Download MDSI Assignment Cover Sheet AT3.pdf

1 Overview

In response to the Australian Social Impact Investors’ (ASII) request, the Data Scientists for Social Good (DSSG) conducted a modelling exercise that examined the factors affecting unemployment in Australia. Logistic regression was applied to that aim given scope, time, and budget restrictions.

On reflection of the limitations brought by the above-mentioned approach, this article implements a Generalised Linear Mixed Model (GLMM) to investigate the impact of having assumed independence of observations within an AS4 (Statistical Area Level 4).

 

2 From GLM to GLMM

2.1 Initial Considerations

Data sources and structure, and pre-processing techniques implemented in this article are based on those described by the DSSG.

 

2.2 Justification of Methodology

Generalised Linear Models’ (GLM) assume a zero correlation between the observations. As individuals within AS4 territories share a milieu conditioned to common key elements that might generate patterns on unemployment -e.g. local governments, economic activities, customs, population density-, independence of observations is not reasonable.

Recognising the need of incorporating intuition to guide data analysis, the variance on the effects of \(age\), \(sex\), \(education\) and \(ingp\) across AS4 territories are all deemed plausible. As an example, an unobservable sexist bias in a region might cause an increased effect of \(sex\) in unemployment for that particular territory. Consequently, relaxing that assumption as much as possible would permit correcting initial estimations.

 

2.3 Objectives & Research Questions

This piece aims to model heterogeneity in effects across AS4 territories to answer the following questions:

  1. How significance and direction1 of the odds ratios’ estimates (fixed effects) change when inducing an intragroup correlation structure?

  2. What patterns, and their potentially related variables, could be recognised by analysing random intercepts?

     

3 Initial GLM Approach

The GLM defined by DSSG predicts the log-odds of \(unemployed_i=1\) for observation \(i\), as indicated in equation (3.1):

 

\[\begin{equation} \left.\begin{aligned} g(\hat{p}_{unemployed_i})&=log\left(\frac{\hat{p}_{unemployed_i}}{1-\hat{p}_{unemployed_i}}\right) \\ logit(\hat{p}_{unemployed_i}) &= \hat{\beta}_0 + \hat{\beta}_{age}age_i + \hat{\beta}_{sex}sex_i + \hat{\beta}_{education}education_i + \hat{\beta}_{ingp}ingp_i\\ &\quad+\hat{\beta}_{IEODecile}IEODecile_i+\hat{\beta}_{remotenessindex}remotenessindex_i + \hat{\beta}_{capital}capital_i\\ &\quad+ \hat{\beta}_{age*sex}age_i*sex_i+\hat{\beta}_{age*education}age_i*education_i + \hat{\beta}_{age*ingp}age_i*ingp_i \\ &\quad+ \hat{\beta}_{sex*education}sex_i*education_i+\hat{\beta}_{sex*ingp}sex_i*ingp_i\\ &\quad+ \hat{\beta}_{education*ingp}education_i*ingp_i + \hat{\beta}_{age*capital}age_i*capital_i\\ &\quad+\hat{\beta}_{sex*capital}sex_i*capital_i + \hat{\beta}_{ingp*capital}ingp_i*capital_i \\ \end{aligned}\right. \tag{3.1} \end{equation}\]

 

Please note:

 

Formulation in R equals to:

[1] "Formula"
unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile + 
    remoteness_index + capital + age * sex + age * education + 
    age * ingp + sex * education + sex * ingp + education * ingp + 
    age * capital + sex * capital + ingp * capital

 

Please refer to GLM Summary for details on results.

 

4 Building a GLMM Approach

4.1 Modelling

To select the best GLMM formulation, models are constructed starting from the simplest approach (only random intercept) and continuing with the iterative addition of random slopes -i.e. Forward Selection-. Please note that fixed effects from Initial GLM Approach are maintained in line to the Objectives & Research Questions. To evaluate the significance of the difference between models, a likelihood ratio test (“Chisq”) is implemented (Sonderegger, Wagner, & Torreira, 2018). Similarly, the Akaike Information Criterion (AIC) is considered as it adjusts by the number of parameters, favouring simpler models (Manning,2007).

Despite simplicity given by only random intercept modelling, random effects were not only deemed necessary but also kept to the maximal2. Justification can be summarised as follows:

  1. The intragroup correlation could be not resolved with mixed models if important fixed or random effects are not taken into consideration. Accordingly, authors such as Barr et al. (2013) and Harrison et al. (2018) recommend including all random slopes that are plausible or relevant to the interpretation of the study unless convergence is not reached.

  2. Researchers have proven through simulations that multilevel models that only consider random intercepts present higher Type I error rates (Winter, n.d.).

Additionally, correlations of random effects are evaluated in each case to ensure no values of +-1 are encountered, as they would indicate either a) null variation within the grouping, b) non-convergence (Matuscheck et al., 2017). Considering that a) applies for \(IEODecile\), \(remotenessindex\), and \(capital\), these are not considered.

This section summarises final GLMM selection. Please refer to GLMMs Summary for details on results.

 

Model A:

[1] "Formula"
unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile + 
    remoteness_index + capital + age * sex + age * education + 
    age * ingp + sex * education + sex * ingp + education * ingp + 
    age * capital + sex * capital + ingp * capital + (1 | sa4)

 

Model B:

[1] "Formula"
unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile + 
    remoteness_index + capital + age * sex + age * education + 
    age * ingp + sex * education + sex * ingp + education * ingp + 
    age * capital + sex * capital + ingp * capital + (1 + age | 
    sa4)

 

[1] "Random Effects Correlation Matrix"
(Intercept) age20-29 years age30-39 years age40-49 years age50-59 years
(Intercept) 1.0000000 -0.3810525 -0.5164655 -0.5336610 -0.5390193
age20-29 years -0.3810525 1.0000000 0.8201441 0.6635950 0.5878674
age30-39 years -0.5164655 0.8201441 1.0000000 0.8849971 0.7660772
age40-49 years -0.5336610 0.6635950 0.8849971 1.0000000 0.9395329
age50-59 years -0.5390193 0.5878674 0.7660772 0.9395329 1.0000000

 

[1] "Hypothesis Testing"
              AIC Pr(>Chisq)    
at3_model_a 43780               
at3_model_b 40036  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

A likelihood ratio test shows that AS4s differ significantly in the effect of \(age\) \((p< 2.2e-16)\). An AIC reduction for model B \((40036)\), compared to model A \((43780)\), indicates an improvement of fit.

 

Model C:

[1] "Formula"
unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile + 
    remoteness_index + capital + age * sex + age * education + 
    age * ingp + sex * education + sex * ingp + education * ingp + 
    age * capital + sex * capital + ingp * capital + (1 + age + 
    sex | sa4)

 

[1] "Random Effects Correlation Matrix"
(Intercept) age20-29 years age30-39 years age40-49 years age50-59 years sexMale
(Intercept) 1.0000000 -0.4615148 -0.5711161 -0.5719806 -0.5738917 -0.0637823
age20-29 years -0.4615148 1.0000000 0.8237266 0.6687505 0.5872168 0.2674464
age30-39 years -0.5711161 0.8237266 1.0000000 0.8858468 0.7648781 0.2063752
age40-49 years -0.5719806 0.6687505 0.8858468 1.0000000 0.9387253 0.1828554
age50-59 years -0.5738917 0.5872168 0.7648781 0.9387253 1.0000000 0.1208082
sexMale -0.0637823 0.2674464 0.2063752 0.1828554 0.1208082 1.0000000

 

[1] "Hypothesis Testing"
              AIC Pr(>Chisq)    
at3_model_b 40036               
at3_model_c 38317  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

A likelihood ratio test shows that AS4s differ significantly in the effect of \(sex\) \((p< 2.2e-16)\). An AIC reduction for model C \((38317)\), compared to model B \((40036)\), indicates an improvement of fit.

 

Model D:

[1] "Formula"
unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile + 
    remoteness_index + capital + age * sex + age * education + 
    age * ingp + sex * education + sex * ingp + education * ingp + 
    age * capital + sex * capital + ingp * capital + (1 + age + 
    sex + education | sa4)

 

[1] "Random Effects Correlation Matrix"
(Intercept) age20-29 years age30-39 years age40-49 years age50-59 years sexMale educationhs-not-finished
(Intercept) 1.0000000 -0.5669196 -0.6746014 -0.6503010 -0.5931649 -0.0378451 -0.4413982
age20-29 years -0.5669196 1.0000000 0.8608334 0.7231557 0.6204294 0.2489127 0.3758299
age30-39 years -0.6746014 0.8608334 1.0000000 0.8958171 0.7594933 0.1717879 0.4516639
age40-49 years -0.6503010 0.7231557 0.8958171 1.0000000 0.9326056 0.1568105 0.3832347
age50-59 years -0.5931649 0.6204294 0.7594933 0.9326056 1.0000000 0.1087562 0.2206278
sexMale -0.0378451 0.2489127 0.1717879 0.1568105 0.1087562 1.0000000 0.0254617
educationhs_not_finished -0.4413982 0.3758299 0.4516639 0.3832347 0.2206278 0.0254617 1.0000000

 

[1] "Hypothesis Testing"
              AIC Pr(>Chisq)    
at3_model_c 38317               
at3_model_d 36251  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

A likelihood ratio test shows that AS4s differ significantly in the effect of \(education\) \((p< 2.2e-16)\). An AIC reduction for model D \((36251)\), compared to model C \((38317)\), indicates an improvement of fit.

 

Model E:

[1] "Formula"
unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile + 
    remoteness_index + capital + age * sex + age * education + 
    age * ingp + sex * education + sex * ingp + education * ingp + 
    age * capital + sex * capital + ingp * capital + (1 + age + 
    sex + education + ingp | sa4)

 

[1] "Random Effects Correlation Matrix"
(Intercept) age20-29 years age30-39 years age40-49 years age50-59 years sexMale educationhs-not-finished ingpNon-Indigenous
(Intercept) 1.0000000 -0.0868327 0.1140377 0.1948135 0.2021416 0.1474821 0.3062938 -0.8717418
age20-29 years -0.0868327 1.0000000 0.8448542 0.6875529 0.5788329 0.2344428 0.4074246 -0.1413111
age30-39 years 0.1140377 0.8448542 1.0000000 0.8923160 0.7668547 0.1646408 0.4844798 -0.4019561
age40-49 years 0.1948135 0.6875529 0.8923160 1.0000000 0.9455944 0.1527898 0.3936088 -0.4606818
age50-59 years 0.2021416 0.5788329 0.7668547 0.9455944 1.0000000 0.0965349 0.3100408 -0.4484222
sexMale 0.1474821 0.2344428 0.1646408 0.1527898 0.0965349 1.0000000 0.0707023 -0.1270621
educationhs_not_finished 0.3062938 0.4074246 0.4844798 0.3936088 0.3100408 0.0707023 1.0000000 -0.5430379
ingpNon-Indigenous -0.8717418 -0.1413111 -0.4019561 -0.4606818 -0.4484222 -0.1270621 -0.5430379 1.0000000

 

[1] "Hypothesis Testing"
              AIC Pr(>Chisq)    
at3_model_d 36251               
at3_model_e 31188  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

A likelihood ratio test shows that AS4s differ significantly in the effect of \(ingp\) \((p< 2.2e-16)\). An AIC reduction for model E \((31188)\), compared to model D \((36251)\), indicates an improvement of fit.

 

Overall, no problems were encountered regarding convergence. The following table summarises significance and fit testing. Thus, model E is selected as the best GLMM approach.

[1] "Hypothesis Testing"
              AIC Pr(>Chisq)    
at3_model_a 43780               
at3_model_b 40036  < 2.2e-16 ***
at3_model_c 38317  < 2.2e-16 ***
at3_model_d 36251  < 2.2e-16 ***
at3_model_e 31188  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Figure 4.1 allows to compare estimates of fixed effects (Ludecke, 2020) for models A-E. As anticipated, induced adjustments on fixed effects correct coefficients of both, individual variables, and interactions terms. From the plot, it is possible to conclude that the biggest alterations are induced when incorporating \(education\) (GLMM.D) and \(ingp\) (GLMM.E), which is supported by models D and E reducing AIC more significantly. Another element of interest is the indirect adjustment of the fixed coefficients related to \(capital\), which appears once variations on \(age\) effect are allowed between AS4s.
Coefficients (Fixed), GLMMs

Figure 4.1: Coefficients (Fixed), GLMMs

 

4.2 Final Model

The final GLMM predicts the log-odds of \(unemployed_i=1\) for observation \(i\), within AS4 \(k\), as indicated in equation (4.1):

 

\[\begin{equation} \left.\begin{aligned} g(\hat{p}_{unemployed_i\mid k[i]})&=log\left(\frac{\hat{p}_{unemployed_i\mid k[i]}}{1-\hat{p}_{unemployed_i\mid k[i]}}\right) \\ logit(\hat{p}_{unemployed_i\mid k[i]}) &= \hat{\beta}_0 +\hat{\delta}_{0,k[i]}\\ &\quad+(\hat{\beta}_{age}+\hat{\delta}_{age,k[i]})age_i\\ &\quad+(\hat{\beta}_{sex}+\hat{\delta}_{sex,k[i]})sex_i\\ &\quad+(\hat{\beta}_{education}+\hat{\delta}_{education,k[i]})education_i\\ &\quad+(\hat{\beta}_{ingp}+\hat{\delta}_{ingp,k[i]})ingp_i\\ &\quad+\hat{\beta}_{IEODecile}IEODecile_{k[i]} + \hat{\beta}_{remotenessindex}remotenessindex_{k[i]} + \hat{\beta}_{capital}capital_{k[i]}\\ &\quad+\hat{\beta}_{age*sex}age_i*sex_i + \hat{\beta}_{age*education}age_i*education_i + \hat{\beta}_{age*ingp}age_i*ingp_i\\ &\quad+\hat{\beta}_{sex*education}sex_i*education_i + \hat{\beta}_{sex*ingp}sex_i*ingp_i\\ &\quad+\hat{\beta}_{education*ingp}education_i*ingp_i+\hat{\beta}_{age*capital}age_i*capital_i\\ &\quad+ \hat{\beta}_{sex*capital}sex_i*capital_i + \hat{\beta}_{ingp*capital}ingp_i*capital_i\\ \end{aligned}\right. \tag{4.1} \end{equation}\]

 

Please note:

  • \(\hat{\beta}_0\) denotes the fixed intercept estimate

  • \(\hat{\beta}_{variable}\) denotes the fixed slope estimate of \(variable\)

  • \(\hat{\delta}_{0,k}\) denotes the random intercept estimate for AS4 \(k\)

  • \(\hat{\delta}_{variable,k}\) denotes the random slope estimate of \(variable\), for AS4 \(k\)

     

5 GLM vs. GLMM - Goodness of Fit

Considering that the likelihood ratio test (“Chisq”) is also supported to compare GLM and GLMM models (Bolker, 2020), it is implemented to evaluate significance of the differences between the models. The same applies for AIC, which is adequate as it allows to compare models, including non-mixed (Turner, 2008).

[1] "Hypothesis Testing"
            AIC Pr(>Chisq)    
at2_model 63264               
at3_model 31188  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

A likelihood ratio test shows that intercepts and effects differ significantly across AS4s \((p< 2.2e-16)\). Similarly, an AIC reduction for the GLMM approach \((31188)\), compared to GLM approach \((63264)\), indicates an important improvement of fit.

 

In addition to the evaluation measures implemented in Modelling, classification performance is evaluated using precision, recall and F1, with F1 being predominant as it is a weighted measure. These metrics are selected given class imbalance. Improvement in F1 score from \((0.9148)\) to \((0.9670)\)indicate the significance of random effects to improve the fit of the model, nonetheless, increase is not substantially enough to ensure this would help an improvement in model generalisability3.

 

GLM Predicted Employed Predicted Unemployed
Actual Employed 9,520,199 61,811
Actual Unemployed 61,809 663,266
GLMM Predicted Employed Predicted Unemployed
Actual Employed 9,558,052 23,958
Actual Unemployed 23,962 701,113
Model Recall Precision F1
GLM 0.9148 0.9148 0.9148
GLMM 0.9670 0.9670 0.9670

 

Even though generalisability might not be drastically enhanced, the GLMM approach is proved to be adequate as variance across AS4 territories is significant for all the effects tested, and overall model fit is improved. More importantly, this approach is preferred considering that the assumption of null correlation of observations is not appropriate.

Adjusting for the potential bias is recommended when possible unless interpretability is comprised, or model complexity prevents convergence. For this article in particular, none of these are a matter of concern. Main complexity on interpretability is related to interactions included for the initial GLM approach. Also, as stated previously, no inconveniences on computational power nor time cost are encountered for convergence in any for any of the GLMM models tested.

 

6 From Numbers to Meaning

6.1 Impact of Intragroup Correlation on Unemployment Factors

The fixed effects estimates in mixed models with nonlinear link functions have an interpretation conditional on the random effects (Rizopoulos, n.d.). This is, overall effect is subject to the random effect calculated for a particular AS4 \(( \hat{\beta}_{variable}+ \hat{\delta}_{variable,k})\) in the equation. As per the first research question, comparison of interest concerns fixed effects ( \(\hat{\beta}_{variable}\) in equations (3.1) and (4.1))4.

Adjustments of fixed effects significance, when correcting by correlation within AS4, can be detected by comparing fixed effects estimates -i.e. model coefficients for GLM and fixed effects for GLMM-.

 

[1] "GLM Approach - Summary"

Call:
glm(formula = unemployment/labour_force ~ age + sex + education + 
    ingp + IEO_Decile + remoteness_index + capital + age * sex + 
    age * education + age * ingp + sex * education + sex * ingp + 
    education * ingp + age * capital + sex * capital + ingp * 
    capital, family = "binomial", data = use_dataset, weights = labour_force)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-16.5473   -2.4222   -0.5863    1.4704   21.0410  

Coefficients:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.665391   0.021323 -78.104  < 2e-16 ***
age20-29 years                              -0.578106   0.019240 -30.047  < 2e-16 ***
age30-39 years                              -1.030477   0.021515 -47.897  < 2e-16 ***
age40-49 years                              -1.168602   0.022263 -52.490  < 2e-16 ***
age50-59 years                              -1.531104   0.025964 -58.969  < 2e-16 ***
sexMale                                      0.350908   0.014416  24.342  < 2e-16 ***
educationhs_not_finished                     0.621432   0.014434  43.054  < 2e-16 ***
ingpNon-Indigenous                           0.085527   0.020651   4.141 3.45e-05 ***
IEO_Decile                                  -0.141819   0.001576 -89.968  < 2e-16 ***
remoteness_index                            -0.104425   0.002094 -49.858  < 2e-16 ***
capitalNonCapitalCity                        0.331909   0.015858  20.930  < 2e-16 ***
age20-29 years:sexMale                      -0.145641   0.007814 -18.637  < 2e-16 ***
age30-39 years:sexMale                      -0.472949   0.008445 -56.004  < 2e-16 ***
age40-49 years:sexMale                      -0.351550   0.008512 -41.299  < 2e-16 ***
age50-59 years:sexMale                      -0.072699   0.008818  -8.244  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.259070   0.008098  31.990  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.490332   0.008751  56.031  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.192822   0.008676  22.226  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.059820   0.008998  -6.648 2.97e-11 ***
age20-29 years:ingpNon-Indigenous           -0.283516   0.018055 -15.703  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.348060   0.020241 -17.196  < 2e-16 ***
age40-49 years:ingpNon-Indigenous           -0.309445   0.020918 -14.793  < 2e-16 ***
age50-59 years:ingpNon-Indigenous           -0.032813   0.024538  -1.337    0.181    
sexMale:educationhs_not_finished            -0.156564   0.005337 -29.334  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.104705   0.012577  -8.325  < 2e-16 ***
educationhs_not_finished:ingpNon-Indigenous -0.313381   0.013341 -23.490  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.125653   0.007948  15.810  < 2e-16 ***
age30-39 years:capitalNonCapitalCity         0.158292   0.008736  18.119  < 2e-16 ***
age40-49 years:capitalNonCapitalCity         0.151364   0.008788  17.224  < 2e-16 ***
age50-59 years:capitalNonCapitalCity         0.205146   0.009062  22.638  < 2e-16 ***
sexMale:capitalNonCapitalCity                0.073985   0.005238  14.125  < 2e-16 ***
ingpNon-Indigenous:capitalNonCapitalCity    -0.628600   0.014573 -43.134  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 294706  on 3516  degrees of freedom
Residual deviance:  44292  on 3485  degrees of freedom
  (3 observations deleted due to missingness)
AIC: 63264

Number of Fisher Scoring iterations: 4

 

[1] "GLMM Approach - Summary"
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile +  
    remoteness_index + capital + age * sex + age * education +  
    age * ingp + sex * education + sex * ingp + education * ingp +  
    age * capital + sex * capital + ingp * capital + (1 + age +      sex + education + ingp | sa4)
   Data: use_dataset
Weights: labour_force
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))

     AIC      BIC   logLik deviance df.resid 
 31187.7  31607.0 -15525.9  31051.7     3449 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.2163 -1.1270 -0.1702  0.9912  9.5438 

Random effects:
 Groups Name                     Variance Std.Dev. Corr                                     
 sa4    (Intercept)              0.20943  0.4576                                            
        age20-29 years           0.02058  0.1434   -0.09                                    
        age30-39 years           0.03809  0.1952    0.11  0.84                              
        age40-49 years           0.03134  0.1770    0.19  0.69  0.89                        
        age50-59 years           0.03921  0.1980    0.20  0.58  0.77  0.95                  
        sexMale                  0.01195  0.1093    0.15  0.23  0.16  0.15  0.10            
        educationhs_not_finished 0.02020  0.1421    0.31  0.41  0.48  0.39  0.31  0.07      
        ingpNon-Indigenous       0.24842  0.4984   -0.87 -0.14 -0.40 -0.46 -0.45 -0.13 -0.54
Number of obs: 3517, groups:  sa4, 88

Fixed effects:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.654390   0.087954 -18.810  < 2e-16 ***
age20-29 years                              -0.659990   0.031130 -21.201  < 2e-16 ***
age30-39 years                              -1.168217   0.038900 -30.032  < 2e-16 ***
age40-49 years                              -1.315311   0.037607 -34.975  < 2e-16 ***
age50-59 years                              -1.670063   0.043276 -38.591  < 2e-16 ***
sexMale                                      0.359199   0.024296  14.784  < 2e-16 ***
educationhs_not_finished                     0.575686   0.021542  26.724  < 2e-16 ***
ingpNon-Indigenous                          -0.105131   0.082995  -1.267  0.20526    
IEO_Decile                                  -0.166084   0.031297  -5.307 1.12e-07 ***
remoteness_index                            -0.236947   0.037339  -6.346 2.21e-10 ***
capitalNonCapitalCity                        0.144356   0.124551   1.159  0.24645    
age20-29 years:sexMale                      -0.154010   0.007873 -19.562  < 2e-16 ***
age30-39 years:sexMale                      -0.483027   0.008504 -56.798  < 2e-16 ***
age40-49 years:sexMale                      -0.362949   0.008561 -42.395  < 2e-16 ***
age50-59 years:sexMale                      -0.087697   0.008871  -9.886  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.239815   0.008312  28.850  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.436987   0.008994  48.588  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.149333   0.008892  16.793  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.101220   0.009249 -10.944  < 2e-16 ***
age20-29 years:ingpNon-Indigenous           -0.204022   0.019090 -10.687  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.173759   0.021770  -7.982 1.44e-15 ***
age40-49 years:ingpNon-Indigenous           -0.123377   0.022371  -5.515 3.49e-08 ***
age50-59 years:ingpNon-Indigenous            0.154496   0.026215   5.893 3.78e-09 ***
sexMale:educationhs_not_finished            -0.151554   0.005471 -27.703  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.092894   0.013545  -6.858 6.98e-12 ***
educationhs_not_finished:ingpNon-Indigenous -0.194102   0.014531 -13.358  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.184684   0.034096   5.417 6.08e-08 ***
age30-39 years:capitalNonCapitalCity         0.198511   0.043881   4.524 6.07e-06 ***
age40-49 years:capitalNonCapitalCity         0.187351   0.041831   4.479 7.51e-06 ***
age50-59 years:capitalNonCapitalCity         0.223410   0.047952   4.659 3.18e-06 ***
sexMale:capitalNonCapitalCity                0.064439   0.027744   2.323  0.02020 *  
ingpNon-Indigenous:capitalNonCapitalCity    -0.349468   0.106553  -3.280  0.00104 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Crucial results include:

  1. ingpNon-Indigenous and capitalNonCapitalCity stop being statistically significant

  2. sexMale: capitalNonCapitalCity continues to be statistically significant but only at a level of \(\alpha = 0.05\)

  3. ingpNon-Indigenous : capitalNonCapitalCity continues to be statistically significant but only at a level of \(\alpha = 0.01\)

  4. age50-59 years: ingpNon-Indigenous becomes statistically significant at a level of \(\alpha = 0.001\)

Please refer to Final Model Additional Results for values and standard deviation of random effects.

On the other hand, figure 6.1 facilitates the identification of adjustments in direction, which are of key interest as they would indicate corrected effect is opposite to the initially interpreted effect. In this case, odds ratios are plotted for easier interpretation (Ludecke, 2020). Subsequently, the direction of effects is defined as being positive if odds ratios are greater than 1 and negative otherwise (null if equal to 1). As per the visualisation, the direction only shifts for ingpNon-Indigenous and age50-59 years: ingpNon-Indigenous, which is related to the above-stated results. Precise quantification of overall regression coefficients follows in equations (3.1) and (4.1) and is conditioned to a unique combination of variables, given the complexity brought by multiple interactions.
Coefficients (Fixed), GLM vs. GLMM

Figure 6.1: Coefficients (Fixed), GLM vs. GLMM

 

All in, what these results imply is that interpretation of some variables under the initial approach is biased as a consequence of intragroup correlation. This generates effects of variables such as capitalNonCapitalCity to be overestimated. Moreover, conclusions on their relevance5 to understand unemployment in Australia have proven to be unreliable, which indicates they are confounding variable. In other words, they capture erroneously the effect of other underlying variables unless AS4 variance is stated explicitly under the GLMM approach. This last statement is supported by the fact that deviations for interactions considering capitalNonCapitalCity are not ignorable.

 

7 Conclusion

All things considered, the GLMM approach presented in this article enhances the analysis conducted by the DSSG, by explicitly incorporating variance of intercepts and effects across AS4. This is relevant to identify potential significant biases on the initial interpretation of fixed effects estimates generated by intragroup correlation (Guo, 2005). Furthermore, relaxing the assumption of independence within observations is deemed reasonable and necessary as unemployment is likely to be conditioned to elements shared within the milieu such as industry mix. Indeed, an analysis on random intercepts facilitate the identification of unveiled variables of interest, as the aforementioned.

 

8 References

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://www-sciencedirect-com.ezproxy.lib.uts.edu.au/science/article/pii/S0749596X12001180

Bolker, B., & others. (2020). GLMM. GitHub Pages. https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-significance-of-random-effects

Guo, S. (2005). Analyzing grouped data with hierarchical linear modelling. Children and Youth Services Review, 27(6), 637-652. https://www.sciencedirect.com/science/article/pii/S0190740904002506?casa_token=DtkN1lSjgiAAAAAA:2ZbW99DYn0o5I6NxauLLFvtCT9hXW0TYuKZMgwE9FAhgJ6-nHa4QV4FILdQl4M-Elpgeame7yw

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E., … & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794. https://search.lib.uts.edu.au/discovery/search?tab=CentralIndex&search_scope=CentralIndex&vid=61UTS_INST:61UTS&lang=en

Manning, C. (2007). Generalized Linear Mixed Models. https://nlp.stanford.edu/manning/courses/ling289/GLMM.pdf

Matuscheck, H., Kliegl, R., Vasishth, S., Baayen, H. & Bates, D. (2017). Balancing type I error and power in linear mixed models. Journal of Memory and Language, 94, 305-315. https://www.sciencedirect.com/science/article/pii/S0749596X17300013

Ludecke, D. (2020). Plotting Estimates (Fixed Effects) of Regression Models. https://cran.r-project.org/web/packages/sjPlot/vignettes/plot_model_estimates.html

Rizopoulos, D. (n.d.). Statistical Analysis of Repeated Measurements Data. Erasmus University Medical Center. http://www.drizopoulos.com/courses/EMC/CE08.pdf

Sonderegger, M., Wagner, M., & Torreira, F. (2018). Quantitative methods for linguistic data. prosody.lab | prosody at mcgill and beyond. https://people.linguistics.mcgill.ca/~morgan/book/mixed-effects-logistic-regression.html#evaluation-measure-1-likelihood-ratio-test

Turner, H. (2008). Introduction to Generalized Linear Models. University of Warwick. https://statmath.wu.ac.at/courses/heather_turner/glmCourse_001.pdf

Winter, B. (n.d.). Linear models and linear mixed effects models in R with linguistic applications. University of California. https://arxiv.org/ftp/arxiv/papers/1308/1308.5499.pdf

 

9 Appendix

 

9.1 Accessible Unemployment Insurance

A project by Data Scientists for Social Good (DSSG), for the Australian Social Impact Investors (ASII).

 

Download Accessible Unemployment Insurance - DSSG.pdf

 

9.2 GLM Summary

9.2.1 Initial Model


Call:
glm(formula = unemployment/labour_force ~ age + sex + education + 
    ingp + IEO_Decile + remoteness_index + capital + age * sex + 
    age * education + age * ingp + sex * education + sex * ingp + 
    education * ingp + age * capital + sex * capital + ingp * 
    capital, family = "binomial", data = use_dataset, weights = labour_force)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-16.5473   -2.4222   -0.5863    1.4704   21.0410  

Coefficients:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.665391   0.021323 -78.104  < 2e-16 ***
age20-29 years                              -0.578106   0.019240 -30.047  < 2e-16 ***
age30-39 years                              -1.030477   0.021515 -47.897  < 2e-16 ***
age40-49 years                              -1.168602   0.022263 -52.490  < 2e-16 ***
age50-59 years                              -1.531104   0.025964 -58.969  < 2e-16 ***
sexMale                                      0.350908   0.014416  24.342  < 2e-16 ***
educationhs_not_finished                     0.621432   0.014434  43.054  < 2e-16 ***
ingpNon-Indigenous                           0.085527   0.020651   4.141 3.45e-05 ***
IEO_Decile                                  -0.141819   0.001576 -89.968  < 2e-16 ***
remoteness_index                            -0.104425   0.002094 -49.858  < 2e-16 ***
capitalNonCapitalCity                        0.331909   0.015858  20.930  < 2e-16 ***
age20-29 years:sexMale                      -0.145641   0.007814 -18.637  < 2e-16 ***
age30-39 years:sexMale                      -0.472949   0.008445 -56.004  < 2e-16 ***
age40-49 years:sexMale                      -0.351550   0.008512 -41.299  < 2e-16 ***
age50-59 years:sexMale                      -0.072699   0.008818  -8.244  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.259070   0.008098  31.990  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.490332   0.008751  56.031  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.192822   0.008676  22.226  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.059820   0.008998  -6.648 2.97e-11 ***
age20-29 years:ingpNon-Indigenous           -0.283516   0.018055 -15.703  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.348060   0.020241 -17.196  < 2e-16 ***
age40-49 years:ingpNon-Indigenous           -0.309445   0.020918 -14.793  < 2e-16 ***
age50-59 years:ingpNon-Indigenous           -0.032813   0.024538  -1.337    0.181    
sexMale:educationhs_not_finished            -0.156564   0.005337 -29.334  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.104705   0.012577  -8.325  < 2e-16 ***
educationhs_not_finished:ingpNon-Indigenous -0.313381   0.013341 -23.490  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.125653   0.007948  15.810  < 2e-16 ***
age30-39 years:capitalNonCapitalCity         0.158292   0.008736  18.119  < 2e-16 ***
age40-49 years:capitalNonCapitalCity         0.151364   0.008788  17.224  < 2e-16 ***
age50-59 years:capitalNonCapitalCity         0.205146   0.009062  22.638  < 2e-16 ***
sexMale:capitalNonCapitalCity                0.073985   0.005238  14.125  < 2e-16 ***
ingpNon-Indigenous:capitalNonCapitalCity    -0.628600   0.014573 -43.134  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 294706  on 3516  degrees of freedom
Residual deviance:  44292  on 3485  degrees of freedom
  (3 observations deleted due to missingness)
AIC: 63264

Number of Fisher Scoring iterations: 4

 

9.3 GLMMs Summary

9.3.1 Model A - Random Intercept

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile +  
    remoteness_index + capital + age * sex + age * education +  
    age * ingp + sex * education + sex * ingp + education * ingp +  
    age * capital + sex * capital + ingp * capital + (1 | sa4)
   Data: use_dataset
Weights: labour_force
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))

     AIC      BIC   logLik deviance df.resid 
 43780.4  43983.9 -21857.2  43714.4     3484 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-12.5858  -1.7286  -0.4705   1.2004  16.5840 

Random effects:
 Groups Name        Variance Std.Dev.
 sa4    (Intercept) 0.03776  0.1943  
Number of obs: 3517, groups:  sa4, 88

Fixed effects:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.626240   0.045327 -35.878  < 2e-16 ***
age20-29 years                              -0.608709   0.019298 -31.542  < 2e-16 ***
age30-39 years                              -1.057996   0.021580 -49.026  < 2e-16 ***
age40-49 years                              -1.181390   0.022312 -52.948  < 2e-16 ***
age50-59 years                              -1.536353   0.026002 -59.086  < 2e-16 ***
sexMale                                      0.352457   0.014443  24.403  < 2e-16 ***
educationhs_not_finished                     0.643433   0.014489  44.408  < 2e-16 ***
ingpNon-Indigenous                          -0.001272   0.020745  -0.061 0.951102    
IEO_Decile                                  -0.135067   0.028829  -4.685  2.8e-06 ***
remoteness_index                            -0.105208   0.027359  -3.846 0.000120 ***
capitalNonCapitalCity                        0.236185   0.063420   3.724 0.000196 ***
age20-29 years:sexMale                      -0.148646   0.007831 -18.982  < 2e-16 ***
age30-39 years:sexMale                      -0.478944   0.008460 -56.610  < 2e-16 ***
age40-49 years:sexMale                      -0.356752   0.008528 -41.835  < 2e-16 ***
age50-59 years:sexMale                      -0.077092   0.008833  -8.728  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.255798   0.008122  31.495  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.479997   0.008776  54.695  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.177821   0.008698  20.444  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.078006   0.009024  -8.645  < 2e-16 ***
age20-29 years:ingpNon-Indigenous           -0.274448   0.018109 -15.156  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.334635   0.020303 -16.482  < 2e-16 ***
age40-49 years:ingpNon-Indigenous           -0.296257   0.020968 -14.129  < 2e-16 ***
age50-59 years:ingpNon-Indigenous           -0.024190   0.024580  -0.984 0.325058    
sexMale:educationhs_not_finished            -0.150979   0.005348 -28.229  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.106610   0.012602  -8.460  < 2e-16 ***
educationhs_not_finished:ingpNon-Indigenous -0.303820   0.013390 -22.690  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.156687   0.007986  19.619  < 2e-16 ***
age30-39 years:capitalNonCapitalCity         0.183667   0.008772  20.938  < 2e-16 ***
age40-49 years:capitalNonCapitalCity         0.163724   0.008812  18.580  < 2e-16 ***
age50-59 years:capitalNonCapitalCity         0.216800   0.009087  23.859  < 2e-16 ***
sexMale:capitalNonCapitalCity                0.074923   0.005248  14.275  < 2e-16 ***
ingpNon-Indigenous:capitalNonCapitalCity    -0.522173   0.014776 -35.339  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

9.3.2 Model B - Random Intercept, Random Effect (age)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile +  
    remoteness_index + capital + age * sex + age * education +  
    age * ingp + sex * education + sex * ingp + education * ingp +  
    age * capital + sex * capital + ingp * capital + (1 + age |      sa4)
   Data: use_dataset
Weights: labour_force
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))

     AIC      BIC   logLik deviance df.resid 
 40035.6  40325.4 -19970.8  39941.6     3470 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-11.3692  -1.6502  -0.4015   1.1456  10.0161 

Random effects:
 Groups Name           Variance Std.Dev. Corr                   
 sa4    (Intercept)    0.05299  0.2302                          
        age20-29 years 0.01761  0.1327   -0.38                  
        age30-39 years 0.03214  0.1793   -0.52  0.82            
        age40-49 years 0.02754  0.1660   -0.53  0.66  0.88      
        age50-59 years 0.03512  0.1874   -0.54  0.59  0.77  0.94
Number of obs: 3517, groups:  sa4, 88

Fixed effects:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.599108   0.052282 -30.586  < 2e-16 ***
age20-29 years                              -0.618737   0.029034 -21.311  < 2e-16 ***
age30-39 years                              -1.083642   0.036309 -29.845  < 2e-16 ***
age40-49 years                              -1.219279   0.035040 -34.796  < 2e-16 ***
age50-59 years                              -1.565886   0.040054 -39.094  < 2e-16 ***
sexMale                                      0.356639   0.014453  24.676  < 2e-16 ***
educationhs_not_finished                     0.656049   0.014536  45.132  < 2e-16 ***
ingpNon-Indigenous                          -0.023793   0.020936  -1.136 0.255750    
IEO_Decile                                  -0.145217   0.031953  -4.545 5.50e-06 ***
remoteness_index                            -0.100023   0.030212  -3.311 0.000931 ***
capitalNonCapitalCity                        0.169148   0.075292   2.247 0.024668 *  
age20-29 years:sexMale                      -0.152248   0.007838 -19.425  < 2e-16 ***
age30-39 years:sexMale                      -0.483320   0.008468 -57.075  < 2e-16 ***
age40-49 years:sexMale                      -0.361000   0.008533 -42.304  < 2e-16 ***
age50-59 years:sexMale                      -0.081904   0.008840  -9.266  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.250229   0.008240  30.367  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.451940   0.008904  50.756  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.159914   0.008819  18.134  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.091904   0.009164 -10.029  < 2e-16 ***
age20-29 years:ingpNon-Indigenous           -0.263595   0.018531 -14.225  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.298235   0.020884 -14.281  < 2e-16 ***
age40-49 years:ingpNon-Indigenous           -0.251518   0.021432 -11.735  < 2e-16 ***
age50-59 years:ingpNon-Indigenous            0.018246   0.025061   0.728 0.466582    
sexMale:educationhs_not_finished            -0.151040   0.005350 -28.233  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.107615   0.012610  -8.534  < 2e-16 ***
educationhs_not_finished:ingpNon-Indigenous -0.303840   0.013404 -22.668  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.203204   0.029958   6.783 1.18e-11 ***
age30-39 years:capitalNonCapitalCity         0.251941   0.039810   6.329 2.47e-10 ***
age40-49 years:capitalNonCapitalCity         0.229087   0.037016   6.189 6.06e-10 ***
age50-59 years:capitalNonCapitalCity         0.263575   0.041551   6.343 2.25e-10 ***
sexMale:capitalNonCapitalCity                0.075730   0.005250  14.424  < 2e-16 ***
ingpNon-Indigenous:capitalNonCapitalCity    -0.524575   0.014797 -35.452  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

9.3.3 Model C - Random Intercept, Random Effects (age, sex)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile +  
    remoteness_index + capital + age * sex + age * education +  
    age * ingp + sex * education + sex * ingp + education * ingp +  
    age * capital + sex * capital + ingp * capital + (1 + age +      sex | sa4)
   Data: use_dataset
Weights: labour_force
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))

     AIC      BIC   logLik deviance df.resid 
 38317.4  38644.2 -19105.7  38211.4     3464 

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-10.2601  -1.5449  -0.3408   1.0678   9.7598 

Random effects:
 Groups Name           Variance Std.Dev. Corr                         
 sa4    (Intercept)    0.05119  0.2263                                
        age20-29 years 0.01728  0.1315   -0.46                        
        age30-39 years 0.03239  0.1800   -0.57  0.82                  
        age40-49 years 0.02788  0.1670   -0.57  0.67  0.89            
        age50-59 years 0.03527  0.1878   -0.57  0.59  0.76  0.94      
        sexMale        0.01219  0.1104   -0.06  0.27  0.21  0.18  0.12
Number of obs: 3517, groups:  sa4, 88

Fixed effects:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.601238   0.050962 -31.420  < 2e-16 ***
age20-29 years                              -0.617488   0.028892 -21.372  < 2e-16 ***
age30-39 years                              -1.084585   0.036400 -29.797  < 2e-16 ***
age40-49 years                              -1.219328   0.035170 -34.669  < 2e-16 ***
age50-59 years                              -1.563807   0.040110 -38.988  < 2e-16 ***
sexMale                                      0.353488   0.023045  15.339  < 2e-16 ***
educationhs_not_finished                     0.658691   0.014548  45.276  < 2e-16 ***
ingpNon-Indigenous                          -0.030065   0.020989  -1.432  0.15204    
IEO_Decile                                  -0.156967   0.030441  -5.156 2.52e-07 ***
remoteness_index                            -0.116048   0.029121  -3.985 6.75e-05 ***
capitalNonCapitalCity                        0.171469   0.072781   2.356  0.01848 *  
age20-29 years:sexMale                      -0.153595   0.007866 -19.527  < 2e-16 ***
age30-39 years:sexMale                      -0.482949   0.008496 -56.843  < 2e-16 ***
age40-49 years:sexMale                      -0.362670   0.008554 -42.398  < 2e-16 ***
age50-59 years:sexMale                      -0.086939   0.008864  -9.808  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.250410   0.008242  30.381  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.451965   0.008907  50.741  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.159388   0.008821  18.069  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.093050   0.009166 -10.152  < 2e-16 ***
age20-29 years:ingpNon-Indigenous           -0.264494   0.018531 -14.273  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.297626   0.020889 -14.248  < 2e-16 ***
age40-49 years:ingpNon-Indigenous           -0.250880   0.021438 -11.703  < 2e-16 ***
age50-59 years:ingpNon-Indigenous            0.018541   0.025068   0.740  0.45952    
sexMale:educationhs_not_finished            -0.152764   0.005432 -28.122  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.093266   0.012982  -7.184 6.75e-13 ***
educationhs_not_finished:ingpNon-Indigenous -0.304849   0.013408 -22.736  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.203459   0.029705   6.849 7.42e-12 ***
age30-39 years:capitalNonCapitalCity         0.253091   0.039952   6.335 2.37e-10 ***
age40-49 years:capitalNonCapitalCity         0.230748   0.037231   6.198 5.73e-10 ***
age50-59 years:capitalNonCapitalCity         0.264943   0.041638   6.363 1.98e-10 ***
sexMale:capitalNonCapitalCity                0.078571   0.024448   3.214  0.00131 ** 
ingpNon-Indigenous:capitalNonCapitalCity    -0.525524   0.014800 -35.507  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

9.3.4 Model D - Random Intercept, Random Effects (age, sex, education)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile +  
    remoteness_index + capital + age * sex + age * education +  
    age * ingp + sex * education + sex * ingp + education * ingp +  
    age * capital + sex * capital + ingp * capital + (1 + age +      sex + education | sa4)
   Data: use_dataset
Weights: labour_force
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))

     AIC      BIC   logLik deviance df.resid 
 36250.8  36620.7 -18065.4  36130.8     3457 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-9.7125 -1.4216 -0.2994  1.0045 10.4152 

Random effects:
 Groups Name                     Variance Std.Dev. Corr                               
 sa4    (Intercept)              0.06189  0.2488                                      
        age20-29 years           0.02020  0.1421   -0.57                              
        age30-39 years           0.03746  0.1936   -0.67  0.86                        
        age40-49 years           0.03041  0.1744   -0.65  0.72  0.90                  
        age50-59 years           0.03588  0.1894   -0.59  0.62  0.76  0.93            
        sexMale                  0.01214  0.1102   -0.04  0.25  0.17  0.16  0.11      
        educationhs_not_finished 0.02800  0.1673   -0.44  0.38  0.45  0.38  0.22  0.03
Number of obs: 3517, groups:  sa4, 88

Fixed effects:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.573011   0.051285 -30.672  < 2e-16 ***
age20-29 years                              -0.626108   0.030543 -20.499  < 2e-16 ***
age30-39 years                              -1.072776   0.038160 -28.113  < 2e-16 ***
age40-49 years                              -1.203544   0.036499 -32.974  < 2e-16 ***
age50-59 years                              -1.544130   0.041491 -37.216  < 2e-16 ***
sexMale                                      0.368636   0.023928  15.406  < 2e-16 ***
educationhs_not_finished                     0.604204   0.023211  26.031  < 2e-16 ***
ingpNon-Indigenous                          -0.099776   0.021056  -4.739 2.15e-06 ***
IEO_Decile                                  -0.166399   0.029629  -5.616 1.95e-08 ***
remoteness_index                            -0.136249   0.029685  -4.590 4.44e-06 ***
capitalNonCapitalCity                        0.175449   0.070823   2.477   0.0132 *  
age20-29 years:sexMale                      -0.154851   0.007869 -19.679  < 2e-16 ***
age30-39 years:sexMale                      -0.483806   0.008499 -56.923  < 2e-16 ***
age40-49 years:sexMale                      -0.363753   0.008556 -42.514  < 2e-16 ***
age50-59 years:sexMale                      -0.088313   0.008866  -9.961  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.238791   0.008311  28.731  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.437033   0.008992  48.602  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.148611   0.008892  16.712  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.100991   0.009247 -10.922  < 2e-16 ***
age20-29 years:ingpNon-Indigenous           -0.242473   0.018567 -13.059  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.277234   0.020944 -13.237  < 2e-16 ***
age40-49 years:ingpNon-Indigenous           -0.240798   0.021490 -11.205  < 2e-16 ***
age50-59 years:ingpNon-Indigenous            0.014684   0.025101   0.585   0.5585    
sexMale:educationhs_not_finished            -0.153360   0.005470 -28.035  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.103927   0.013012  -7.987 1.38e-15 ***
educationhs_not_finished:ingpNon-Indigenous -0.214814   0.013867 -15.491  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.196787   0.033521   5.871 4.34e-09 ***
age30-39 years:capitalNonCapitalCity         0.208419   0.043342   4.809 1.52e-06 ***
age40-49 years:capitalNonCapitalCity         0.191005   0.040531   4.713 2.45e-06 ***
age50-59 years:capitalNonCapitalCity         0.233079   0.046064   5.060 4.19e-07 ***
sexMale:capitalNonCapitalCity                0.065269   0.027410   2.381   0.0173 *  
ingpNon-Indigenous:capitalNonCapitalCity    -0.501182   0.014860 -33.727  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

9.3.5 Model E - Random Intercept, Random Effects (age, sex, education, ingp)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial  ( logit )
Formula: unemployment/labour_force ~ age + sex + education + ingp + IEO_Decile +  
    remoteness_index + capital + age * sex + age * education +  
    age * ingp + sex * education + sex * ingp + education * ingp +  
    age * capital + sex * capital + ingp * capital + (1 + age +      sex + education + ingp | sa4)
   Data: use_dataset
Weights: labour_force
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))

     AIC      BIC   logLik deviance df.resid 
 31187.7  31607.0 -15525.9  31051.7     3449 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.2163 -1.1270 -0.1702  0.9912  9.5438 

Random effects:
 Groups Name                     Variance Std.Dev. Corr                                     
 sa4    (Intercept)              0.20943  0.4576                                            
        age20-29 years           0.02058  0.1434   -0.09                                    
        age30-39 years           0.03809  0.1952    0.11  0.84                              
        age40-49 years           0.03134  0.1770    0.19  0.69  0.89                        
        age50-59 years           0.03921  0.1980    0.20  0.58  0.77  0.95                  
        sexMale                  0.01195  0.1093    0.15  0.23  0.16  0.15  0.10            
        educationhs_not_finished 0.02020  0.1421    0.31  0.41  0.48  0.39  0.31  0.07      
        ingpNon-Indigenous       0.24842  0.4984   -0.87 -0.14 -0.40 -0.46 -0.45 -0.13 -0.54
Number of obs: 3517, groups:  sa4, 88

Fixed effects:
                                             Estimate Std. Error z value Pr(>|z|)    
(Intercept)                                 -1.654390   0.087954 -18.810  < 2e-16 ***
age20-29 years                              -0.659990   0.031130 -21.201  < 2e-16 ***
age30-39 years                              -1.168217   0.038900 -30.032  < 2e-16 ***
age40-49 years                              -1.315311   0.037607 -34.975  < 2e-16 ***
age50-59 years                              -1.670063   0.043276 -38.591  < 2e-16 ***
sexMale                                      0.359199   0.024296  14.784  < 2e-16 ***
educationhs_not_finished                     0.575686   0.021542  26.724  < 2e-16 ***
ingpNon-Indigenous                          -0.105131   0.082995  -1.267  0.20526    
IEO_Decile                                  -0.166084   0.031297  -5.307 1.12e-07 ***
remoteness_index                            -0.236947   0.037339  -6.346 2.21e-10 ***
capitalNonCapitalCity                        0.144356   0.124551   1.159  0.24645    
age20-29 years:sexMale                      -0.154010   0.007873 -19.562  < 2e-16 ***
age30-39 years:sexMale                      -0.483027   0.008504 -56.798  < 2e-16 ***
age40-49 years:sexMale                      -0.362949   0.008561 -42.395  < 2e-16 ***
age50-59 years:sexMale                      -0.087697   0.008871  -9.886  < 2e-16 ***
age20-29 years:educationhs_not_finished      0.239815   0.008312  28.850  < 2e-16 ***
age30-39 years:educationhs_not_finished      0.436987   0.008994  48.588  < 2e-16 ***
age40-49 years:educationhs_not_finished      0.149333   0.008892  16.793  < 2e-16 ***
age50-59 years:educationhs_not_finished     -0.101220   0.009249 -10.944  < 2e-16 ***
age20-29 years:ingpNon-Indigenous           -0.204022   0.019090 -10.687  < 2e-16 ***
age30-39 years:ingpNon-Indigenous           -0.173759   0.021770  -7.982 1.44e-15 ***
age40-49 years:ingpNon-Indigenous           -0.123377   0.022371  -5.515 3.49e-08 ***
age50-59 years:ingpNon-Indigenous            0.154496   0.026215   5.893 3.78e-09 ***
sexMale:educationhs_not_finished            -0.151554   0.005471 -27.703  < 2e-16 ***
sexMale:ingpNon-Indigenous                  -0.092894   0.013545  -6.858 6.98e-12 ***
educationhs_not_finished:ingpNon-Indigenous -0.194102   0.014531 -13.358  < 2e-16 ***
age20-29 years:capitalNonCapitalCity         0.184684   0.034096   5.417 6.08e-08 ***
age30-39 years:capitalNonCapitalCity         0.198511   0.043881   4.524 6.07e-06 ***
age40-49 years:capitalNonCapitalCity         0.187351   0.041831   4.479 7.51e-06 ***
age50-59 years:capitalNonCapitalCity         0.223410   0.047952   4.659 3.18e-06 ***
sexMale:capitalNonCapitalCity                0.064439   0.027744   2.323  0.02020 *  
ingpNon-Indigenous:capitalNonCapitalCity    -0.349468   0.106553  -3.280  0.00104 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

9.4 Final Model Additional Results

9.4.1 Random Effects Values

AS4 (Intercept) age20-29 years age30-39 years age40-49 years age50-59 years sexMale educationhs-not-finished ingpNon-Indigenous
Sydney - Northern Beaches -1.3600178 -0.1944590 -0.1423744 0.0001002 0.0201977 -0.0877179 -0.1480407 1.0800456
Melbourne - Inner South -0.7868524 0.0635811 -0.1711872 -0.1563354 -0.1286678 -0.0019024 -0.0703106 0.9567988
Melbourne - Inner East -0.7392526 0.0463022 -0.0931416 -0.1707941 -0.2214768 0.0383447 -0.1712890 1.0976614
Sydney - Sutherland -0.7052567 -0.1391774 -0.1711416 -0.0755043 -0.0142096 -0.1079666 0.0283826 0.2904409
Geelong -0.6751825 -0.0263004 -0.1250327 -0.1114924 -0.1626974 -0.0178550 0.0363829 0.6703276
Hume -0.6327012 0.1349869 0.1512263 0.1353106 0.1220942 -0.1772732 0.1445244 0.3525700
Sydney - Inner West -0.6255845 0.1354196 -0.0286202 0.0209724 0.1217146 -0.0284468 -0.1135498 0.7009712
Ballarat -0.6018200 0.1969238 0.0750506 0.0077460 -0.0430063 0.0699516 0.0396380 0.6505785
Mornington Peninsula -0.5241393 -0.1479350 -0.1536839 -0.0913826 -0.0606440 -0.1624588 0.0230023 0.3840902
Sydney - Baulkham Hills and Hawkesbury -0.5162790 -0.1697069 -0.1201590 -0.1305577 -0.1244284 -0.0765164 -0.4693607 0.4836564
South East -0.5002942 -0.1065337 -0.1051841 0.0339804 0.1004941 0.0853487 -0.3825284 0.7481213
Sydney - North Sydney and Hornsby -0.4617809 -0.2014918 -0.0750760 0.0594749 0.0804684 -0.0738909 -0.1894052 0.5340866
Melbourne - Outer East -0.4568530 -0.1426467 -0.1467225 -0.1292705 -0.1614721 -0.0412965 -0.1061903 0.4612457
Sydney - Ryde -0.4187982 0.1029729 0.0260989 -0.0591519 -0.0251819 -0.0013769 -0.2650963 0.6785165
West and North West -0.3733382 0.0760796 0.0595314 0.1427976 0.1707309 0.2233196 -0.2512935 0.4406607
Central Coast -0.3563686 -0.1252555 -0.1791573 -0.1476546 -0.1148859 -0.0827178 0.0508898 0.2983085
Warrnambool and South West -0.3169516 0.1617987 0.2124886 0.1295025 0.1055748 -0.0756329 0.0801544 -0.0972506
Melbourne - North West -0.3116465 -0.0549785 -0.0780367 -0.1136141 -0.1983324 -0.0394344 -0.0751513 0.4764697
Bunbury -0.2990137 0.1882435 0.2896245 0.2748765 0.3125570 0.0529596 0.0845887 -0.0038169
Southern Highlands and Shoalhaven -0.2816488 0.1098882 0.2026671 0.1713578 0.1866369 0.0000876 0.0577873 -0.0924434
Gold Coast -0.2786703 -0.1940122 -0.2402180 -0.1684697 -0.1062953 -0.0758940 -0.0847490 0.4672726
Hunter Valley exc Newcastle -0.2601732 -0.0963315 -0.1003616 -0.0685747 -0.0781709 -0.1091986 0.0190353 0.1977810
Shepparton -0.2490580 0.1216818 0.1528819 -0.0089279 -0.1532630 -0.0574544 0.1803291 -0.0836643
Sydney - Inner South West -0.2481510 0.0520795 0.0492869 0.0952271 0.1538047 -0.0594887 -0.0904107 0.3596070
Sydney - Outer West and Blue Mountains -0.2413170 -0.0538345 -0.0473756 -0.0481931 -0.0161416 -0.1282986 -0.1068767 -0.0837959
Sydney - South West -0.2173141 -0.1020883 0.0160451 0.0768114 0.1372332 -0.0783602 -0.0742050 0.2933656
Riverina -0.2032251 0.1028692 0.1645470 0.0527820 0.0124169 -0.0700414 0.0912099 -0.0674051
Richmond - Tweed -0.1997892 0.1365570 0.1143957 0.1691713 0.1937746 0.1127489 -0.0453046 0.0754958
Newcastle and Lake Macquarie -0.1987085 -0.1856538 -0.2431830 -0.2525147 -0.3019800 0.1490559 0.0541936 0.1487360
South Australia - South East -0.1939293 0.1833448 0.2216073 0.2013097 0.2153837 0.0403067 0.1428776 -0.1567654
Hobart -0.1775058 -0.0758393 -0.2277309 -0.3699948 -0.4828243 0.2626712 -0.0892555 0.3757048
Capital Region -0.1645150 0.3492210 0.4146935 0.3029353 0.3399013 0.0769020 0.1849917 -0.5013153
Brisbane - West -0.1578081 0.0439103 -0.1670533 -0.2446003 -0.2934055 0.0627455 -0.1507207 0.5443319
Latrobe - Gippsland -0.0943652 0.1821787 0.2103873 0.1949021 0.1919446 0.0631109 0.0936063 -0.0943012
Sydney - Parramatta -0.0892663 0.1197948 0.2294411 0.1544475 0.1531386 -0.0968671 -0.0586344 0.2687233
Sydney - Outer South West -0.0808078 -0.0390485 -0.0128866 -0.0386295 -0.0263843 -0.2221264 -0.1960274 0.0382211
Illawarra -0.0773471 -0.2027914 -0.4168171 -0.4020017 -0.4306703 -0.0119836 -0.1575447 0.3017666
Mid North Coast -0.0749366 0.2271236 0.2534744 0.2426135 0.3107314 0.1388683 0.0518491 -0.1377904
Brisbane - East -0.0638361 -0.0054196 -0.0964216 -0.1214340 -0.0336487 0.0695583 0.0418173 -0.1012224
Bendigo -0.0609582 0.0273151 -0.0159906 -0.0796278 -0.1272876 0.0088399 0.0521780 0.1161961
Central West -0.0589801 0.0662517 0.1080431 0.0914524 0.0882144 -0.0203726 0.1805270 -0.1549772
Sunshine Coast -0.0468893 -0.0710899 -0.1246274 -0.0686248 0.0308850 -0.0549942 -0.0496832 0.1578608
Australian Capital Territory -0.0336385 -0.1402627 -0.2070098 -0.2707794 -0.2346601 0.0388021 0.0606054 -0.0165283
Adelaide - South -0.0261125 -0.0065157 -0.0444339 -0.1168054 -0.1483833 0.1915729 0.0876126 -0.0313903
Moreton Bay - North -0.0083706 0.0344433 -0.0263910 -0.1085615 -0.1407134 -0.0974572 0.0546962 0.0435094
Logan - Beaudesert -0.0070522 -0.1581670 -0.2332150 -0.3300913 -0.4008268 -0.1819834 0.0359073 0.2551297
Moreton Bay - South 0.0189218 -0.3123523 -0.4507463 -0.4540830 -0.4582261 -0.1182146 0.0596619 0.2517878
Mandurah 0.0245819 -0.0090396 0.1009111 0.0980630 0.0724950 -0.0401484 0.0464739 0.0041192
Melbourne - West 0.0291658 0.0501359 0.0000521 0.0255012 0.0393750 -0.1654650 -0.0046378 0.1670459
Murray 0.0521736 0.1659516 0.2225174 0.1529055 0.1027471 -0.0561037 0.1150757 -0.3143181
Adelaide - West 0.0610071 0.1156947 0.1433109 0.0973350 0.0632708 0.1863763 0.0786192 -0.1686846
Melbourne - South East 0.0693007 -0.0593079 -0.1296192 -0.1757146 -0.1552100 -0.1603155 -0.2067787 0.2265140
Brisbane Inner City 0.0725460 -0.0560164 -0.0141924 0.0207439 0.0076765 0.0976694 -0.0702210 0.1072779
Darling Downs - Maranoa 0.0833210 0.2383924 0.2388806 0.1713081 0.1544931 -0.1567960 0.2241831 -0.3314104
Adelaide - North 0.0842095 0.0543792 0.0443258 -0.0051881 -0.1008824 0.1563139 0.0981745 -0.1744672
Melbourne - North East 0.1093993 -0.0212606 -0.0898507 -0.1520447 -0.2058881 -0.0207431 -0.1975457 0.0914138
Coffs Harbour - Grafton 0.1222782 0.1051295 0.1225410 0.0689576 0.1124084 0.0818951 0.0566889 -0.0920297
Far West and Orana 0.1362365 0.1288822 0.3064535 0.2747315 0.2492753 0.0736911 0.2538665 -0.5651718
Wide Bay 0.1388287 0.2117239 0.2247934 0.1311156 0.1830806 0.1113868 0.1682748 -0.1199439
Launceston and North East 0.1410398 -0.0775011 -0.1976579 -0.1272287 -0.1058787 0.1568761 -0.2465647 0.3006108
Central Queensland 0.1649181 0.1527057 0.2636173 0.2375103 0.2210377 0.0247878 0.1036642 -0.2334495
Sydney - Blacktown 0.1723783 -0.0227536 -0.0095176 -0.0249557 0.0104743 -0.1990617 -0.0690032 -0.1621308
Adelaide - Central and Hills 0.1803248 0.0992611 0.0626532 -0.0805843 -0.2285324 0.0997319 -0.1275975 0.0257467
North West 0.2023868 0.1472526 0.2751321 0.1373022 0.0371632 0.0569113 0.1931242 -0.4040034
Barossa - Yorke - Mid North 0.2105210 0.1125799 0.0830572 0.0617567 0.0428358 0.0319875 0.1922620 -0.3537957
Brisbane - North 0.2339809 -0.0723615 -0.0430509 -0.0053041 0.0142466 0.1161644 0.0864764 -0.3007150
Ipswich 0.2471397 -0.2088020 -0.2412550 -0.2986585 -0.3808323 -0.1161336 0.1147795 0.0670222
Brisbane - South 0.2505241 0.0917738 -0.0405335 -0.0800536 -0.1337967 0.0583896 0.0223248 -0.0137205
Toowoomba 0.2554054 -0.0194840 0.0146952 -0.1471277 -0.2789266 0.0030061 0.0196428 -0.0764704
Perth - South West 0.2590236 0.0176310 0.1611172 0.1936857 0.1830849 0.0710297 0.0303307 -0.2695565
Melbourne - Inner 0.2661977 -0.3357054 -0.5948466 -0.3897029 -0.3944398 0.0206133 -0.1162458 0.4246775
Mackay - Isaac - Whitsunday 0.3216783 0.0379802 0.0932064 0.1443196 0.2046647 -0.1622533 0.0892374 -0.2057717
Sydney - Eastern Suburbs 0.3326114 -0.2593740 -0.5141560 -0.3028668 -0.2366593 0.0140157 -0.2060630 -0.0341787
New England and North West 0.3329626 0.1366664 0.1344509 0.1057903 0.0949215 -0.0989056 0.0906297 -0.4531587
Perth - Inner 0.3883132 -0.0262698 0.0683888 0.1045972 0.0339882 0.0653207 -0.0379369 -0.1252128
Perth - North East 0.4201859 -0.0339494 0.0578539 0.0723829 0.0881474 0.0570727 -0.0415985 -0.4210112
Western Australia - Wheat Belt 0.4543680 0.0547873 0.1896824 0.2094023 0.2084607 0.0532615 0.1902048 -0.7316049
Perth - North West 0.4642840 -0.0825643 0.0662419 0.1010610 0.0774315 0.0729424 -0.0168265 -0.3817261
Darwin 0.5254543 -0.1427314 -0.0158008 0.0611453 0.1061262 -0.0596672 -0.0255519 -0.5064669
Perth - South East 0.5462605 0.0468800 0.1826525 0.2057684 0.1690583 0.0134394 -0.1385359 -0.4398957
Sydney - City and Inner South 0.5516886 -0.2194195 -0.3920704 -0.1164411 0.0375688 -0.0151765 -0.0672987 -0.2176187
South Australia - Outback 0.6201709 0.0656942 0.1428943 0.1990999 0.2182408 0.1745461 0.1461804 -0.5798892
Cairns 0.7775748 0.1168538 0.1601262 0.2402312 0.3121241 0.1447983 0.0959393 -0.6980668
Townsville 0.9034626 -0.0786256 0.0518741 0.0173679 -0.0056468 0.0277713 0.1602889 -0.4768637
Western Australia - Outback (South) 0.9594223 0.0601852 0.1175323 0.2396607 0.3119757 0.0780614 0.0843699 -0.8669404
Queensland - Outback 0.9687057 -0.0625477 0.0795368 0.1531526 0.2237109 -0.0372335 0.2219915 -1.2280866
Western Australia - Outback (North) 1.2031366 -0.2140361 -0.0946072 0.0471548 0.1473626 -0.2040884 -0.0567727 -1.3063389
Northern Territory - Outback 1.3612164 -0.1245471 0.0668770 0.1201455 0.1510600 0.1160209 0.1543394 -1.9563254

 

9.4.2 Random Effects Standard Deviation

AS4 (Intercept) age20-29 years age30-39 years age40-49 years age50-59 years sexMale educationhs-not-finished ingpNon-Indigenous
Sydney - Northern Beaches 0.2256716 0.0469049 0.0515394 0.0441323 0.0492355 0.0303800 0.0354323 0.2241622
Melbourne - Inner South 0.2086273 0.0322783 0.0364716 0.0326243 0.0354417 0.0201608 0.0251969 0.2073206
Melbourne - Inner East 0.2366047 0.0313960 0.0361750 0.0328707 0.0358754 0.0198853 0.0276202 0.2357979
Sydney - Sutherland 0.1468027 0.0460578 0.0524888 0.0445016 0.0498986 0.0320711 0.0343094 0.1426348
Geelong 0.1180421 0.0354329 0.0402264 0.0356701 0.0396599 0.0239519 0.0251807 0.1147124
Hume 0.1214034 0.0489007 0.0554699 0.0477401 0.0524334 0.0331280 0.0350697 0.1150174
Sydney - Inner West 0.1500097 0.0402086 0.0444866 0.0414301 0.0452369 0.0224749 0.0299141 0.1460445
Ballarat 0.1329848 0.0447440 0.0515092 0.0451183 0.0503583 0.0302136 0.0315948 0.1273223
Mornington Peninsula 0.1095226 0.0358233 0.0402195 0.0350971 0.0384215 0.0241886 0.0250611 0.1057143
Sydney - Baulkham Hills and Hawkesbury 0.1549492 0.0415002 0.0470211 0.0404061 0.0455242 0.0285002 0.0330476 0.1524507
South East 0.1516107 0.0866833 0.1038203 0.0882399 0.0982070 0.0589255 0.0631601 0.1337010
Sydney - North Sydney and Hornsby 0.1812429 0.0367325 0.0389326 0.0356316 0.0385792 0.0215213 0.0304998 0.1792220
Melbourne - Outer East 0.1203103 0.0271389 0.0303279 0.0273917 0.0299788 0.0183809 0.0196406 0.1184534
Sydney - Ryde 0.2168265 0.0449940 0.0502338 0.0460359 0.0510576 0.0274529 0.0384394 0.2144930
West and North West 0.0775453 0.0509705 0.0582330 0.0504065 0.0561480 0.0345512 0.0375918 0.0617218
Central Coast 0.0536075 0.0312678 0.0351203 0.0315098 0.0343043 0.0214121 0.0222190 0.0465725
Warrnambool and South West 0.1304348 0.0558340 0.0643019 0.0550741 0.0614694 0.0390608 0.0415567 0.1218603
Melbourne - North West 0.1209681 0.0292235 0.0322206 0.0302966 0.0343408 0.0190955 0.0205686 0.1185083
Bunbury 0.0857717 0.0437626 0.0470870 0.0422613 0.0464914 0.0280709 0.0290555 0.0766801
Southern Highlands and Shoalhaven 0.0816208 0.0522755 0.0594206 0.0512743 0.0567475 0.0356579 0.0375237 0.0670886
Gold Coast 0.0544969 0.0228038 0.0253366 0.0236720 0.0256064 0.0153882 0.0160259 0.0515623
Hunter Valley exc Newcastle 0.0520845 0.0334582 0.0373426 0.0339670 0.0380229 0.0230214 0.0244785 0.0426506
Shepparton 0.1028391 0.0508302 0.0576801 0.0502339 0.0575517 0.0360049 0.0389508 0.0913590
Sydney - Inner South West 0.0899849 0.0256572 0.0279774 0.0269437 0.0288311 0.0153394 0.0175310 0.0874507
Sydney - Outer West and Blue Mountains 0.0586680 0.0326623 0.0368130 0.0338136 0.0380975 0.0230544 0.0236937 0.0521905
Sydney - South West 0.0811712 0.0278788 0.0305322 0.0286986 0.0312385 0.0177105 0.0186678 0.0780824
Riverina 0.0745728 0.0477682 0.0545255 0.0487829 0.0553660 0.0334992 0.0354465 0.0606911
Richmond - Tweed 0.0622873 0.0393403 0.0433513 0.0380540 0.0406469 0.0253390 0.0261564 0.0522591
Newcastle and Lake Macquarie 0.0481482 0.0280646 0.0318410 0.0294373 0.0326666 0.0195187 0.0201901 0.0413117
South Australia - South East 0.0875727 0.0458217 0.0510285 0.0449795 0.0489685 0.0301223 0.0319630 0.0771533
Hobart 0.0689729 0.0371838 0.0423243 0.0387282 0.0440729 0.0258354 0.0267132 0.0598134
Capital Region 0.0727929 0.0447500 0.0499605 0.0439557 0.0483442 0.0299863 0.0312007 0.0611960
Brisbane - West 0.1352761 0.0362386 0.0431223 0.0380379 0.0442947 0.0262741 0.0342337 0.1329307
Latrobe - Gippsland 0.0832136 0.0371862 0.0411653 0.0368545 0.0393848 0.0240486 0.0253664 0.0760935
Sydney - Parramatta 0.0948854 0.0289294 0.0304350 0.0304295 0.0333732 0.0163348 0.0186995 0.0912926
Sydney - Outer South West 0.0641231 0.0335453 0.0374312 0.0347042 0.0395860 0.0233547 0.0240668 0.0582049
Illawarra 0.0627082 0.0308878 0.0360655 0.0326938 0.0368623 0.0220838 0.0228470 0.0571420
Mid North Coast 0.0589684 0.0420058 0.0465580 0.0407030 0.0434201 0.0270556 0.0288241 0.0456364
Brisbane - East 0.0759217 0.0359379 0.0405363 0.0355779 0.0395151 0.0255130 0.0265588 0.0710720
Bendigo 0.1167441 0.0466095 0.0534867 0.0466724 0.0522857 0.0321961 0.0336896 0.1092190
Central West 0.0585612 0.0416453 0.0466182 0.0416507 0.0461565 0.0281045 0.0297648 0.0451305
Sunshine Coast 0.0629232 0.0302889 0.0336644 0.0295708 0.0315223 0.0202811 0.0209616 0.0584560
Australian Capital Territory 0.0720463 0.0299648 0.0338948 0.0320779 0.0363560 0.0209233 0.0242657 0.0674891
Adelaide - South 0.0830518 0.0287172 0.0317852 0.0297831 0.0325370 0.0195464 0.0201209 0.0795326
Moreton Bay - North 0.0569202 0.0321802 0.0361420 0.0329029 0.0369992 0.0224096 0.0230274 0.0511395
Logan - Beaudesert 0.0521286 0.0269115 0.0300302 0.0288345 0.0329718 0.0188779 0.0194353 0.0476282
Moreton Bay - South 0.0824004 0.0357261 0.0406403 0.0362737 0.0423633 0.0259596 0.0272857 0.0776847
Mandurah 0.1024272 0.0479828 0.0533998 0.0469203 0.0526149 0.0321386 0.0332992 0.0944167
Melbourne - West 0.0721730 0.0207398 0.0220501 0.0217253 0.0239272 0.0125373 0.0135833 0.0699207
Murray 0.0980359 0.0544230 0.0619971 0.0539824 0.0605761 0.0372918 0.0397018 0.0837206
Adelaide - West 0.0840870 0.0359008 0.0395517 0.0366196 0.0404745 0.0227382 0.0240798 0.0781095
Melbourne - South East 0.0923716 0.0199621 0.0218850 0.0214741 0.0236256 0.0129608 0.0141085 0.0909422
Brisbane Inner City 0.0971106 0.0344027 0.0389527 0.0370395 0.0424314 0.0218555 0.0294934 0.0926042
Darling Downs - Maranoa 0.0785077 0.0530914 0.0602599 0.0526746 0.0595066 0.0365698 0.0388629 0.0632652
Adelaide - North 0.0557659 0.0246284 0.0266864 0.0260322 0.0288484 0.0160722 0.0163685 0.0514440
Melbourne - North East 0.0886391 0.0259695 0.0284627 0.0272244 0.0304777 0.0167860 0.0189384 0.0856854
Coffs Harbour - Grafton 0.0711772 0.0475131 0.0531990 0.0463726 0.0507926 0.0319394 0.0337018 0.0574185
Far West and Orana 0.0663484 0.0548768 0.0618826 0.0547819 0.0615754 0.0359215 0.0396765 0.0413966
Wide Bay 0.0487323 0.0320455 0.0348705 0.0316949 0.0336891 0.0207799 0.0217989 0.0411276
Launceston and North East 0.0859485 0.0448077 0.0518136 0.0448073 0.0497191 0.0306924 0.0319274 0.0764824
Central Queensland 0.0493783 0.0348106 0.0377625 0.0348854 0.0384286 0.0226189 0.0233706 0.0400504
Sydney - Blacktown 0.0590544 0.0298324 0.0321822 0.0308275 0.0349151 0.0195828 0.0208661 0.0533289
Adelaide - Central and Hills 0.1192940 0.0337752 0.0377744 0.0347019 0.0388092 0.0220790 0.0257083 0.1159487
North West 0.0917915 0.0489650 0.0553450 0.0484450 0.0539048 0.0332473 0.0357474 0.0795743
Barossa - Yorke - Mid North 0.1106008 0.0554036 0.0630386 0.0544294 0.0598820 0.0372246 0.0396457 0.0992008
Brisbane - North 0.0780780 0.0378332 0.0420886 0.0382363 0.0434172 0.0254849 0.0282885 0.0716341
Ipswich 0.0475622 0.0271930 0.0300767 0.0286901 0.0328065 0.0187823 0.0194325 0.0423751
Brisbane - South 0.0762209 0.0279241 0.0314131 0.0302506 0.0344835 0.0184331 0.0225238 0.0726774
Toowoomba 0.0718700 0.0410332 0.0467056 0.0422043 0.0493028 0.0295572 0.0310939 0.0631058
Perth - South West 0.0611434 0.0259638 0.0278569 0.0263350 0.0289028 0.0167144 0.0171486 0.0568783
Melbourne - Inner 0.1054754 0.0252369 0.0280198 0.0279244 0.0311598 0.0142234 0.0201330 0.1031358
Mackay - Isaac - Whitsunday 0.0594576 0.0407609 0.0447984 0.0404853 0.0447078 0.0264405 0.0276297 0.0487990
Sydney - Eastern Suburbs 0.1194127 0.0427711 0.0482173 0.0441773 0.0495548 0.0255863 0.0358381 0.1137951
New England and North West 0.0560107 0.0437969 0.0492745 0.0439530 0.0488976 0.0295841 0.0314148 0.0390452
Perth - Inner 0.1491564 0.0441626 0.0492126 0.0452462 0.0507363 0.0271671 0.0354570 0.1443834
Perth - North East 0.0667752 0.0325463 0.0355002 0.0330577 0.0367716 0.0212229 0.0218540 0.0606342
Western Australia - Wheat Belt 0.0844141 0.0557302 0.0619187 0.0538975 0.0590164 0.0359667 0.0375530 0.0664616
Perth - North West 0.0630614 0.0228777 0.0244871 0.0233894 0.0256473 0.0148320 0.0154863 0.0599031
Darwin 0.0715119 0.0514275 0.0576077 0.0519040 0.0602546 0.0346801 0.0362333 0.0543159
Perth - South East 0.0513661 0.0234317 0.0250366 0.0245927 0.0270033 0.0146319 0.0154184 0.0471200
Sydney - City and Inner South 0.0827217 0.0386104 0.0425408 0.0407628 0.0454639 0.0203672 0.0272697 0.0749264
South Australia - Outback 0.0809312 0.0595431 0.0678946 0.0589876 0.0657281 0.0386340 0.0416312 0.0550700
Cairns 0.0439531 0.0369253 0.0402121 0.0360878 0.0390527 0.0233270 0.0240172 0.0307867
Townsville 0.0439444 0.0324764 0.0360087 0.0332404 0.0371423 0.0221740 0.0230135 0.0346127
Western Australia - Outback (South) 0.0692522 0.0524842 0.0586290 0.0514518 0.0571172 0.0338000 0.0357934 0.0473424
Queensland - Outback 0.0685434 0.0615289 0.0696990 0.0617849 0.0704670 0.0396127 0.0427332 0.0439218
Western Australia - Outback (North) 0.0745273 0.0649203 0.0727398 0.0657756 0.0757019 0.0395106 0.0421213 0.0434161
Northern Territory - Outback 0.0709484 0.0604832 0.0669884 0.0609630 0.0706320 0.0361480 0.0431131 0.0498306

 


  1. Direction of estimates here is defined as being positive if \(> 1\), negative if \(< 1\) and null if \(=1\)

  2. Random effects for interaction terms are out of scope for this article

  3. Classification metrics are intended to evaluate uniquely the goodness of fit. Prediction power on new data is out of scope for this article

  4. For methodologies to calculate marginalised coefficients please refer to https://drizopoulos.github.io/GLMMadaptive/articles/Methods_MixMod.html#marginalized-coefficients

  5. Coefficients isolated - not considering interactions