Using the spatial visualization techniques, explore this data set on Pennsylvania hospitals (http://www.arcgis.com/home/item.html?id=eccee5dfe01e4c4283c9be0cfc596882). Create a series of 5 maps that highlight spatial differences in hospital service coverage for the state of PA.
To help you in getting the data imported into R, I have included the code below:
To import the data I use the foreign package, if you do not have it than be sure to install it prior to testing the code.
library(foreign)
data= read.dbf("/Users/deepikagrover/Documents/Pennsylvaniahospitals/pennsylv.dbf")
summary(data)
## acc_trauma air_amb als arc_street arc_zone
## N:243 N :226 N :212 1 Hospital Dr : 4 18702 : 6
## Y: 32 Y : 23 Y : 37 100 N Academy Ave : 2 15213 : 5
## NA's: 26 NA's: 26 1001 S George St : 2 19104 : 5
## 1086 Franklin St : 2 16602 : 4
## 1500 Lansdowne Ave: 2 16507 : 3
## 250 S 21st St : 2 17042 : 3
## (Other) :261 (Other):249
## bas_ls bassinets bb_id bc_beds bc_sus_bed
## N :220 Min. : 3.00 1 : 1 Min. : 7.00 Min. : 7.00
## Y : 29 1st Qu.:10.75 100 : 1 1st Qu.:10.25 1st Qu.:10.25
## NA's: 26 Median :15.00 101 : 1 Median :14.00 Median :14.50
## Mean :18.28 102 : 1 Mean :13.33 Mean :13.33
## 3rd Qu.:22.00 103 : 1 3rd Qu.:17.00 3rd Qu.:16.50
## Max. :80.00 104 : 1 Max. :18.00 Max. :18.00
## NA's :171 (Other):269 NA's :269 NA's :269
## beds_sus birthing_r bone_marro burn_car burn_care
## Min. : 10.0 Min. : 1.000 N :237 N :228 N :243
## 1st Qu.: 50.0 1st Qu.: 3.000 Y : 12 Y : 21 Y : 6
## Median : 102.0 Median : 4.000 NA's: 26 NA's: 26 NA's: 26
## Mean : 164.8 Mean : 5.961
## 3rd Qu.: 209.2 3rd Qu.: 7.000
## Max. :1485.0 Max. :22.000
## NA's :31 NA's :224
## card_beds card_surge card_sus_b cardiac cardiac_ca cardio_reh
## Min. : 6.00 N :189 Min. : 4.00 N :204 N :153 N :118
## 1st Qu.: 10.00 Y : 60 1st Qu.: 10.00 Y : 45 Y : 96 Y :131
## Median : 12.00 NA's: 26 Median : 12.00 NA's: 26 NA's: 26 NA's: 26
## Mean : 22.98 Mean : 21.82
## 3rd Qu.: 22.00 3rd Qu.: 19.00
## Max. :189.00 Max. :177.00
## NA's :230 NA's :230
## chemo city clin_lab clin_psych county
## N :119 Philadelphia: 39 N : 62 N :123 Philadelphia: 39
## Y :130 Pittsburgh : 22 Y :187 Y :126 Allegheny : 32
## NA's: 26 Allentown : 7 NA's: 26 NA's: 26 Montgomery : 14
## Erie : 7 Lehigh : 11
## Wilkes-Barre: 6 Chester : 10
## Altoona : 4 Luzerne : 9
## (Other) :190 (Other) :160
## countyname ct_scan cty_key cystoscopi deliv_rms
## Philadelphia: 40 N : 80 42101 : 40 N :174 Min. : 1.000
## Allegheny : 32 Y :169 42003 : 32 Y : 75 1st Qu.: 1.000
## Montgomery : 14 NA's: 26 42091 : 14 NA's: 26 Median : 2.000
## Lehigh : 11 42077 : 11 Mean : 2.234
## Chester : 10 42029 : 10 3rd Qu.: 2.000
## Luzerne : 9 42079 : 9 Max. :12.000
## (Other) :159 (Other):159 NA's :228
## dental detox_alc_ diag_radio diag_xray doh_hosp doh_phone
## N :222 N :205 N : 96 N : 52 N: 20 7177823131: 2
## Y : 27 Y : 44 Y :153 Y :197 Y:255 8148892011: 2
## NA's: 26 NA's: 26 NA's: 26 NA's: 26 2152336200: 1
## 2152488200: 1
## 2153324500: 1
## (Other) :250
## NA's : 18
## emer_dept endoscopie fac_id facility
## N : 87 N :125 0 : 17 Altoona Regional Health System: 2
## Y :162 Y :124 0618 : 3 Pinnacle Health Hospitals : 2
## NA's: 26 NA's: 26 0128 : 2 Abington Memorial Hospital : 1
## 0836 : 2 Albert Einstein Medical Center: 1
## 1037 : 2 Alle-Kiski Medical Center : 1
## 0020 : 1 Allegheny General Hospital : 1
## (Other):248 (Other) :267
## flu_old fred_con_1 fred_conta
## N : 33 Emergency Management Coordinator: 4 Armand Alessi : 2
## Y :216 ER Nurse Manager : 4 Chris Coforio : 2
## NA's: 26 Nurse Manager : 4 Mike Rosensteel : 2
## Safety Officer : 4 Steve Jakubcanin: 2
## Administrator : 3 Adam Bakaj : 1
## (Other) :171 (Other) :235
## NA's : 85 NA's : 31
## fred_email fred_fax fred_hosp
## bburger@selectmedicalcorp.com: 3 6103941853: 2 N: 6
## armand.alessi@crozer.org : 2 7249837568: 2 Y:269
## brenda.miller-reeser@lvh.com : 2 2152465451: 1
## coforioc@email.chop.edu : 2 2152488070: 1
## mrosensteel@excelahealth.org : 2 2152913617: 1
## (Other) :246 (Other) :234
## NA's : 18 NA's : 34
## fred_pager fred_phone gamma_knif gen_outpat gene_counc heart_tran
## 2155076665: 2 2154568053: 2 N :236 N :205 N :202 N :240
## 4129170105: 2 2672405394: 2 Y : 13 Y : 44 Y : 47 Y : 9
## 7174991392: 2 6102848599: 2 NA's: 26 NA's: 26 NA's: 26 NA's: 26
## 7246464689: 2 6104026115: 2
## 0000000000: 1 7173587390: 2
## (Other) :107 (Other) :254
## NA's :159 NA's : 11
## helipad hemodial_c hemodial_m hosp_id hospice hyper_cham icu
## N:155 N :214 N :245 0 : 17 N :152 N :199 N :180
## Y:120 Y : 35 Y : 4 002000 : 1 Y : 97 Y : 50 Y : 69
## NA's: 26 NA's: 26 002100 : 1 NA's: 26 NA's: 26 NA's: 26
## 002200 : 1
## 002300 : 1
## 002600 : 1
## (Other):253
## icu_beds icu_sus_be inpat_flu_ inpat_pneu kidney_tra
## Min. : 2.00 Min. : 2.0 Min. : 1.0 Min. : 1.0 N :234
## 1st Qu.: 8.00 1st Qu.: 8.0 1st Qu.: 25.0 1st Qu.: 24.0 Y : 15
## Median : 12.00 Median : 12.0 Median : 123.0 Median : 135.0 NA's: 26
## Mean : 21.91 Mean : 20.8 Mean : 260.8 Mean : 313.6
## 3rd Qu.: 22.00 3rd Qu.: 20.0 3rd Qu.: 393.2 3rd Qu.: 419.0
## Max. :198.00 Max. :194.0 Max. :2420.0 Max. :3100.0
## NA's :208 NA's :206 NA's :67 NA's :74
## labor_rms lic_beds lic_dent lic_dos
## Min. : 1.000 Min. : 10.0 Min. : 1.00 Min. : 1.00
## 1st Qu.: 2.000 1st Qu.: 55.0 1st Qu.: 1.00 1st Qu.: 5.00
## Median : 3.000 Median : 116.0 Median : 3.00 Median : 17.00
## Mean : 3.423 Mean : 176.7 Mean : 6.92 Mean : 25.32
## 3rd Qu.: 4.000 3rd Qu.: 214.0 3rd Qu.: 7.75 3rd Qu.: 34.50
## Max. :10.000 Max. :1573.0 Max. :74.00 Max. :184.00
## NA's :249 NA's :34 NA's :137 NA's :48
## lic_mds lic_pod linear_acc lithotrips liver_tran loc_method
## Min. : 1.00 Min. : 1.000 N :182 N :155 N :237 G: 13
## 1st Qu.: 22.75 1st Qu.: 2.000 Y : 67 Y : 94 Y : 12 R:262
## Median : 79.50 Median : 5.000 NA's: 26 NA's: 26 NA's: 26
## Mean : 171.17 Mean : 8.132
## 3rd Qu.: 196.00 3rd Qu.:11.750
## Max. :1887.00 Max. :37.000
## NA's :33 NA's :101
## ltc mcd mcd_key mcd_name medical
## N :196 60000 : 40 4210160000: 40 Philadelphia : 35 N :188
## Y : 53 61000 : 15 4200361000: 15 Pittsburgh : 13 Y : 61
## NA's: 26 24000 : 6 4204924000: 6 Erie City : 6 NA's: 26
## 02000 : 4 4206969000: 4 Philadelphia City: 5
## 46656 : 4 4207702000: 4 Allentown City : 4
## 69000 : 4 4209346656: 4 Mahoning Township: 4
## (Other):202 (Other) :202 (Other) :208
## mob_ccu mob_icu mri ms1 neo2_beds
## N :244 N :236 N : 91 Limerick : 4 Min. : 2.000
## Y : 5 Y : 13 Y :158 TMI : 4 1st Qu.: 4.000
## NA's: 26 NA's: 26 NA's: 26 Susquehanna : 3 Median : 6.000
## Beaver : 2 Mean : 7.892
## Limerick/Peach Bottom: 1 3rd Qu.:10.000
## (Other) : 2 Max. :27.000
## NA's :259 NA's :238
## neo2_sus_b neo3_beds neo3_sus_b neuro_surg neurology
## Min. : 1.000 Min. : 2.00 Min. : 2.00 N :149 N :101
## 1st Qu.: 3.000 1st Qu.:14.00 1st Qu.:13.00 Y :100 Y :148
## Median : 5.000 Median :17.00 Median :17.00 NA's: 26 NA's: 26
## Mean : 7.351 Mean :22.91 Mean :21.97
## 3rd Qu.: 9.000 3rd Qu.:30.00 3rd Qu.:28.00
## Max. :27.000 Max. :75.00 Max. :66.00
## NA's :238 NA's :242 NA's :242
## obs_gyn occ_ther optometry organ_bank ped_trauma pediatric
## N :203 N : 26 N :198 N :228 Level I : 4 N :220
## Y : 46 Y :223 Y : 51 Y : 21 Level II: 2 Y : 29
## NA's: 26 NA's: 26 NA's: 26 NA's: 26 NA's :269 NA's: 26
##
##
##
##
## pet pharmacy phys_med phys_ther podiatry providerid
## N :163 N : 30 N :204 N : 28 N : 86 Min. : 68.0
## Y : 86 Y :219 Y : 45 Y :221 Y :163 1st Qu.: 177.2
## NA's: 26 NA's: 26 NA's: 26 NA's: 26 NA's: 26 Median : 273.5
## Mean : 898.1
## 3rd Qu.:2412.2
## Max. :2587.0
## NA's :1
## psych psych_inpa reg_trauma resp_ther so_flu_65u social_wor
## N :214 N :124 Level I : 14 N : 37 N : 78 N : 12
## Y : 35 Y :125 Level II : 13 Y :212 Y :171 Y :237
## NA's: 26 NA's: 26 Level III: 2 NA's: 26 NA's: 26 NA's: 26
## NA's :246
##
##
##
## speech_pat street surgical surgical_s thera_radi
## N : 41 One Hospital Drive : 3 N :195 N : 74 N :172
## Y :208 1000 Dutch Ridge Road : 2 Y : 54 Y :175 Y : 77
## NA's: 26 200 Lothrop Street : 2 NA's: 26 NA's: 26 NA's: 26
## 250 South 21st Street : 2
## 2545 Schoenersville Road: 2
## 620 Howard Avenue : 2
## (Other) :262
## typ_org typ_serv ultrasound
## Non-profit Corp. :142 General Medical and Surgical:167 N : 68
## Corporation : 62 Long-term Acute Care : 27 Y :181
## Other,Not For Profit: 20 Psychiatric : 25 NA's: 26
## Partnership : 8 Rehabilitation : 18
## State : 8 Other : 11
## (Other) : 15 (Other) : 7
## NA's : 20 NA's : 20
## x y zip
## Min. :-80.50 Min. :39.75 19104 : 5
## 1st Qu.:-79.20 1st Qu.:40.05 15213 : 4
## Median :-76.45 Median :40.41 15224 : 3
## Mean :-77.15 Mean :40.55 17105 : 3
## 3rd Qu.:-75.36 3rd Qu.:40.87 17405 : 3
## Max. :-74.87 Max. :42.13 17822 : 3
## (Other):254
The dataset contains a number of variables about each hospital, many of them are clear and straight forward.
names(data)
## [1] "acc_trauma" "air_amb" "als" "arc_street" "arc_zone"
## [6] "bas_ls" "bassinets" "bb_id" "bc_beds" "bc_sus_bed"
## [11] "beds_sus" "birthing_r" "bone_marro" "burn_car" "burn_care"
## [16] "card_beds" "card_surge" "card_sus_b" "cardiac" "cardiac_ca"
## [21] "cardio_reh" "chemo" "city" "clin_lab" "clin_psych"
## [26] "county" "countyname" "ct_scan" "cty_key" "cystoscopi"
## [31] "deliv_rms" "dental" "detox_alc_" "diag_radio" "diag_xray"
## [36] "doh_hosp" "doh_phone" "emer_dept" "endoscopie" "fac_id"
## [41] "facility" "flu_old" "fred_con_1" "fred_conta" "fred_email"
## [46] "fred_fax" "fred_hosp" "fred_pager" "fred_phone" "gamma_knif"
## [51] "gen_outpat" "gene_counc" "heart_tran" "helipad" "hemodial_c"
## [56] "hemodial_m" "hosp_id" "hospice" "hyper_cham" "icu"
## [61] "icu_beds" "icu_sus_be" "inpat_flu_" "inpat_pneu" "kidney_tra"
## [66] "labor_rms" "lic_beds" "lic_dent" "lic_dos" "lic_mds"
## [71] "lic_pod" "linear_acc" "lithotrips" "liver_tran" "loc_method"
## [76] "ltc" "mcd" "mcd_key" "mcd_name" "medical"
## [81] "mob_ccu" "mob_icu" "mri" "ms1" "neo2_beds"
## [86] "neo2_sus_b" "neo3_beds" "neo3_sus_b" "neuro_surg" "neurology"
## [91] "obs_gyn" "occ_ther" "optometry" "organ_bank" "ped_trauma"
## [96] "pediatric" "pet" "pharmacy" "phys_med" "phys_ther"
## [101] "podiatry" "providerid" "psych" "psych_inpa" "reg_trauma"
## [106] "resp_ther" "so_flu_65u" "social_wor" "speech_pat" "street"
## [111] "surgical" "surgical_s" "thera_radi" "typ_org" "typ_serv"
## [116] "ultrasound" "x" "y" "zip"
Now create 5 maps, including descriptions, that highlight the spatial distribution of hospital services in the state of PA. Upload these maps as a document to rpubs.com and submit that link to the Canvas assignment.
library(ggmap)
## Loading required package: ggplot2
## Google's Terms of Service: https://cloud.google.com/maps-platform/terms/.
## Please cite ggmap if you use it! See citation("ggmap") for details.
acc_trauma=subset(data, acc_trauma=="Y")
qmplot(x, y, data = acc_trauma, legend = "none", colour= I('red'), mapcolor = "color", extent = "panel", main = "ACC Trauma Hospitals", xlab = "Longitude", ylab = "Latitude",zoom=8, maptype = "terrain-lines")
## Source : http://tile.stamen.com/terrain/8/70/94.png
## Source : http://tile.stamen.com/terrain/8/71/94.png
## Source : http://tile.stamen.com/terrain/8/72/94.png
## Source : http://tile.stamen.com/terrain/8/73/94.png
## Source : http://tile.stamen.com/terrain/8/74/94.png
## Source : http://tile.stamen.com/terrain/8/70/95.png
## Source : http://tile.stamen.com/terrain/8/71/95.png
## Source : http://tile.stamen.com/terrain/8/72/95.png
## Source : http://tile.stamen.com/terrain/8/73/95.png
## Source : http://tile.stamen.com/terrain/8/74/95.png
## Source : http://tile.stamen.com/terrain/8/70/96.png
## Source : http://tile.stamen.com/terrain/8/71/96.png
## Source : http://tile.stamen.com/terrain/8/72/96.png
## Source : http://tile.stamen.com/terrain/8/73/96.png
## Source : http://tile.stamen.com/terrain/8/74/96.png
## Source : http://tile.stamen.com/terrain/8/70/97.png
## Source : http://tile.stamen.com/terrain/8/71/97.png
## Source : http://tile.stamen.com/terrain/8/72/97.png
## Source : http://tile.stamen.com/terrain/8/73/97.png
## Source : http://tile.stamen.com/terrain/8/74/97.png
dental=subset(data, dental =="Y")
qmplot(x, y, data = dental, legend = "none", colour= I('red'), mapcolor = "color", extent = "panel", main = "Dental Services", xlab = "Longitude", ylab = "Latitude",zoom=8, maptype = "terrain-lines")
neurology=subset(data, county =="Philadelphia")
qmplot(x, y, data = neurology, legend = "none", colour= I('red'), mapcolor = "color", extent = "panel", main = "Neurology Services", xlab = "Longitude", ylab = "Latitude", zoom =14, maptype = "terrain")
## 154 tiles needed, this may take a while (try a smaller zoom).
## Source : http://tile.stamen.com/terrain/14/4767/6197.png
## Source : http://tile.stamen.com/terrain/14/4768/6197.png
## Source : http://tile.stamen.com/terrain/14/4769/6197.png
## Source : http://tile.stamen.com/terrain/14/4770/6197.png
## Source : http://tile.stamen.com/terrain/14/4771/6197.png
## Source : http://tile.stamen.com/terrain/14/4772/6197.png
## Source : http://tile.stamen.com/terrain/14/4773/6197.png
## Source : http://tile.stamen.com/terrain/14/4774/6197.png
## Source : http://tile.stamen.com/terrain/14/4775/6197.png
## Source : http://tile.stamen.com/terrain/14/4776/6197.png
## Source : http://tile.stamen.com/terrain/14/4777/6197.png
## Source : http://tile.stamen.com/terrain/14/4778/6197.png
## Source : http://tile.stamen.com/terrain/14/4779/6197.png
## Source : http://tile.stamen.com/terrain/14/4780/6197.png
## Source : http://tile.stamen.com/terrain/14/4767/6198.png
## Source : http://tile.stamen.com/terrain/14/4768/6198.png
## Source : http://tile.stamen.com/terrain/14/4769/6198.png
## Source : http://tile.stamen.com/terrain/14/4770/6198.png
## Source : http://tile.stamen.com/terrain/14/4771/6198.png
## Source : http://tile.stamen.com/terrain/14/4772/6198.png
## Source : http://tile.stamen.com/terrain/14/4773/6198.png
## Source : http://tile.stamen.com/terrain/14/4774/6198.png
## Source : http://tile.stamen.com/terrain/14/4775/6198.png
## Source : http://tile.stamen.com/terrain/14/4776/6198.png
## Source : http://tile.stamen.com/terrain/14/4777/6198.png
## Source : http://tile.stamen.com/terrain/14/4778/6198.png
## Source : http://tile.stamen.com/terrain/14/4779/6198.png
## Source : http://tile.stamen.com/terrain/14/4780/6198.png
## Source : http://tile.stamen.com/terrain/14/4767/6199.png
## Source : http://tile.stamen.com/terrain/14/4768/6199.png
## Source : http://tile.stamen.com/terrain/14/4769/6199.png
## Source : http://tile.stamen.com/terrain/14/4770/6199.png
## Source : http://tile.stamen.com/terrain/14/4771/6199.png
## Source : http://tile.stamen.com/terrain/14/4772/6199.png
## Source : http://tile.stamen.com/terrain/14/4773/6199.png
## Source : http://tile.stamen.com/terrain/14/4774/6199.png
## Source : http://tile.stamen.com/terrain/14/4775/6199.png
## Source : http://tile.stamen.com/terrain/14/4776/6199.png
## Source : http://tile.stamen.com/terrain/14/4777/6199.png
## Source : http://tile.stamen.com/terrain/14/4778/6199.png
## Source : http://tile.stamen.com/terrain/14/4779/6199.png
## Source : http://tile.stamen.com/terrain/14/4780/6199.png
## Source : http://tile.stamen.com/terrain/14/4767/6200.png
## Source : http://tile.stamen.com/terrain/14/4768/6200.png
## Source : http://tile.stamen.com/terrain/14/4769/6200.png
## Source : http://tile.stamen.com/terrain/14/4770/6200.png
## Source : http://tile.stamen.com/terrain/14/4771/6200.png
## Source : http://tile.stamen.com/terrain/14/4772/6200.png
## Source : http://tile.stamen.com/terrain/14/4773/6200.png
## Source : http://tile.stamen.com/terrain/14/4774/6200.png
## Source : http://tile.stamen.com/terrain/14/4775/6200.png
## Source : http://tile.stamen.com/terrain/14/4776/6200.png
## Source : http://tile.stamen.com/terrain/14/4777/6200.png
## Source : http://tile.stamen.com/terrain/14/4778/6200.png
## Source : http://tile.stamen.com/terrain/14/4779/6200.png
## Source : http://tile.stamen.com/terrain/14/4780/6200.png
## Source : http://tile.stamen.com/terrain/14/4767/6201.png
## Source : http://tile.stamen.com/terrain/14/4768/6201.png
## Source : http://tile.stamen.com/terrain/14/4769/6201.png
## Source : http://tile.stamen.com/terrain/14/4770/6201.png
## Source : http://tile.stamen.com/terrain/14/4771/6201.png
## Source : http://tile.stamen.com/terrain/14/4772/6201.png
## Source : http://tile.stamen.com/terrain/14/4773/6201.png
## Source : http://tile.stamen.com/terrain/14/4774/6201.png
## Source : http://tile.stamen.com/terrain/14/4775/6201.png
## Source : http://tile.stamen.com/terrain/14/4776/6201.png
## Source : http://tile.stamen.com/terrain/14/4777/6201.png
## Source : http://tile.stamen.com/terrain/14/4778/6201.png
## Source : http://tile.stamen.com/terrain/14/4779/6201.png
## Source : http://tile.stamen.com/terrain/14/4780/6201.png
## Source : http://tile.stamen.com/terrain/14/4767/6202.png
## Source : http://tile.stamen.com/terrain/14/4768/6202.png
## Source : http://tile.stamen.com/terrain/14/4769/6202.png
## Source : http://tile.stamen.com/terrain/14/4770/6202.png
## Source : http://tile.stamen.com/terrain/14/4771/6202.png
## Source : http://tile.stamen.com/terrain/14/4772/6202.png
## Source : http://tile.stamen.com/terrain/14/4773/6202.png
## Source : http://tile.stamen.com/terrain/14/4774/6202.png
## Source : http://tile.stamen.com/terrain/14/4775/6202.png
## Source : http://tile.stamen.com/terrain/14/4776/6202.png
## Source : http://tile.stamen.com/terrain/14/4777/6202.png
## Source : http://tile.stamen.com/terrain/14/4778/6202.png
## Source : http://tile.stamen.com/terrain/14/4779/6202.png
## Source : http://tile.stamen.com/terrain/14/4780/6202.png
## Source : http://tile.stamen.com/terrain/14/4767/6203.png
## Source : http://tile.stamen.com/terrain/14/4768/6203.png
## Source : http://tile.stamen.com/terrain/14/4769/6203.png
## Source : http://tile.stamen.com/terrain/14/4770/6203.png
## Source : http://tile.stamen.com/terrain/14/4771/6203.png
## Source : http://tile.stamen.com/terrain/14/4772/6203.png
## Source : http://tile.stamen.com/terrain/14/4773/6203.png
## Source : http://tile.stamen.com/terrain/14/4774/6203.png
## Source : http://tile.stamen.com/terrain/14/4775/6203.png
## Source : http://tile.stamen.com/terrain/14/4776/6203.png
## Source : http://tile.stamen.com/terrain/14/4777/6203.png
## Source : http://tile.stamen.com/terrain/14/4778/6203.png
## Source : http://tile.stamen.com/terrain/14/4779/6203.png
## Source : http://tile.stamen.com/terrain/14/4780/6203.png
## Source : http://tile.stamen.com/terrain/14/4767/6204.png
## Source : http://tile.stamen.com/terrain/14/4768/6204.png
## Source : http://tile.stamen.com/terrain/14/4769/6204.png
## Source : http://tile.stamen.com/terrain/14/4770/6204.png
## Source : http://tile.stamen.com/terrain/14/4771/6204.png
## Source : http://tile.stamen.com/terrain/14/4772/6204.png
## Source : http://tile.stamen.com/terrain/14/4773/6204.png
## Source : http://tile.stamen.com/terrain/14/4774/6204.png
## Source : http://tile.stamen.com/terrain/14/4775/6204.png
## Source : http://tile.stamen.com/terrain/14/4776/6204.png
## Source : http://tile.stamen.com/terrain/14/4777/6204.png
## Source : http://tile.stamen.com/terrain/14/4778/6204.png
## Source : http://tile.stamen.com/terrain/14/4779/6204.png
## Source : http://tile.stamen.com/terrain/14/4780/6204.png
## Source : http://tile.stamen.com/terrain/14/4767/6205.png
## Source : http://tile.stamen.com/terrain/14/4768/6205.png
## Source : http://tile.stamen.com/terrain/14/4769/6205.png
## Source : http://tile.stamen.com/terrain/14/4770/6205.png
## Source : http://tile.stamen.com/terrain/14/4771/6205.png
## Source : http://tile.stamen.com/terrain/14/4772/6205.png
## Source : http://tile.stamen.com/terrain/14/4773/6205.png
## Source : http://tile.stamen.com/terrain/14/4774/6205.png
## Source : http://tile.stamen.com/terrain/14/4775/6205.png
## Source : http://tile.stamen.com/terrain/14/4776/6205.png
## Source : http://tile.stamen.com/terrain/14/4777/6205.png
## Source : http://tile.stamen.com/terrain/14/4778/6205.png
## Source : http://tile.stamen.com/terrain/14/4779/6205.png
## Source : http://tile.stamen.com/terrain/14/4780/6205.png
## Source : http://tile.stamen.com/terrain/14/4767/6206.png
## Source : http://tile.stamen.com/terrain/14/4768/6206.png
## Source : http://tile.stamen.com/terrain/14/4769/6206.png
## Source : http://tile.stamen.com/terrain/14/4770/6206.png
## Source : http://tile.stamen.com/terrain/14/4771/6206.png
## Source : http://tile.stamen.com/terrain/14/4772/6206.png
## Source : http://tile.stamen.com/terrain/14/4773/6206.png
## Source : http://tile.stamen.com/terrain/14/4774/6206.png
## Source : http://tile.stamen.com/terrain/14/4775/6206.png
## Source : http://tile.stamen.com/terrain/14/4776/6206.png
## Source : http://tile.stamen.com/terrain/14/4777/6206.png
## Source : http://tile.stamen.com/terrain/14/4778/6206.png
## Source : http://tile.stamen.com/terrain/14/4779/6206.png
## Source : http://tile.stamen.com/terrain/14/4780/6206.png
## Source : http://tile.stamen.com/terrain/14/4767/6207.png
## Source : http://tile.stamen.com/terrain/14/4768/6207.png
## Source : http://tile.stamen.com/terrain/14/4769/6207.png
## Source : http://tile.stamen.com/terrain/14/4770/6207.png
## Source : http://tile.stamen.com/terrain/14/4771/6207.png
## Source : http://tile.stamen.com/terrain/14/4772/6207.png
## Source : http://tile.stamen.com/terrain/14/4773/6207.png
## Source : http://tile.stamen.com/terrain/14/4774/6207.png
## Source : http://tile.stamen.com/terrain/14/4775/6207.png
## Source : http://tile.stamen.com/terrain/14/4776/6207.png
## Source : http://tile.stamen.com/terrain/14/4777/6207.png
## Source : http://tile.stamen.com/terrain/14/4778/6207.png
## Source : http://tile.stamen.com/terrain/14/4779/6207.png
## Source : http://tile.stamen.com/terrain/14/4780/6207.png
emer_dept=subset(data, emer_dept =="Y")
qmplot(x, y, data = emer_dept, legend = "none", colour= I('red'), mapcolor = "color", darken=0.1, extent = "panel", main = "Emergency Department Services", xlab = "Longitude", ylab = "Latitude", zoom = 6, maptype="watercolor")
## Source : http://tile.stamen.com/terrain/6/17/23.png
## Source : http://tile.stamen.com/terrain/6/18/23.png
## Source : http://tile.stamen.com/terrain/6/17/24.png
## Source : http://tile.stamen.com/terrain/6/18/24.png
hospice=subset(data, hospice =="Y")
qmplot(x, y, data = hospice, legend = "none", colour= I('red'), mapcolor = "color", darken=.3, main = "Hospice Services in Pennsylvania", zoom = 7,maptype = "watercolor")
## Source : http://tile.stamen.com/terrain/7/35/47.png
## Source : http://tile.stamen.com/terrain/7/36/47.png
## Source : http://tile.stamen.com/terrain/7/37/47.png
## Source : http://tile.stamen.com/terrain/7/35/48.png
## Source : http://tile.stamen.com/terrain/7/36/48.png
## Source : http://tile.stamen.com/terrain/7/37/48.png