list.of.packages <- c("rgdal", "raster", "sf", "tidyverse", "tmap", "gstat", "sp")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
library(rgdal)
rgdal: version: 1.5-8, (SVN revision 990)
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
Path to GDAL shared files: C:/Users/vale_/Documents/R/win-library/3.6/sf/gdal
GDAL binary built with GEOS: TRUE
Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
Path to PROJ shared files: C:/Users/vale_/Documents/R/win-library/3.6/rgdal/proj
Linking to sp version:1.4-2
To mute warnings of possible GDAL/OSR exportToProj4() degradation,
use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
library(raster)
library(sf)
Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
method from
print.tbl_lazy
print.tbl_sql
[30m-- [1mAttaching packages[22m --------------------------------------- tidyverse 1.3.0 --[39m
[30m[32mv[30m [34mggplot2[30m 3.3.1 [32mv[30m [34mpurrr [30m 0.3.4
[32mv[30m [34mtibble [30m 3.0.1 [32mv[30m [34mdplyr [30m 1.0.0
[32mv[30m [34mtidyr [30m 1.1.0 [32mv[30m [34mstringr[30m 1.4.0
[32mv[30m [34mreadr [30m 1.3.1 [32mv[30m [34mforcats[30m 0.5.0[39m
[30m-- [1mConflicts[22m ------------------------------------------ tidyverse_conflicts() --
[31mx[30m [34mtidyr[30m::[32mextract()[30m masks [34mraster[30m::extract()
[31mx[30m [34mdplyr[30m::[32mfilter()[30m masks [34mstats[30m::filter()
[31mx[30m [34mdplyr[30m::[32mlag()[30m masks [34mstats[30m::lag()
[31mx[30m [34mdplyr[30m::[32mselect()[30m masks [34mraster[30m::select()[39m
library(tmap)
library(gstat)
library(sp)
precip2 <- raster("C:/Users/vale_/Desktop/UNAL/6to semestre/GB/_chirps.tif")
precip2
class : RasterLayer
dimensions : 2000, 7200, 14400000 (nrow, ncol, ncell)
resolution : 0.05, 0.05 (x, y)
extent : -180, 180, -50, 50 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source : C:/Users/vale_/Desktop/UNAL/6to semestre/GB/_chirps.tif
names : X_chirps
(mag <- shapefile("C:/Users/vale_/Desktop/UNAL/6to semestre/GB/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp"))
class : SpatialPolygonsDataFrame
features : 30
extent : -74.9466, -73.54184, 8.936489, 11.34891 (xmin, xmax, ymin, ymax)
CRS object has comment, which is lost in output
crs : +proj=longlat +datum=WGS84 +no_defs
variables : 9
names : DPTO_CCDGO, MPIO_CCDGO, MPIO_CNMBR, MPIO_CRSLC, MPIO_NAREA, MPIO_NANO, DPTO_CNMBR, Shape_Leng, Shape_Area
min values : 47, 47001, ALGARROBO, 1525, 109.48370634, 2017, MAGDALENA, 0.544326259962, 0.00903317812539
max values : 47, 47980, ZONA BANANERA, Ordenanza 74 de 1912, 2347.13929515, 2017, MAGDALENA, 3.19741434448, 0.194233330475
precip.crop <- raster::crop(precip2, extent(mag))
precip.mask <- mask(x = precip.crop, mask = mag)
precip.mask
class : RasterLayer
dimensions : 48, 28, 1344 (nrow, ncol, ncell)
resolution : 0.05, 0.05 (x, y)
extent : -74.95, -73.55, 8.949999, 11.35 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source : memory
names : X_chirps
values : 0, 66.45473 (min, max)
plot(precip.mask, main= "CHIRPS Precipitación en Magdalena
desde 03.06. a 07.06. en 2020 [mm]")
plot(mag, add=TRUE)
library(leaflet)
library(RColorBrewer)
pal <- colorNumeric(c("red", "orange", "yellow", "blue", "darkblue"), values(precip.mask),
na.color = "transparent")
leaflet() %>% addTiles() %>%
addRasterImage(precip.mask, colors = pal, opacity = 0.6) %>%
addLegend(pal = pal, values = values(precip.mask),
title = "CHIRPS Precipitación en Magdalena
desde 03.06. a 07.06. en 2020 [mm]")
precip.points <- rasterToPoints(precip.mask, spatial = TRUE)
precip.points
names(precip.points) <- "rain"
precip.points
str(precip.points)
plot(precip.mask, main= "CHIRPS Precipitación en Magdalena
desde 03.06. a 07.06. en 2020 [mm]")
plot(mag, add=TRUE)
points(precip.points$x, precip.points$y, col = "red", cex =.3)
geojsonio::geojson_write(precip.points, file = "./chirps/ppoints.geojson")
precip.points <- geojsonio::geojson_read("./chirps/ppoints.geojson", what="sp")
precip.points
(mag <- shapefile("C:/Users/vale_/Desktop/UNAL/6to semestre/GB/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp"))
magda_sf <- sf::st_as_sf(mag)
(border_sf <-
magda_sf %>%
summarise(area = sum(MPIO_NAREA)))
(border <- as(border_sf, 'Spatial'))
(magda.sf <- st_as_sf(mag) %>% mutate(MUNIC = MPIO_CNMBR, CODIGO = MPIO_CCDGO) %>% select(MUNIC, CODIGO))
p.sf <- st_as_sf(precip.points)
(precip.sf = st_intersection(magda.sf, p.sf))
p.sf.magna <- st_transform(precip.sf, crs = 3116)
magda.sf.magna <- st_transform(magda.sf, crs = 3116)
(prec2 <- as(p.sf.magna, 'Spatial'))
shapefile(prec2, filename='C:/Users/vale_/Desktop/UNAL/6to semestre/GB/prec2.shp', overwrite=TRUE)
prec2$rainfall <- round(prec2$rain, 1)
prec2
(magda2 <- as(magda.sf.magna, 'Spatial'))
shapefile(magda2, filename='C:/Users/vale_/Desktop/UNAL/6to semestre/GB/magda2.shp', overwrite=TRUE)
prec2@bbox <- magda2@bbox
tm_shape(magda2) + tm_polygons() +
tm_shape(prec2) +
tm_dots(col = "rainfall", palette = "RdBu", midpoint = 20.0,
title = "Precipitación muestreada \n(in mm)", size = 0.2) +
tm_text("rainfall", just = "center", xmod = .06, size = 0.25) +
tm_legend(legend.outside=TRUE)
sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18362)
Matrix products: default
locale:
[1] LC_COLLATE=Spanish_Colombia.1252
[2] LC_CTYPE=Spanish_Colombia.1252
[3] LC_MONETARY=Spanish_Colombia.1252
[4] LC_NUMERIC=C
[5] LC_TIME=Spanish_Colombia.1252
attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base
other attached packages:
[1] RColorBrewer_1.1-2 gstat_2.0-6
[3] tmap_3.0 SpatialPosition_2.0.1
[5] cartography_2.4.1 rgeos_0.5-3
[7] readxl_1.3.1 lwgeom_0.2-4
[9] leaflet_2.0.3 scales_1.1.1
[11] sf_0.9-3 forcats_0.5.0
[13] stringr_1.4.0 dplyr_1.0.0
[15] purrr_0.3.4 readr_1.3.1
[17] tidyr_1.1.0 tibble_3.0.1
[19] ggplot2_3.3.1 tidyverse_1.3.0
[21] elevatr_0.2.0 rgdal_1.5-8
[23] rgl_0.100.54 rasterVis_0.47
[25] latticeExtra_0.6-29 lattice_0.20-38
[27] raster_3.1-5 sp_1.4-2
loaded via a namespace (and not attached):
[1] leafem_0.1.1 colorspace_1.4-1
[3] ellipsis_0.3.1 class_7.3-15
[5] rsconnect_0.8.16 markdown_1.1
[7] base64enc_0.1-3 fs_1.4.1
[9] dichromat_2.0-0 httpcode_0.3.0
[11] rstudioapi_0.11 farver_2.0.3
[13] hexbin_1.28.1 fansi_0.4.1
[15] lubridate_1.7.8 xml2_1.2.5
[17] codetools_0.2-16 knitr_1.28
[19] jsonlite_1.6.1 tmaptools_3.0
[21] broom_0.5.6 dbplyr_1.4.4
[23] png_0.1-7 shiny_1.4.0.2
[25] compiler_3.6.3 httr_1.4.1
[27] backports_1.1.7 lazyeval_0.2.2
[29] assertthat_0.2.1 fastmap_1.0.1
[31] cli_2.0.2 later_1.0.0
[33] leaflet.providers_1.9.0 htmltools_0.4.0
[35] tools_3.6.3 gtable_0.3.0
[37] glue_1.4.1 geojson_0.3.4
[39] V8_3.2.0 Rcpp_1.0.4.6
[41] cellranger_1.1.0 vctrs_0.3.0
[43] crul_0.9.0 nlme_3.1-144
[45] leafsync_0.1.0 crosstalk_1.1.0.1
[47] xfun_0.14 rvest_0.3.5
[49] mime_0.9 miniUI_0.1.1.1
[51] lifecycle_0.2.0 XML_3.99-0.3
[53] jqr_1.1.0 zoo_1.8-8
[55] hms_0.5.3 promises_1.1.0
[57] slippymath_0.3.1 parallel_3.6.3
[59] curl_4.3 yaml_2.2.1
[61] stringi_1.4.6 maptools_1.0-1
[63] e1071_1.7-3 manipulateWidget_0.10.1
[65] intervals_0.15.2 rlang_0.4.6
[67] pkgconfig_2.0.3 evaluate_0.14
[69] htmlwidgets_1.5.1 tidyselect_1.1.0
[71] magrittr_1.5 R6_2.4.1
[73] geojsonio_0.9.2 generics_0.0.2
[75] DBI_1.1.0 foreign_0.8-75
[77] pillar_1.4.4 haven_2.3.0
[79] withr_2.2.0 xts_0.12-0
[81] units_0.6-6 stars_0.4-1
[83] abind_1.4-5 spacetime_1.2-3
[85] modelr_0.1.8 crayon_1.3.4
[87] KernSmooth_2.23-16 rmarkdown_2.1
[89] jpeg_0.1-8.1 grid_3.6.3
[91] isoband_0.2.2.9000 FNN_1.1.3
[93] blob_1.2.1 reprex_0.3.0
[95] digest_0.6.25 classInt_0.4-3
[97] webshot_0.5.2 xtable_1.8-4
[99] httpuv_1.5.3.1 munsell_0.5.0
[101] viridisLite_0.3.0