#packages

library("tidyverse")
── Attaching packages ──────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.2     ✓ purrr   0.3.4
✓ tibble  3.0.2     ✓ dplyr   1.0.0
✓ tidyr   1.1.0     ✓ stringr 1.4.0
✓ readr   1.3.1     ✓ forcats 0.5.0
── Conflicts ─────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()

#abro df

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQnW03NbVujy31CzAGJ-XZXNcXQ6WR5iw9JWYGcwytIca8ItQvJARfLUejUZSs3FXVGzxoEehcdy-lj/pub?gid=1934081665&single=true&output=csv")

#agrupo por tipo de instrumentacion y calculo medidas para tercio coronal

options(digits = 4)
df %>% 
  group_by(Tipo.de.instrumentacion) %>% 
  summarise(n=n(),  promedio = mean(Tercio_coronal), sd = sd(Tercio_coronal), mediana = median(Tercio_coronal))
`summarise()` ungrouping output (override with `.groups` argument)

#agrupo por tipo de instrumentacion y calculo medidas para tercio medio

options(digits = 4)
df %>% 
  group_by(Tipo.de.instrumentacion) %>% 
  summarise(n=n(), promedio = mean(Tercio_medio), sd = sd(Tercio_medio), mediana = median(Tercio_medio))
`summarise()` ungrouping output (override with `.groups` argument)

#agrupo por tipo de instrumentacion y calculo medidas para tercio apical

options(digits = 4)
df %>% 
  group_by(Tipo.de.instrumentacion) %>% 
  summarise(n=n(), promedio = mean(Tercio_apical), sd = sd(Tercio_apical), mediana = median(Tercio_apical))
`summarise()` ungrouping output (override with `.groups` argument)

#agrupo tipo instrumentacion por alcance(mm)

options(digits = 4)
df %>% 
  group_by(Tipo.de.instrumentacion) %>% 
  summarise(n=n(), promedio = mean(alcance.medicacion.mm.), sd = sd(alcance.medicacion.mm.), mediana = median(alcance.medicacion.mm.))
`summarise()` ungrouping output (override with `.groups` argument)

#agrupar los datos en una variable

df1 <- df %>% 
gather(key = "Tercio", value = "Puntaje", Tercio_coronal:Tercio_apical)

#agrupò

df1 %>% 
  group_by(Tercio,Tipo.de.instrumentacion, Puntaje) %>% 
  summarise(suma = n())  
`summarise()` regrouping output by 'Tercio', 'Tipo.de.instrumentacion' (override with `.groups` argument)

#existe diferencia al instrumentar y el alcance de la medicación ???

t.test(df$alcance.medicacion.mm.~df$Tipo.de.instrumentacion)

    Welch Two Sample t-test

data:  df$alcance.medicacion.mm. by df$Tipo.de.instrumentacion
t = -3.3, df = 84, p-value = 0.002
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.8993 -0.2198
sample estimates:
   mean in group Instrumentado mean in group Sin instrumentar 
                         1.857                          2.417 

#para coronal

t.test(df$Tercio_coronal~df$Tipo.de.instrumentacion)

    Welch Two Sample t-test

data:  df$Tercio_coronal by df$Tipo.de.instrumentacion
t = -4.1, df = 47, p-value = 2e-04
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5608 -0.1892
sample estimates:
   mean in group Instrumentado mean in group Sin instrumentar 
                         1.000                          1.375 

#para medio

t.test(df$Tercio_medio~df$Tipo.de.instrumentacion)

    Welch Two Sample t-test

data:  df$Tercio_medio by df$Tipo.de.instrumentacion
t = -2.2, df = 88, p-value = 0.03
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.80687 -0.04432
sample estimates:
   mean in group Instrumentado mean in group Sin instrumentar 
                         1.429                          1.854 

#para apical

t.test(df$Tercio_apical~df$Tipo.de.instrumentacion)

    Welch Two Sample t-test

data:  df$Tercio_apical by df$Tipo.de.instrumentacion
t = -3.2, df = 88, p-value = 0.002
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.2187 -0.2932
sample estimates:
   mean in group Instrumentado mean in group Sin instrumentar 
                         2.286                          3.042 

#agrupar los datos

df2 <- df %>% 
gather(key = "Calidad", value = "Valor", Tercio_coronal:Tercio_apical)

#resultados

df2 %>% 
  group_by(Calidad, Valor, Tipo.de.instrumentacion) %>% 
  summarise(suma = n())  
`summarise()` regrouping output by 'Calidad', 'Valor' (override with `.groups` argument)

#graficas

df2 %>% 
  group_by(Calidad, Valor, Tipo.de.instrumentacion) %>% 
  summarise(suma = n())  %>% 
  ggplot(aes(x= Valor, y= suma, fill=Tipo.de.instrumentacion))+
  geom_col() +
  facet_wrap(~Calidad)+
  coord_flip() + 
  theme_classic() +
  ggtitle("Densidad de la medicacion por tercio segun frecuencia de puntaje") +
xlab("Puntaje segun densidad") + 
ylab("Frecuencia") +
labs(fill = "Tipo de instrumentacion")
`summarise()` regrouping output by 'Calidad', 'Valor' (override with `.groups` argument)

#para alcance

df %>% 
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
5: In readChar(file, size, TRUE) : truncating string with embedded nuls
6: In readChar(file, size, TRUE) : truncating string with embedded nuls
7: In readChar(file, size, TRUE) : truncating string with embedded nuls
8: In readChar(file, size, TRUE) : truncating string with embedded nuls
9: In readChar(file, size, TRUE) : truncating string with embedded nuls
10: In readChar(file, size, TRUE) : truncating string with embedded nuls
  group_by(alcance.medicacion.mm., Tipo.de.instrumentacion) %>% 
  summarise(suma = n())  %>% 
  ggplot(aes(x= alcance.medicacion.mm., y= suma, fill= Tipo.de.instrumentacion))+
  geom_col()+
  theme_classic()+
  scale_fill_manual(values=c("lightblue", "indianred1")) + 
  coord_flip() +
  ggtitle("Alcance de medicacion en grupos de dientes segun frecuencia de puntaje") +
xlab("Puntaje segun alcance") + 
ylab("Frecuencia") +
labs(fill = "Tipo de instrumentacion")
`summarise()` regrouping output by 'alcance.medicacion.mm.' (override with `.groups` argument)

LS0tCnRpdGxlOiAiMjAyMF9UZXNpcyBtZWRpY2FjacOzbiB5IGzDqW50dWxvIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKYGBgCiNhYnJvIGRmCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlFuVzAzTmJWdWp5MzFDekFHSi1YWlhOY1hRNldSNWl3OUpXWUdjd3l0SWNhOEl0UXZKQVJmTFVlalVaU3MzRlhWR3p4b0VlaGNkeS1sai9wdWI/Z2lkPTE5MzQwODE2NjUmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojYWdydXBvIHBvciB0aXBvIGRlIGluc3RydW1lbnRhY2lvbiB5IGNhbGN1bG8gbWVkaWRhcyBwYXJhIHRlcmNpbyBjb3JvbmFsIApgYGB7cn0Kb3B0aW9ucyhkaWdpdHMgPSA0KQpkZiAlPiUgCiAgZ3JvdXBfYnkoVGlwby5kZS5pbnN0cnVtZW50YWNpb24pICU+JSAKICBzdW1tYXJpc2Uobj1uKCksICBwcm9tZWRpbyA9IG1lYW4oVGVyY2lvX2Nvcm9uYWwpLCBzZCA9IHNkKFRlcmNpb19jb3JvbmFsKSwgbWVkaWFuYSA9IG1lZGlhbihUZXJjaW9fY29yb25hbCkpCmBgYAojYWdydXBvIHBvciB0aXBvIGRlIGluc3RydW1lbnRhY2lvbiB5IGNhbGN1bG8gbWVkaWRhcyBwYXJhIHRlcmNpbyBtZWRpbyAKYGBge3J9Cm9wdGlvbnMoZGlnaXRzID0gNCkKZGYgJT4lIAogIGdyb3VwX2J5KFRpcG8uZGUuaW5zdHJ1bWVudGFjaW9uKSAlPiUgCiAgc3VtbWFyaXNlKG49bigpLCBwcm9tZWRpbyA9IG1lYW4oVGVyY2lvX21lZGlvKSwgc2QgPSBzZChUZXJjaW9fbWVkaW8pLCBtZWRpYW5hID0gbWVkaWFuKFRlcmNpb19tZWRpbykpCmBgYAojYWdydXBvIHBvciB0aXBvIGRlIGluc3RydW1lbnRhY2lvbiB5IGNhbGN1bG8gbWVkaWRhcyBwYXJhIHRlcmNpbyBhcGljYWwgCmBgYHtyfQpvcHRpb25zKGRpZ2l0cyA9IDQpCmRmICU+JSAKICBncm91cF9ieShUaXBvLmRlLmluc3RydW1lbnRhY2lvbikgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgcHJvbWVkaW8gPSBtZWFuKFRlcmNpb19hcGljYWwpLCBzZCA9IHNkKFRlcmNpb19hcGljYWwpLCBtZWRpYW5hID0gbWVkaWFuKFRlcmNpb19hcGljYWwpKQpgYGAKI2FncnVwbyB0aXBvIGluc3RydW1lbnRhY2lvbiBwb3IgYWxjYW5jZShtbSkgCmBgYHtyfQpvcHRpb25zKGRpZ2l0cyA9IDQpCmRmICU+JSAKICBncm91cF9ieShUaXBvLmRlLmluc3RydW1lbnRhY2lvbikgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgcHJvbWVkaW8gPSBtZWFuKGFsY2FuY2UubWVkaWNhY2lvbi5tbS4pLCBzZCA9IHNkKGFsY2FuY2UubWVkaWNhY2lvbi5tbS4pLCBtZWRpYW5hID0gbWVkaWFuKGFsY2FuY2UubWVkaWNhY2lvbi5tbS4pKQpgYGAKI2FncnVwYXIgbG9zIGRhdG9zIGVuIHVuYSB2YXJpYWJsZSAKYGBge3J9CmRmMSA8LSBkZiAlPiUgCmdhdGhlcihrZXkgPSAiVGVyY2lvIiwgdmFsdWUgPSAiUHVudGFqZSIsIFRlcmNpb19jb3JvbmFsOlRlcmNpb19hcGljYWwpCmBgYAojYWdydXDDsgpgYGB7cn0KZGYxICU+JSAKICBncm91cF9ieShUZXJjaW8sVGlwby5kZS5pbnN0cnVtZW50YWNpb24sIFB1bnRhamUpICU+JSAKICBzdW1tYXJpc2Uoc3VtYSA9IG4oKSkgIApgYGAKI2V4aXN0ZSBkaWZlcmVuY2lhIGFsIGluc3RydW1lbnRhciB5IGVsIGFsY2FuY2UgZGUgbGEgbWVkaWNhY2nDs24gPz8/CmBgYHtyfQp0LnRlc3QoZGYkYWxjYW5jZS5tZWRpY2FjaW9uLm1tLn5kZiRUaXBvLmRlLmluc3RydW1lbnRhY2lvbikKYGBgCiNwYXJhIGNvcm9uYWwKYGBge3J9CnQudGVzdChkZiRUZXJjaW9fY29yb25hbH5kZiRUaXBvLmRlLmluc3RydW1lbnRhY2lvbikKYGBgCiNwYXJhIG1lZGlvCmBgYHtyfQp0LnRlc3QoZGYkVGVyY2lvX21lZGlvfmRmJFRpcG8uZGUuaW5zdHJ1bWVudGFjaW9uKQpgYGAKI3BhcmEgYXBpY2FsIApgYGB7cn0KdC50ZXN0KGRmJFRlcmNpb19hcGljYWx+ZGYkVGlwby5kZS5pbnN0cnVtZW50YWNpb24pCmBgYAojYWdydXBhciBsb3MgZGF0b3MgCmBgYHtyfQpkZjIgPC0gZGYgJT4lIApnYXRoZXIoa2V5ID0gIkNhbGlkYWQiLCB2YWx1ZSA9ICJWYWxvciIsIFRlcmNpb19jb3JvbmFsOlRlcmNpb19hcGljYWwpCmBgYAojcmVzdWx0YWRvcyAKYGBge3J9CmRmMiAlPiUgCiAgZ3JvdXBfYnkoQ2FsaWRhZCwgVmFsb3IsIFRpcG8uZGUuaW5zdHJ1bWVudGFjaW9uKSAlPiUgCiAgc3VtbWFyaXNlKHN1bWEgPSBuKCkpICAKYGBgCiNncmFmaWNhcyAKYGBge3J9CmRmMiAlPiUgCiAgZ3JvdXBfYnkoQ2FsaWRhZCwgVmFsb3IsIFRpcG8uZGUuaW5zdHJ1bWVudGFjaW9uKSAlPiUgCiAgc3VtbWFyaXNlKHN1bWEgPSBuKCkpICAlPiUgCiAgZ2dwbG90KGFlcyh4PSBWYWxvciwgeT0gc3VtYSwgZmlsbD1UaXBvLmRlLmluc3RydW1lbnRhY2lvbikpKwogIGdlb21fY29sKCkgKwogIGZhY2V0X3dyYXAofkNhbGlkYWQpKwogIGNvb3JkX2ZsaXAoKSArIAogIHRoZW1lX2NsYXNzaWMoKSArCiAgZ2d0aXRsZSgiRGVuc2lkYWQgZGUgbGEgbWVkaWNhY2lvbiBwb3IgdGVyY2lvIHNlZ3VuIGZyZWN1ZW5jaWEgZGUgcHVudGFqZSIpICsKeGxhYigiUHVudGFqZSBzZWd1biBkZW5zaWRhZCIpICsgCnlsYWIoIkZyZWN1ZW5jaWEiKSArCmxhYnMoZmlsbCA9ICJUaXBvIGRlIGluc3RydW1lbnRhY2lvbiIpCmBgYAojcGFyYSBhbGNhbmNlIApgYGB7cn0KZGYgJT4lIAogIGdyb3VwX2J5KGFsY2FuY2UubWVkaWNhY2lvbi5tbS4sIFRpcG8uZGUuaW5zdHJ1bWVudGFjaW9uKSAlPiUgCiAgc3VtbWFyaXNlKHN1bWEgPSBuKCkpICAlPiUgCiAgZ2dwbG90KGFlcyh4PSBhbGNhbmNlLm1lZGljYWNpb24ubW0uLCB5PSBzdW1hLCBmaWxsPSBUaXBvLmRlLmluc3RydW1lbnRhY2lvbikpKwogIGdlb21fY29sKCkrCiAgdGhlbWVfY2xhc3NpYygpKwogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcz1jKCJsaWdodGJsdWUiLCAiaW5kaWFucmVkMSIpKSArIAogIGNvb3JkX2ZsaXAoKSArCiAgZ2d0aXRsZSgiQWxjYW5jZSBkZSBtZWRpY2FjaW9uIGVuIGdydXBvcyBkZSBkaWVudGVzIHNlZ3VuIGZyZWN1ZW5jaWEgZGUgcHVudGFqZSIpICsKeGxhYigiUHVudGFqZSBzZWd1biBhbGNhbmNlIikgKyAKeWxhYigiRnJlY3VlbmNpYSIpICsKbGFicyhmaWxsID0gIlRpcG8gZGUgaW5zdHJ1bWVudGFjaW9uIikKYGBgCgoKCgoK