ISLR Chapter 4: Classification

Problem 10.

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR)
attach(Weekly)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
str(Weekly)
## 'data.frame':    1089 obs. of  9 variables:
##  $ Year     : num  1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
##  $ Lag1     : num  0.816 -0.27 -2.576 3.514 0.712 ...
##  $ Lag2     : num  1.572 0.816 -0.27 -2.576 3.514 ...
##  $ Lag3     : num  -3.936 1.572 0.816 -0.27 -2.576 ...
##  $ Lag4     : num  -0.229 -3.936 1.572 0.816 -0.27 ...
##  $ Lag5     : num  -3.484 -0.229 -3.936 1.572 0.816 ...
##  $ Volume   : num  0.155 0.149 0.16 0.162 0.154 ...
##  $ Today    : num  -0.27 -2.576 3.514 0.712 1.178 ...
##  $ Direction: Factor w/ 2 levels "Down","Up": 1 1 2 2 2 1 2 2 2 1 ...
pairs(Weekly)

cor(Weekly[1:8])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

Volume is the only predictor that shows a correlation to Year of .84194. The other variables do not show a relationship.

plot(Volume)

The plot of Volume indicates an increasing relationship.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

glm_fit<-glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, family = binomial)
summary(glm_fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Based on the model, Lag2 appears to be statistically significant with a p-value of 0.0296. It is the only variable that is statistically significant.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm_probs<- predict(glm_fit, type = "response")
glm_pred<-rep("Down", length(glm_probs))
glm_pred[glm_probs > 0.5] = "Up"
table(glm_pred,Direction)
##         Direction
## glm_pred Down  Up
##     Down   54  48
##     Up    430 557

Based on the glm_pred output, the percentage of correct predictions is \((\frac{54+557}{1089}) = 56.1065\)%. The confusion matrix shows the logistic regression model erroneously predicted a Up week, when it was Down, and only accurately predicted a Down week 11.1157% of the time. Therefore when the market is up, the model is correct 92.066% of the time.

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train<-(Year<2009)
Weekly_20092010<-Weekly[!train,]
Direction_20092010<- Direction[!train]
glm_fit2<-glm(Direction ~ Lag2, family = binomial, subset = train)
summary(glm_fit2)
## 
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, subset = train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.536  -1.264   1.021   1.091   1.368  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.20326    0.06428   3.162  0.00157 **
## Lag2         0.05810    0.02870   2.024  0.04298 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1350.5  on 983  degrees of freedom
## AIC: 1354.5
## 
## Number of Fisher Scoring iterations: 4
glm_probs2<-predict(glm_fit2, Weekly_20092010, type = "response")
glm_pred2<-rep("Down", length(glm_probs2))
glm_pred2[glm_probs2>0.5] = "Up"
table(glm_pred2,Direction_20092010)
##          Direction_20092010
## glm_pred2 Down Up
##      Down    9  5
##      Up     34 56
mean(glm_pred2 == Direction_20092010)
## [1] 0.625

The percentage of correct prediction for the held out data is \(\frac{9+56}{104}=62.5\)%.

(e) Repeat (d) using LDA.

library(MASS)
lda_fit<- lda(Direction~ Lag2, subset = train)
lda_fit
## Call:
## lda(Direction ~ Lag2, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
lda_pred<- predict(lda_fit, Weekly_20092010)
table(lda_pred$class, Direction_20092010)
##       Direction_20092010
##        Down Up
##   Down    9  5
##   Up     34 56
mean(lda_pred$class == Direction_20092010)
## [1] 0.625

The percentage of correct prediction for the held out data remains \(\frac{9+56}{104}=62.5\)%.

(f) Repeat (d) using QDA.

qda_fit<- qda(Direction ~ Lag2, subset = train)
qda_fit
## Call:
## qda(Direction ~ Lag2, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
qda_pred<- predict(qda_fit, Weekly_20092010)
table(qda_pred$class, Direction_20092010)
##       Direction_20092010
##        Down Up
##   Down    0  0
##   Up     43 61
mean(qda_pred$class == Direction_20092010)
## [1] 0.5865385

The percentage of correct prediction for the held out data is \(\frac{0+61}{104}=58.654\)%.

(g) Repeat (d) using KNN with K = 1.

library(class)
train.x <- as.matrix(Lag2[train])
test.x <- as.matrix(Lag2[!train])
train.Direction <- Direction[train]
set.seed(1)
knn_pred <- knn(train.x, test.x, train.Direction, k=1)
table(knn_pred, Direction_20092010)
##         Direction_20092010
## knn_pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn_pred == Direction_20092010)
## [1] 0.5

The percentage of correct prediction for the held out data is \(\frac{21+31}{104}=50\)%.

(h) Which of these methods appears to provide the best results on this data?
The logistic regression and the LDA models have the highest rates of corrext prediction, both at 62.5%, which would be considered the better models.

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

#Logistic regression with Lag2:Lag1
glm_fit3 <- glm(Direction ~ Lag2:Lag1, family = binomial, subset = train)
glm_probs3 <- predict(glm_fit3, Weekly_20092010, type = "response")
glm_pred3 <- rep("Down", length(glm_probs3))
glm_pred3[glm_probs3 > 0.5] = "Up"
Direction2_20092010 <- Direction[!train]
table(glm_pred3, Direction2_20092010)
##          Direction2_20092010
## glm_pred3 Down Up
##      Down    1  1
##      Up     42 60
mean(glm_pred3 == Direction2_20092010)
## [1] 0.5865385
#LDA with Lag2 interaction with Lag1
lda_fit2 <- lda(Direction ~ Lag2:Lag1, subset = train)
lda_pred2 <- predict(lda_fit2, Weekly_20092010)
lda_fit2
## Call:
## lda(Direction ~ Lag2:Lag1, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##       Lag2:Lag1
## Down -0.8014495
## Up   -0.1393632
## 
## Coefficients of linear discriminants:
##                 LD1
## Lag2:Lag1 0.1013404
mean(lda_pred2$class == Direction2_20092010)
## [1] 0.5769231
#KNN k =10
knn_pred2 <- knn(train.x, test.x, train.Direction, k = 10)
table(knn_pred2, Direction2_20092010)
##          Direction2_20092010
## knn_pred2 Down Up
##      Down   17 18
##      Up     26 43
mean(knn_pred2 == Direction2_20092010)
## [1] 0.5769231

The original logistic regression model glm_pred2 and original lda_pred remain the highest in percentage of correct prediction at 62.5%.

detach(Weekly)

Problem 11.

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

library(ISLR)
data(Auto)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

mpg01 <- rep(0, length(Auto$mpg))
mpg01[Auto$mpg > median(Auto$mpg)] = 1
Auto2 <- data.frame(Auto,mpg01)
attach(Auto2)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

pairs(Auto2)

par(mfrow=c(2,2))
boxplot(mpg~cylinders)
plot(mpg~horsepower)
plot(mpg~acceleration)

(c) Split the data into a training set and a test set.

train <- (year%%2 ==0)
test <- !train
Auto2.train <- Auto2[train,]
Auto2.test <- Auto2[test,]
mpg01.test <- mpg01[test]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

library(MASS)
lda_fit3 <- lda(mpg01 ~ cylinders + weight + displacement + horsepower, subset = train)
lda_pred3 = predict(lda_fit3, Auto2.test)
mean(lda_pred3$class != mpg01.test)
## [1] 0.1263736

The test error of this LDA model is 12.64%.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda_fit3<- qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto, subset = train)
qda_pred3 <- predict(qda_fit3, Auto2.test)
mean(qda_pred3$class != mpg01.test)
## [1] 0.1318681

The test error of this QDA model is 13.19%.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

glm_fit4 <- glm(mpg01 ~ cylinders + weight + displacement + horsepower, family = binomial, subset = train)
glm_probs4 <- predict(glm_fit4, Auto2.test, type = "response")
glm_pred4 <- rep(0, length(glm_probs4))
glm_pred4[glm_probs4 > 0.5] = 1
mean(glm_pred4 != mpg01.test)
## [1] 0.1208791

The test error of this logistic regression model is 12.09%.

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

library(class)
train.x2 <- cbind(cylinders, weight, displacement, horsepower)[train, ]
test.x2 <- cbind(cylinders, weight, displacement, horsepower)[test, ]
train.mpg01 <- mpg01[train]
set.seed(1)
#KNN(k=1)
knn_pred3 = knn(train.x2, test.x2, train.mpg01, k = 1)
table(knn_pred3, mpg01.test)
##          mpg01.test
## knn_pred3  0  1
##         0 83 11
##         1 17 71
mean(knn_pred3 != mpg01.test)
## [1] 0.1538462
#KNN(k=10)
knn_pred4 = knn(train.x2, test.x2, train.mpg01, k = 10)
table(knn_pred4, mpg01.test)
##          mpg01.test
## knn_pred4  0  1
##         0 77  7
##         1 23 75
mean(knn_pred4 != mpg01.test)
## [1] 0.1648352
#KNN(k=100)
knn_pred5 = knn(train.x2, test.x2, train.mpg01, k = 100)
table(knn_pred5, mpg01.test)
##          mpg01.test
## knn_pred5  0  1
##         0 81  7
##         1 19 75
mean(knn_pred5 != mpg01.test)
## [1] 0.1428571

Based on the results of the KNN method, for k=1, there is a 15.38% test error rate. For k=10, there is a 16.48% test error rate. For k=100, there is a 14.29% test error rate, which is the lowest error rate and therefore would be the best.

detach(Auto2)

Problem 13.

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

library(MASS)
data(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
crime01 <- rep(0, length(Boston$crim))
crime01[Boston$crim > median(Boston$crim)] = 1
Boston <-data.frame(Boston, crime01)
attach(Boston)
pairs(Boston)

cor(Boston)
##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
## crime01  0.40939545 -0.43615103  0.60326017  0.070096774  0.72323480
##                  rm         age         dis          rad         tax    ptratio
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431  0.2899456
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332 -0.3916785
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018  0.3832476
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652 -0.1215152
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320  0.1889327
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783 -0.3555015
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559  0.2615150
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158 -0.2324705
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819  0.4647412
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000  0.4608530
## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304  1.0000000
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801 -0.1773833
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341  0.3740443
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593 -0.5077867
## crime01 -0.15637178  0.61393992 -0.61634164  0.619786249  0.60874128  0.2535684
##               black      lstat       medv     crime01
## crim    -0.38506394  0.4556215 -0.3883046  0.40939545
## zn       0.17552032 -0.4129946  0.3604453 -0.43615103
## indus   -0.35697654  0.6037997 -0.4837252  0.60326017
## chas     0.04878848 -0.0539293  0.1752602  0.07009677
## nox     -0.38005064  0.5908789 -0.4273208  0.72323480
## rm       0.12806864 -0.6138083  0.6953599 -0.15637178
## age     -0.27353398  0.6023385 -0.3769546  0.61393992
## dis      0.29151167 -0.4969958  0.2499287 -0.61634164
## rad     -0.44441282  0.4886763 -0.3816262  0.61978625
## tax     -0.44180801  0.5439934 -0.4685359  0.60874128
## ptratio -0.17738330  0.3740443 -0.5077867  0.25356836
## black    1.00000000 -0.3660869  0.3334608 -0.35121093
## lstat   -0.36608690  1.0000000 -0.7376627  0.45326273
## medv     0.33346082 -0.7376627  1.0000000 -0.26301673
## crime01 -0.35121093  0.4532627 -0.2630167  1.00000000
train2 <- 1:(dim(Boston)[1]/2)
test2 <- (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston_train <- Boston[train2, ]
Boston_test <- Boston[test2, ]
crime01_test <- crime01[test2]
#logistic regression
glm_fit5 <- glm(crime01 ~ . - crime01 - crim, family = binomial, data = Boston, subset = train2)
#logistic regression
glm_probs5 <- predict(glm_fit5, Boston_test, type = "response")
glm_pred5 <- rep(0, length(glm_probs5))
glm_pred5[glm_probs5 > 0.5] = 1
mean(glm_pred5 != crime01_test)
## [1] 0.1818182
#logistic regression
glm_fit6 <- glm(crime01 ~ . - crime01 - crim - chas - tax, data = Boston, family = binomial, subset = train2)
#logistic regression
glm_probs6 <- predict(glm_fit6, Boston_test, type = "response")
glm_pred6 <- rep(0, length(glm_probs6))
glm_pred6[glm_probs6 > 0.5] = 1
mean(glm_pred6 != crime01_test)
## [1] 0.1857708
#LDA
lda_fit4 <- lda(crime01 ~ . - crime01 - crim, data = Boston, subset = train2)
lda_pred4 <- predict(lda_fit4, Boston_test)
mean(lda_pred4$class != crime01_test)
## [1] 0.1343874
#LDA
lda_fit5 <- lda(crime01 ~ . - crime01 - crim - chas - tax, data = Boston, subset = train2)
lda_pred5 <- predict(lda_fit5, Boston_test)
mean(lda_pred5$class != crime01_test)
## [1] 0.1225296
#LDA
lda_fit6 <- lda(crime01 ~ . - crime01 - crim - chas - tax - lstat - indus - age, data = Boston, subset = train2)
lda_pred6 <- predict(lda_fit6, Boston_test)
mean(lda_pred6$class != crime01_test)
## [1] 0.1185771
#KNN
library(class)
train.X3 <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[train2, ]
test.X3 <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[test2, ]
train_crime01 <- crime01[train2]
set.seed(1)
#KNN(k=1)
knn_pred6 <- knn(train.X3, test.X3, train_crime01, k = 1)
mean(knn_pred6 != crime01_test)
## [1] 0.458498
#KNN(k=10)
knn_pred7 <- knn(train.X3, test.X3, train_crime01, k = 10)
mean(knn_pred7 != crime01_test)
## [1] 0.1185771
#KNN(k=100)
knn_pred8 <- knn(train.X3, test.X3, train_crime01, k = 100)
mean(knn_pred8 != crime01_test)
## [1] 0.4901186

Based on the model output, lda_fit6 and KNN of k=10 are the lowest error rate at 11.86%.

detach(Boston)