      MAGEH1     RPP21      LDOC1      ABHD14B    ZNF324B   
## [181] IFI16      NOP10      TWISTNB    ANKRD49    DDX23      PARN      
## [187] CRBN       ELAVL1     ZNF71      KCNC4      SNX15      RRP15     
## [193] POLA1      DTWD1      ZNF597     VRK1       TSEN15     RBM4      
## [199] ACIN1      PELP1      RNF20      SIN3A      ZNF627     RTF1      
## [205] RIOK1      DHX9       CRYL1      CBX5       SELENBP1   DNTTIP1   
## [211] ABT1       RRP8       NSUN5      RRP36      SRP14      C9orf85   
## [217] TOE1       C12orf43   NOC2L      MBIP       PPP1CA     KAT5      
## [223] TFIP11     LYAR       SURF2      ILF2       PPP1R7     WDR3      
## [229] KLHL7      TCOF1      POP1       MAD2L1BP   NBN        NUDT19    
## [235] DDX10      KIF20B     RRP9       CCDC58     IQSEC1     DCAF13    
## [241] BEND3      RPF1       IRAK4      SCAF11     DYNC1I2    MED27     
## [247] SNAPC3     DDX24      EXOSC8     URB2       DDX49      AMDHD2    
## [253] ASNA1      ZXDC       FBXO36     PSPC1      GOLGA3     DDX39B    
## [259] LSM3       TBL3       XPO6       ZNF678     APEX1      GEMIN4    
## [265] CCDC136    OSBP       TXN2       WDR12      IDH3G      IMP4      
## [271] PAK1IP1    KDM6A      CMAS       BRF2       NAA10      NOC3L     
## [277] MYBBP1A    RFC1       BLM        CDCA8      RNF215     ENDOV     
## [283] TAOK2      OTUD7A     SRP19      SDHAF2     ELP3       RPL26L1   
## [289] POLR1A     ZNF622     PWP1       HS1BP3     ZPR1       RRN3      
## [295] ITPR1      ALG14      LZTS1      SSRP1      CYB5R1     RRP7A     
## [301] ABCB8      MIF4GD     MDM2       TRIM27     C1QBP      SLC30A5   
## [307] UTP18      WDR43      MRTO4      FTSJ1      SRFBP1     BAHCC1    
## [313] TTLL1      H2AFY      SIRT2      SDAD1      YWHAB      KRR1      
## [319] DGCR8      SNRNP35    DDX54      SPATA5L1   THUMPD3    ADAR      
## [325] RAN        PIGO       ORC4       GTF2H5     HELZ       ATXN1L    
## [331] AATF       RGS6       SNX30      TMX1       ZBTB43     RRS1      
## [337] ATF6B      CUTC       UTP15      BMS1       NCL        POLE3     
## [343] GPR65      C7orf26    FRG1       ERI1       MED1       GLOD4     
## [349] COX10      CTCF       TEX10      XRCC1      TTC27      SPIN1     
## [355] YWHAH      TSEN54     UTP20      ACAT2      NOL8       SPG11     
## [361] REXO2      PES1       ZCCHC10    RRNAD1     CCDC149    NOLC1     
## [367] NHP2       ZCCHC17    SYDE2      PNO1       NLK        WDFY3     
## [373] CMSS1      PBDC1      HECTD1     WDR75      TMEM179B   GTF3C1    
## [379] ARID5A     NF2        TRMT10A    SRSF9      DDX50      WDR82     
## [385] KLLN       XRCC5      KIAA1841   UTP14A     ZNF106     C6orf89   
## [391] MPHOSPH6   CYB561A3   DDX1      
## 1109 Levels: AATF ABCB8 ABCC4 ABCC8 ABCF3 ABHD14B ABL1 ABT1 ABTB1 ... ZXDC
prostate_fdr=read.csv('/n/home04/cdadams/TPM/prostate/fishers3_prostate2_6-29.csv')
prostate_fdr_sig=prostate_fdr[which(prostate_fdr$fdr<0.05),]
prostate_fdr_sig$gene
##  [1] NOP10    EEF1E1   GSKIP    POP7     SRP14    NOA1     ASNA1    RPL26L1 
##  [9] DCAF13   PFDN1    GLE1     CTCF     YWHAE    POLR3K   FAM32A   UTP18   
## [17] REV3L    PPP1R7   DDX28    ZNF622   RNF20    PCID2    NHP2     SNX15   
## [25] C1orf109 SNRNP35 
## 1025 Levels: AATF ABCB8 ABCC4 ABCF3 ABHD14B ABL1 ABT1 ABTB1 ACADVL ... ZXDC
colon_fdr=read.csv('/n/home04/cdadams/TPM/colon/fishers3_colon2_6-29.csv')
colon_fdr_sig=prostate_fdr[which(colon_fdr$fdr<0.05),]
colon_fdr_sig$gene
##   [1] NOP10      EEF1E1     GSKIP      POP7       SRP14      NOA1      
##   [7] ASNA1      RPL26L1    DCAF13     PFDN1      GLE1       CTCF      
##  [13] YWHAE      POLR3K     FAM32A     UTP18      REV3L      PPP1R7    
##  [19] DDX28      ZNF622     RNF20      PCID2      NHP2       SNX15     
##  [25] C1orf109   SNRNP35    POP4       NCAPD2     ZFY        CHTOP     
##  [31] PPIL1      GPATCH4    GTPBP4     PCGF5      URB2       RNF215    
##  [37] XPO6       INO80E     TTC27      DDX52      KRR1       COX10     
##  [43] NIP7       DDX51      ZCCHC17    ZNF444     WASL       P3H4      
##  [49] ATXN1      UTP15      KAT5       TNPO2      NUP188     IMP4      
##  [55] GPATCH2    RNFT1      FEN1       SNAPC3     C2orf68    WDR12     
##  [61] MAGED2     TSEN15     GTF3C3     XRCC1      TRMT1L     FCF1      
##  [67] ELMOD2     PBDC1      EBNA1BP2   DCXR       RPP30      ALG14     
##  [73] RBM4B      UTP20      PNO1       RAD17      PARP10     CENPBD1   
##  [79] FAM98C     DOLK       SURF6      DCAF17     EXOC4      SRP19     
##  [85] NIFK       HSPA8      DIAPH2     PINX1      NUFIP1     MPND      
##  [91] ZFAND2B    TAF13      NOL11      MTX2       DCTN3      RRS1      
##  [97] EIF2S2     C7orf26    KRCC1      GAR1       IMP3       SERF2     
## [103] HSPA9      APEX1      ZPR1       RPS19BP1   NOLC1      NLE1      
## [109] ARL14EP    ATXN7L2    ANKRD49    DCUN1D5    UTP14C     MPHOSPH10 
## [115] LARP4B     PLEKHM1    RETSAT     ILF2       RBM3       PAPSS1    
## [121] DGAT1      VRK1       TLDC1      POP5       FILIP1     CLDND1    
## [127] NVL        ENDOV      POLR1B     PFKFB4     MIS18BP1   NOL12     
## [133] PLOD2      CDKN2AIPNL NF2        NOC3L      LLPH       PSPC1     
## [139] NOC2L      HLTF       BMS1       MAD2L1BP   TRMT5      POLE3     
## [145] KIF20B     TEX264     EXOSC3     TRDMT1     COIL       ZC3H14    
## [151] DDX17      PRMT2      EIF4A3     RAN        FMN2       SYDE2     
## [157] DDX19B     COQ5       NUCKS1     TRMT10A    FAM133B    ATP6V1G1  
## [163] CHD3       UTP23      DTX3       TWISTNB    C22orf46  
## 1025 Levels: AATF ABCB8 ABCC4 ABCF3 ABHD14B ABL1 ABT1 ABTB1 ACADVL ... ZXDC