Mapa de interpolacion con poligonos de Thiessen

install.packages("spatstat")
library(spatstat)                                               
library(tmap)
Magdal <- shapefile("C:/Users/vale_/Desktop/UNAL/6to semestre/GB/magda2.shp")
Precipitacion <- shapefile("C:/Users/vale_/Desktop/UNAL/6to semestre/GB/prec2.shp")
Precipitacion@bbox <-Magdal@bbox
th <- as(dirichlet(as.ppp(Precipitacion)), "SpatialPolygons")


crs(th) <- crs(Precipitacion)                                      
crs(Magdal) <- crs(Precipitacion)
crs(th)
CRS arguments:
 +proj=tmerc +lat_0=4.59620041666667
+lon_0=-74.0775079166667 +k=1 +x_0=1000000
+y_0=1000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs 
crs(Precipitacion)
CRS arguments:
 +proj=tmerc +lat_0=4.59620041666667
+lon_0=-74.0775079166667 +k=1 +x_0=1000000
+y_0=1000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs 
th.z    <- over(th, Precipitacion, fn=mean)                     
th.spdf <- SpatialPolygonsDataFrame(th, th.z)                   


th.clp  <- raster::intersect(Magdal,th.spdf)
tm_shape(th.clp) +                                              
  tm_polygons(col="rainfall", palette="RdBu", midpoint=25.0,      
              title="Polígonos Thiessen  \nPrecipitación prevista \n(en mm)") +                                                    
  tm_legend(legend.outside=TRUE)

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)

Matrix products: default

locale:
[1] LC_COLLATE=Spanish_Colombia.1252 
[2] LC_CTYPE=Spanish_Colombia.1252   
[3] LC_MONETARY=Spanish_Colombia.1252
[4] LC_NUMERIC=C                     
[5] LC_TIME=Spanish_Colombia.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets 
[6] methods   base     

other attached packages:
 [1] spatstat_1.64-1       rpart_4.1-15         
 [3] nlme_3.1-144          spatstat.data_1.4-3  
 [5] RColorBrewer_1.1-2    gstat_2.0-6          
 [7] tmap_3.0              SpatialPosition_2.0.1
 [9] cartography_2.4.1     rgeos_0.5-3          
[11] readxl_1.3.1          lwgeom_0.2-4         
[13] leaflet_2.0.3         scales_1.1.1         
[15] sf_0.9-3              forcats_0.5.0        
[17] stringr_1.4.0         dplyr_1.0.0          
[19] purrr_0.3.4           readr_1.3.1          
[21] tidyr_1.1.0           tibble_3.0.1         
[23] ggplot2_3.3.1         tidyverse_1.3.0      
[25] elevatr_0.2.0         rgdal_1.5-8          
[27] rgl_0.100.54          rasterVis_0.47       
[29] latticeExtra_0.6-29   lattice_0.20-38      
[31] raster_3.1-5          sp_1.4-2             

loaded via a namespace (and not attached):
  [1] backports_1.1.7         lazyeval_0.2.2         
  [3] splines_3.6.3           jqr_1.1.0              
  [5] crosstalk_1.1.0.1       digest_0.6.25          
  [7] htmltools_0.4.0         rsconnect_0.8.16       
  [9] leaflet.providers_1.9.0 fansi_0.4.1            
 [11] magrittr_1.5            tensor_1.5             
 [13] modelr_0.1.8            xts_0.12-0             
 [15] jpeg_0.1-8.1            colorspace_1.4-1       
 [17] blob_1.2.1              rvest_0.3.5            
 [19] haven_2.3.0             xfun_0.14              
 [21] leafem_0.1.1            crayon_1.3.4           
 [23] jsonlite_1.6.1          hexbin_1.28.1          
 [25] zoo_1.8-8               glue_1.4.1             
 [27] stars_0.4-1             polyclip_1.10-0        
 [29] gtable_0.3.0            webshot_0.5.2          
 [31] V8_3.2.0                abind_1.4-5            
 [33] DBI_1.1.0               miniUI_0.1.1.1         
 [35] Rcpp_1.0.4.6            isoband_0.2.2.9000     
 [37] viridisLite_0.3.0       xtable_1.8-4           
 [39] units_0.6-6             foreign_0.8-75         
 [41] intervals_0.15.2        htmlwidgets_1.5.1      
 [43] httr_1.4.1              FNN_1.1.3              
 [45] ellipsis_0.3.1          pkgconfig_2.0.3        
 [47] XML_3.99-0.3            farver_2.0.3           
 [49] deldir_0.1-25           dbplyr_1.4.4           
 [51] crul_0.9.0              tidyselect_1.1.0       
 [53] rlang_0.4.6             manipulateWidget_0.10.1
 [55] later_1.0.0             tmaptools_3.0          
 [57] munsell_0.5.0           cellranger_1.1.0       
 [59] tools_3.6.3             cli_2.0.2              
 [61] generics_0.0.2          broom_0.5.6            
 [63] evaluate_0.14           fastmap_1.0.1          
 [65] goftest_1.2-2           yaml_2.2.1             
 [67] leafsync_0.1.0          knitr_1.28             
 [69] fs_1.4.1                mime_0.9               
 [71] xml2_1.2.5              compiler_3.6.3         
 [73] rstudioapi_0.11         curl_4.3               
 [75] png_0.1-7               e1071_1.7-3            
 [77] spatstat.utils_1.17-0   reprex_0.3.0           
 [79] spacetime_1.2-3         stringi_1.4.6          
 [81] Matrix_1.2-18           classInt_0.4-3         
 [83] markdown_1.1            vctrs_0.3.0            
 [85] slippymath_0.3.1        pillar_1.4.4           
 [87] lifecycle_0.2.0         geojsonio_0.9.2        
 [89] maptools_1.0-1          httpuv_1.5.3.1         
 [91] R6_2.4.1                promises_1.1.0         
 [93] KernSmooth_2.23-16      codetools_0.2-16       
 [95] dichromat_2.0-0         assertthat_0.2.1       
 [97] withr_2.2.0             httpcode_0.3.0         
 [99] mgcv_1.8-31             parallel_3.6.3         
[101] hms_0.5.3               geojson_0.3.4          
[103] grid_3.6.3              class_7.3-15           
[105] rmarkdown_2.1           shiny_1.4.0.2          
[107] lubridate_1.7.8         base64enc_0.1-3        
LS0tDQp0aXRsZTogIkFuZXhvXzMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIyMjIE1hcGEgZGUgaW50ZXJwb2xhY2lvbiBjb24gcG9saWdvbm9zIGRlIFRoaWVzc2VuDQoNCmBgYHtyIGV2YWw9RkFMU0UsIGVjaG89VFJVRX0NCmluc3RhbGwucGFja2FnZXMoInNwYXRzdGF0IikNCmxpYnJhcnkoc3BhdHN0YXQpICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCmxpYnJhcnkodG1hcCkNCmBgYA0KDQpgYGB7ciBldmFsPUZBTFNFLCBlY2hvPVRSVUV9DQpNYWdkYWwgPC0gc2hhcGVmaWxlKCJDOi9Vc2Vycy92YWxlXy9EZXNrdG9wL1VOQUwvNnRvIHNlbWVzdHJlL0dCL21hZ2RhMi5zaHAiKQ0KYGBgDQpgYGB7ciBldmFsPUZBTFNFLCBlY2hvPVRSVUV9DQpQcmVjaXBpdGFjaW9uIDwtIHNoYXBlZmlsZSgiQzovVXNlcnMvdmFsZV8vRGVza3RvcC9VTkFMLzZ0byBzZW1lc3RyZS9HQi9wcmVjMi5zaHAiKQ0KYGBgDQoNCmBgYHtyIGV2YWw9RkFMU0UsIGVjaG89VFJVRX0NClByZWNpcGl0YWNpb25AYmJveCA8LU1hZ2RhbEBiYm94DQpgYGANCg0KYGBge3IgZXZhbD1GQUxTRSwgZWNobz1UUlVFfQ0KdGggPC0gYXMoZGlyaWNobGV0KGFzLnBwcChQcmVjaXBpdGFjaW9uKSksICJTcGF0aWFsUG9seWdvbnMiKQ0KDQoNCmNycyh0aCkgPC0gY3JzKFByZWNpcGl0YWNpb24pICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICANCmNycyhNYWdkYWwpIDwtIGNycyhQcmVjaXBpdGFjaW9uKQ0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KY3JzKHRoKQ0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KY3JzKFByZWNpcGl0YWNpb24pDQpgYGANCg0KYGBge3Igd2FybmluZz1GQUxTRSwgZXZhbD1GQUxTRSwgZWNobz1UUlVFfSANCnRoLnogICAgPC0gb3Zlcih0aCwgUHJlY2lwaXRhY2lvbiwgZm49bWVhbikgICAgICAgICAgICAgICAgICAgICANCnRoLnNwZGYgPC0gU3BhdGlhbFBvbHlnb25zRGF0YUZyYW1lKHRoLCB0aC56KSAgICAgICAgICAgICAgICAgICANCg0KDQp0aC5jbHAgIDwtIHJhc3Rlcjo6aW50ZXJzZWN0KE1hZ2RhbCx0aC5zcGRmKQ0KYGBgDQoNCmBgYHtyIGV2YWw9VFJVRSwgZWNobz1UUlVFLCB3YXJuaW5nPUZBTFNFfQ0KdG1fc2hhcGUodGguY2xwKSArICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KICB0bV9wb2x5Z29ucyhjb2w9InJhaW5mYWxsIiwgcGFsZXR0ZT0iUmRCdSIsIG1pZHBvaW50PTI1LjAsICAgICAgDQogICAgICAgICAgICAgIHRpdGxlPSJQb2ztZ29ub3MgVGhpZXNzZW4gIFxuUHJlY2lwaXRhY2nzbiBwcmV2aXN0YSBcbihlbiBtbSkiKSArICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KICB0bV9sZWdlbmQobGVnZW5kLm91dHNpZGU9VFJVRSkNCmBgYA0KDQpgYGB7ciBldmFsPVRSVUUsIGVjaG89VFJVRX0NCnNlc3Npb25JbmZvKCkNCmBgYA0K