#packages
library("tidyverse")
── Attaching packages ──────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.2 ✓ purrr 0.3.4
✓ tibble 3.0.2 ✓ dplyr 1.0.0
✓ tidyr 1.1.0 ✓ stringr 1.4.0
✓ readr 1.3.1 ✓ forcats 0.5.0
── Conflicts ─────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
#abro df
df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQnW03NbVujy31CzAGJ-XZXNcXQ6WR5iw9JWYGcwytIca8ItQvJARfLUejUZSs3FXVGzxoEehcdy-lj/pub?gid=1934081665&single=true&output=csv")
#agrupo por tipo de instrumentacion y calculo medidas para tercio coronal
options(digits = 4)
df %>%
group_by(Tipo.de.instrumentacion) %>%
summarise(n=n(), promedio = mean(Tercio_coronal), sd = sd(Tercio_coronal), mediana = median(Tercio_coronal))
`summarise()` ungrouping output (override with `.groups` argument)
#agrupo por tipo de instrumentacion y calculo medidas para tercio medio
options(digits = 4)
df %>%
group_by(Tipo.de.instrumentacion) %>%
summarise(n=n(), promedio = mean(Tercio_medio), sd = sd(Tercio_medio), mediana = median(Tercio_medio))
`summarise()` ungrouping output (override with `.groups` argument)
#agrupo por tipo de instrumentacion y calculo medidas para tercio apical
options(digits = 4)
df %>%
group_by(Tipo.de.instrumentacion) %>%
summarise(n=n(), promedio = mean(Tercio_apical), sd = sd(Tercio_apical), mediana = median(Tercio_apical))
`summarise()` ungrouping output (override with `.groups` argument)
#agrupo tipo instrumentacion por alcance(mm)
options(digits = 4)
df %>%
group_by(Tipo.de.instrumentacion) %>%
summarise(n=n(), promedio = mean(alcance.medicacion.mm.), sd = sd(alcance.medicacion.mm.), mediana = median(alcance.medicacion.mm.))
`summarise()` ungrouping output (override with `.groups` argument)
#agrupar los datos en una variable
df1 <- df %>%
gather(key = "Tercio", value = "Puntaje", Tercio_coronal:Tercio_apical)
#agrupò
df1 %>%
group_by(Tercio,Tipo.de.instrumentacion, Puntaje) %>%
summarise(suma = n())
`summarise()` regrouping output by 'Tercio', 'Tipo.de.instrumentacion' (override with `.groups` argument)
#existe diferencia al instrumentar y el alcance de la medicación ???
t.test(df$alcance.medicacion.mm.~df$Tipo.de.instrumentacion)
Welch Two Sample t-test
data: df$alcance.medicacion.mm. by df$Tipo.de.instrumentacion
t = -3.3, df = 84, p-value = 0.002
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.8993 -0.2198
sample estimates:
mean in group Instrumentado mean in group Sin instrumentar
1.857 2.417
#para coronal
t.test(df$Tercio_coronal~df$Tipo.de.instrumentacion)
Welch Two Sample t-test
data: df$Tercio_coronal by df$Tipo.de.instrumentacion
t = -4.1, df = 47, p-value = 2e-04
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5608 -0.1892
sample estimates:
mean in group Instrumentado mean in group Sin instrumentar
1.000 1.375
#para medio
t.test(df$Tercio_medio~df$Tipo.de.instrumentacion)
Welch Two Sample t-test
data: df$Tercio_medio by df$Tipo.de.instrumentacion
t = -2.2, df = 88, p-value = 0.03
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.80687 -0.04432
sample estimates:
mean in group Instrumentado mean in group Sin instrumentar
1.429 1.854
#para apical
t.test(df$Tercio_apical~df$Tipo.de.instrumentacion)
Welch Two Sample t-test
data: df$Tercio_apical by df$Tipo.de.instrumentacion
t = -3.2, df = 88, p-value = 0.002
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.2187 -0.2932
sample estimates:
mean in group Instrumentado mean in group Sin instrumentar
2.286 3.042
#agrupar los datos
df2 <- df %>%
gather(key = "Calidad", value = "Valor", Tercio_coronal:Tercio_apical)
#resultados
df2 %>%
group_by(Calidad, Valor, Tipo.de.instrumentacion) %>%
summarise(suma = n())
`summarise()` regrouping output by 'Calidad', 'Valor' (override with `.groups` argument)
#graficas
df2 %>%
group_by(Calidad, Valor, Tipo.de.instrumentacion) %>%
summarise(suma = n()) %>%
ggplot(aes(x= Valor, y= suma, fill=Tipo.de.instrumentacion))+
geom_col() +
facet_wrap(~Calidad)+
coord_flip() +
theme_classic() +
ggtitle("Densidad de la medicacion por tercio segun frecuencia de puntaje") +
xlab("Puntaje segun densidad") +
ylab("Frecuencia") +
labs(fill = "Tipo de instrumentacion")
`summarise()` regrouping output by 'Calidad', 'Valor' (override with `.groups` argument)
#para alcance
df %>%
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
5: In readChar(file, size, TRUE) : truncating string with embedded nuls
6: In readChar(file, size, TRUE) : truncating string with embedded nuls
7: In readChar(file, size, TRUE) : truncating string with embedded nuls
8: In readChar(file, size, TRUE) : truncating string with embedded nuls
9: In readChar(file, size, TRUE) : truncating string with embedded nuls
10: In readChar(file, size, TRUE) : truncating string with embedded nuls
group_by(alcance.medicacion.mm., Tipo.de.instrumentacion) %>%
summarise(suma = n()) %>%
ggplot(aes(x= alcance.medicacion.mm., y= suma, fill= Tipo.de.instrumentacion))+
geom_col()+
theme_classic()+
scale_fill_manual(values=c("lightblue", "indianred1")) +
coord_flip() +
ggtitle("Alcance de medicacion en grupos de dientes segun frecuencia de puntaje") +
xlab("Puntaje segun alcance") +
ylab("Frecuencia") +
labs(fill = "Tipo de instrumentacion")
`summarise()` regrouping output by 'alcance.medicacion.mm.' (override with `.groups` argument)