Analysis of the provided Networks.
Let’s read the structure
## Loading required package: plyr
## Loading required package: xtable
## Loading required package: igraph
## Loading required package: doMC
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: parallel
Now we will build up the structural networks:
Types of networks.
For the particular type of size = 3 the meaning of each of the motifs can be found here: http://igraph.org/c/doc/igraph-Motifs.html
#
# for ( i in 1:length(graph.motifs(tnets,3))) {
# cat(paste("<br>Isomorfism size: 3. Motif number:",(i),"<br>",sep=""))
# plot(graph.isocreate(size=3,number=(i-1),directed=TRUE))
# }
#
# for ( i in 1:length(graph.motifs(tnets,4))) {
# cat(paste("<br>Isomorfism size: 4. Motif number:",(i),"<br>",sep=""))
# plot(graph.isocreate(size=4,number=(i-1),directed=TRUE))
# }
Structural parameters of the networks
Let’s have a look into the network’s motifs.
#
cfgplt=function(net) {
V(net)$size=degree(net)*1.2+3
# layout = layout.reingold.tilford(net, circular=T)
layout = layout.lgl
plot.igraph(net,layout=layout,edge.arrow.size=0.25)
}
nm3s=unlist(lapply(nets,graph.motifs.no,size=3))
tnm3s=graph.motifs.no(tnets,size=3)
nm3f=unlist(lapply(nets,graph.motifs.no,size=3))
tnm3f=graph.motifs.no(tnetf,size=3)
print(xtable(as.data.frame(nm3s)),type="html")
|
nm3s
|
0
|
8
|
1
|
113
|
2
|
63
|
3
|
145
|
4
|
89
|
5
|
66
|
6
|
71
|
7
|
99
|
8
|
85
|
9
|
63
|
print(xtable(as.data.frame(tnm3s)),type="html")
print(xtable(as.data.frame(nm3f)),type="html")
|
nm3f
|
0
|
8
|
1
|
113
|
2
|
63
|
3
|
145
|
4
|
89
|
5
|
66
|
6
|
71
|
7
|
99
|
8
|
85
|
9
|
63
|
print(xtable(as.data.frame(tnm3f)),type="html")
print(xtable(ldply(nets,graph.motifs,size=3)),type="html")
|
.id
|
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
V11
|
V12
|
V13
|
V14
|
V15
|
V16
|
1
|
0
|
|
|
0.00
|
|
2.00
|
0.00
|
3.00
|
3.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
2
|
1
|
|
|
33.00
|
|
53.00
|
0.00
|
10.00
|
17.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
3
|
2
|
|
|
16.00
|
|
27.00
|
0.00
|
12.00
|
8.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
4
|
3
|
|
|
50.00
|
|
66.00
|
1.00
|
7.00
|
16.00
|
0.00
|
2.00
|
0.00
|
0.00
|
1.00
|
2.00
|
0.00
|
0.00
|
5
|
4
|
|
|
14.00
|
|
17.00
|
10.00
|
1.00
|
4.00
|
0.00
|
10.00
|
25.00
|
0.00
|
0.00
|
2.00
|
2.00
|
4.00
|
6
|
5
|
|
|
3.00
|
|
4.00
|
14.00
|
1.00
|
0.00
|
0.00
|
15.00
|
20.00
|
0.00
|
2.00
|
2.00
|
3.00
|
2.00
|
7
|
6
|
|
|
15.00
|
|
41.00
|
0.00
|
7.00
|
8.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
8
|
7
|
|
|
21.00
|
|
55.00
|
0.00
|
9.00
|
14.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
9
|
8
|
|
|
19.00
|
|
47.00
|
0.00
|
6.00
|
13.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
10
|
9
|
|
|
13.00
|
|
35.00
|
0.00
|
6.00
|
9.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
print(xtable(as.data.frame(graph.motifs(tnets,size=3))),type="html")
|
graph.motifs(tnets, size = 3)
|
1
|
|
2
|
|
3
|
269.00
|
4
|
|
5
|
382.00
|
6
|
25.00
|
7
|
51.00
|
8
|
103.00
|
9
|
0.00
|
10
|
27.00
|
11
|
45.00
|
12
|
0.00
|
13
|
3.00
|
14
|
6.00
|
15
|
5.00
|
16
|
6.00
|
print(xtable(ldply(netf,graph.motifs,size=3)),type="html")
|
.id
|
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
V11
|
V12
|
V13
|
V14
|
V15
|
V16
|
1
|
0
|
|
|
15.00
|
|
0.00
|
0.00
|
56.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
0.00
|
2
|
1
|
|
|
0.00
|
|
2.00
|
13.00
|
1.00
|
0.00
|
0.00
|
19.00
|
120.00
|
0.00
|
0.00
|
0.00
|
13.00
|
35.00
|
3
|
2
|
|
|
17.00
|
|
46.00
|
44.00
|
22.00
|
15.00
|
6.00
|
38.00
|
21.00
|
2.00
|
13.00
|
10.00
|
8.00
|
2.00
|
4
|
3
|
|
|
135.00
|
|
242.00
|
139.00
|
138.00
|
77.00
|
39.00
|
169.00
|
25.00
|
11.00
|
35.00
|
28.00
|
31.00
|
6.00
|
5
|
4
|
|
|
69.00
|
|
84.00
|
90.00
|
47.00
|
53.00
|
23.00
|
85.00
|
13.00
|
11.00
|
46.00
|
16.00
|
41.00
|
5.00
|
6
|
5
|
|
|
25.00
|
|
33.00
|
45.00
|
16.00
|
21.00
|
14.00
|
35.00
|
21.00
|
10.00
|
21.00
|
17.00
|
20.00
|
8.00
|
7
|
6
|
|
|
4.00
|
|
16.00
|
25.00
|
6.00
|
4.00
|
3.00
|
22.00
|
9.00
|
0.00
|
0.00
|
1.00
|
12.00
|
6.00
|
8
|
7
|
|
|
9.00
|
|
40.00
|
25.00
|
14.00
|
4.00
|
7.00
|
27.00
|
13.00
|
1.00
|
4.00
|
5.00
|
12.00
|
7.00
|
9
|
8
|
|
|
4.00
|
|
17.00
|
17.00
|
6.00
|
4.00
|
0.00
|
21.00
|
5.00
|
0.00
|
3.00
|
3.00
|
7.00
|
4.00
|
10
|
9
|
|
|
0.00
|
|
2.00
|
11.00
|
2.00
|
4.00
|
3.00
|
25.00
|
20.00
|
0.00
|
2.00
|
3.00
|
6.00
|
4.00
|
print(xtable(as.data.frame(graph.motifs(tnetf,size=3))),type="html")
|
graph.motifs(tnetf, size = 3)
|
1
|
|
2
|
|
3
|
314.00
|
4
|
|
5
|
593.00
|
6
|
496.00
|
7
|
281.00
|
8
|
179.00
|
9
|
97.00
|
10
|
445.00
|
11
|
268.00
|
12
|
37.00
|
13
|
126.00
|
14
|
81.00
|
15
|
151.00
|
16
|
78.00
|
#
nm4s=unlist(lapply(nets,graph.motifs.no,size=4))
tnm4s=graph.motifs.no(tnets,size=4)
nm4f=unlist(lapply(nets,graph.motifs.no,size=4))
tnm4f=graph.motifs.no(tnetf,size=4)
print(xtable(as.data.frame(nm4s)),type="html")
|
nm4s
|
0
|
5
|
1
|
364
|
2
|
175
|
3
|
499
|
4
|
265
|
5
|
178
|
6
|
190
|
7
|
281
|
8
|
231
|
9
|
154
|
print(xtable(as.data.frame(tnm4s)),type="html")
print(xtable(as.data.frame(nm4f)),type="html")
|
nm4f
|
0
|
5
|
1
|
364
|
2
|
175
|
3
|
499
|
4
|
265
|
5
|
178
|
6
|
190
|
7
|
281
|
8
|
231
|
9
|
154
|
print(xtable(as.data.frame(tnm4f)),type="html")
print(xtable(t(ldply(nets,graph.motifs,size=4))),type="html")
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
.id
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
V1
|
|
|
|
|
|
|
|
|
|
|
V2
|
|
|
|
|
|
|
|
|
|
|
V3
|
|
|
|
|
|
|
|
|
|
|
V4
|
0
|
17
|
7
|
36
|
6
|
0
|
4
|
6
|
4
|
2
|
V5
|
|
|
|
|
|
|
|
|
|
|
V6
|
|
|
|
|
|
|
|
|
|
|
V7
|
|
|
|
|
|
|
|
|
|
|
V8
|
0
|
40
|
5
|
73
|
21
|
2
|
29
|
30
|
22
|
21
|
V9
|
0
|
0
|
0
|
0
|
6
|
5
|
0
|
0
|
0
|
0
|
V10
|
|
|
|
|
|
|
|
|
|
|
V11
|
|
|
|
|
|
|
|
|
|
|
V12
|
|
|
|
|
|
|
|
|
|
|
V13
|
0
|
70
|
33
|
173
|
19
|
0
|
36
|
46
|
62
|
27
|
V14
|
0
|
26
|
37
|
16
|
0
|
0
|
9
|
18
|
9
|
6
|
V15
|
0
|
25
|
12
|
39
|
7
|
0
|
11
|
17
|
12
|
10
|
V16
|
|
|
|
|
|
|
|
|
|
|
V17
|
0
|
0
|
0
|
0
|
0
|
6
|
0
|
0
|
0
|
0
|
V18
|
0
|
16
|
0
|
16
|
0
|
0
|
6
|
13
|
15
|
8
|
V19
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V20
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
V21
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
V22
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V23
|
|
|
|
|
|
|
|
|
|
|
V24
|
|
|
|
|
|
|
|
|
|
|
V25
|
0
|
30
|
30
|
12
|
5
|
0
|
18
|
22
|
9
|
16
|
V26
|
0
|
0
|
0
|
0
|
8
|
4
|
0
|
0
|
0
|
0
|
V27
|
0
|
0
|
0
|
0
|
0
|
9
|
0
|
0
|
0
|
0
|
V28
|
|
|
|
|
|
|
|
|
|
|
V29
|
|
|
|
|
|
|
|
|
|
|
V30
|
1
|
40
|
13
|
57
|
11
|
0
|
32
|
57
|
31
|
16
|
V31
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V32
|
0
|
0
|
0
|
0
|
2
|
6
|
0
|
0
|
0
|
0
|
V33
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V34
|
|
|
|
|
|
|
|
|
|
|
V35
|
|
|
|
|
|
|
|
|
|
|
V36
|
0
|
26
|
3
|
15
|
0
|
0
|
10
|
11
|
19
|
14
|
V37
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V38
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
V39
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V40
|
|
|
|
|
|
|
|
|
|
|
V41
|
0
|
0
|
0
|
0
|
1
|
4
|
0
|
0
|
0
|
0
|
V42
|
0
|
15
|
10
|
7
|
0
|
0
|
5
|
16
|
9
|
5
|
V43
|
0
|
34
|
10
|
28
|
7
|
0
|
18
|
27
|
21
|
17
|
V44
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V45
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
V46
|
0
|
0
|
0
|
0
|
22
|
0
|
0
|
0
|
0
|
0
|
V47
|
0
|
0
|
0
|
0
|
29
|
24
|
0
|
0
|
0
|
0
|
V48
|
0
|
1
|
1
|
0
|
0
|
0
|
4
|
5
|
5
|
3
|
V49
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V50
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
V51
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V52
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V53
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
V54
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V55
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V56
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V57
|
0
|
0
|
0
|
2
|
3
|
1
|
0
|
0
|
0
|
0
|
V58
|
0
|
0
|
0
|
0
|
8
|
2
|
0
|
0
|
0
|
0
|
V59
|
0
|
8
|
4
|
6
|
2
|
0
|
3
|
5
|
6
|
2
|
V60
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V61
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V62
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V63
|
|
|
|
|
|
|
|
|
|
|
V64
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V65
|
0
|
0
|
0
|
0
|
4
|
2
|
0
|
0
|
0
|
0
|
V66
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
V67
|
0
|
2
|
0
|
3
|
0
|
0
|
2
|
0
|
3
|
2
|
V68
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
2
|
0
|
0
|
V69
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V70
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V71
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V72
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V73
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V74
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V75
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V76
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V77
|
0
|
2
|
10
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
V78
|
2
|
6
|
0
|
1
|
0
|
0
|
0
|
2
|
1
|
0
|
V79
|
0
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
V80
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V81
|
2
|
2
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
2
|
V82
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V83
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
V84
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
V85
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V86
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V87
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V88
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V89
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V90
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V91
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V92
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V93
|
0
|
0
|
0
|
0
|
1
|
6
|
0
|
0
|
0
|
0
|
V94
|
0
|
0
|
0
|
0
|
3
|
23
|
0
|
0
|
0
|
0
|
V95
|
0
|
0
|
0
|
0
|
12
|
8
|
0
|
0
|
0
|
0
|
V96
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V97
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V98
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V99
|
0
|
0
|
0
|
5
|
7
|
0
|
0
|
0
|
0
|
0
|
V100
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V101
|
0
|
0
|
0
|
0
|
9
|
7
|
0
|
0
|
0
|
0
|
V102
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
V103
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V104
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
V105
|
0
|
0
|
0
|
0
|
0
|
4
|
0
|
0
|
0
|
0
|
V106
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V107
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V108
|
0
|
0
|
0
|
0
|
1
|
3
|
0
|
0
|
0
|
0
|
V109
|
0
|
0
|
0
|
0
|
6
|
7
|
0
|
0
|
0
|
0
|
V110
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V111
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V112
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V113
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V114
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V115
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V116
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V117
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V118
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V119
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V120
|
0
|
0
|
0
|
3
|
2
|
0
|
0
|
0
|
0
|
0
|
V121
|
|
|
|
|
|
|
|
|
|
|
V122
|
0
|
0
|
0
|
0
|
4
|
3
|
0
|
0
|
0
|
0
|
V123
|
0
|
0
|
0
|
0
|
2
|
2
|
0
|
0
|
0
|
0
|
V124
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
V125
|
0
|
0
|
0
|
0
|
2
|
1
|
0
|
0
|
0
|
0
|
V126
|
0
|
0
|
0
|
0
|
24
|
16
|
0
|
0
|
0
|
0
|
V127
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V128
|
0
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
V129
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V130
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V131
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V132
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V133
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V134
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V135
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V136
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V137
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V138
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V139
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V140
|
0
|
0
|
0
|
0
|
3
|
4
|
0
|
0
|
0
|
0
|
V141
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V142
|
0
|
0
|
0
|
0
|
4
|
1
|
0
|
0
|
0
|
0
|
V143
|
0
|
0
|
0
|
0
|
10
|
7
|
0
|
0
|
0
|
0
|
V144
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V145
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V146
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V147
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V148
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V149
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V150
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V151
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V152
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V153
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V154
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V155
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
V156
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V157
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V158
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V159
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V160
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V161
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V162
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V163
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V164
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V165
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V166
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V167
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V168
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V169
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V170
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V171
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V172
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V173
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V174
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
V175
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V176
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V177
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V178
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V179
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V180
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V181
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V182
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V183
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V184
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V185
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V186
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V187
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V188
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V189
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V190
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V191
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V192
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V193
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V194
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V195
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V196
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V197
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V198
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V199
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V200
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V201
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V202
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V203
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
V204
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V205
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V206
|
0
|
0
|
0
|
0
|
2
|
1
|
0
|
0
|
0
|
0
|
V207
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V208
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V209
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V210
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V211
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V212
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V213
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V214
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V215
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V216
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V217
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V218
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
print(xtable(as.data.frame(graph.motifs(tnets,size=4))),type="html")
|
graph.motifs(tnets, size = 4)
|
1
|
|
2
|
|
3
|
|
4
|
187.00
|
5
|
|
6
|
|
7
|
|
8
|
317.00
|
9
|
11.00
|
10
|
|
11
|
|
12
|
|
13
|
1199.00
|
14
|
234.00
|
15
|
211.00
|
16
|
|
17
|
6.00
|
18
|
128.00
|
19
|
0.00
|
20
|
2.00
|
21
|
17.00
|
22
|
0.00
|
23
|
|
24
|
|
25
|
110.00
|
26
|
12.00
|
27
|
9.00
|
28
|
|
29
|
|
30
|
402.00
|
31
|
0.00
|
32
|
8.00
|
33
|
1.00
|
34
|
|
35
|
|
36
|
155.00
|
37
|
0.00
|
38
|
4.00
|
39
|
0.00
|
40
|
|
41
|
5.00
|
42
|
101.00
|
43
|
172.00
|
44
|
0.00
|
45
|
4.00
|
46
|
88.00
|
47
|
53.00
|
48
|
23.00
|
49
|
0.00
|
50
|
2.00
|
51
|
0.00
|
52
|
1.00
|
53
|
7.00
|
54
|
0.00
|
55
|
0.00
|
56
|
0.00
|
57
|
6.00
|
58
|
10.00
|
59
|
40.00
|
60
|
0.00
|
61
|
1.00
|
62
|
0.00
|
63
|
|
64
|
0.00
|
65
|
6.00
|
66
|
2.00
|
67
|
12.00
|
68
|
11.00
|
69
|
0.00
|
70
|
0.00
|
71
|
0.00
|
72
|
0.00
|
73
|
0.00
|
74
|
0.00
|
75
|
0.00
|
76
|
0.00
|
77
|
10.00
|
78
|
15.00
|
79
|
3.00
|
80
|
0.00
|
81
|
8.00
|
82
|
0.00
|
83
|
2.00
|
84
|
3.00
|
85
|
0.00
|
86
|
0.00
|
87
|
0.00
|
88
|
0.00
|
89
|
0.00
|
90
|
0.00
|
91
|
0.00
|
92
|
0.00
|
93
|
0.00
|
94
|
26.00
|
95
|
20.00
|
96
|
0.00
|
97
|
1.00
|
98
|
1.00
|
99
|
34.00
|
100
|
0.00
|
101
|
16.00
|
102
|
4.00
|
103
|
0.00
|
104
|
1.00
|
105
|
4.00
|
106
|
8.00
|
107
|
0.00
|
108
|
4.00
|
109
|
13.00
|
110
|
0.00
|
111
|
1.00
|
112
|
0.00
|
113
|
1.00
|
114
|
0.00
|
115
|
0.00
|
116
|
0.00
|
117
|
0.00
|
118
|
1.00
|
119
|
0.00
|
120
|
5.00
|
121
|
|
122
|
7.00
|
123
|
4.00
|
124
|
1.00
|
125
|
3.00
|
126
|
40.00
|
127
|
1.00
|
128
|
2.00
|
129
|
0.00
|
130
|
0.00
|
131
|
0.00
|
132
|
0.00
|
133
|
0.00
|
134
|
0.00
|
135
|
0.00
|
136
|
0.00
|
137
|
1.00
|
138
|
0.00
|
139
|
0.00
|
140
|
7.00
|
141
|
0.00
|
142
|
5.00
|
143
|
17.00
|
144
|
0.00
|
145
|
0.00
|
146
|
0.00
|
147
|
0.00
|
148
|
0.00
|
149
|
0.00
|
150
|
0.00
|
151
|
0.00
|
152
|
0.00
|
153
|
0.00
|
154
|
1.00
|
155
|
1.00
|
156
|
0.00
|
157
|
0.00
|
158
|
0.00
|
159
|
0.00
|
160
|
0.00
|
161
|
0.00
|
162
|
0.00
|
163
|
0.00
|
164
|
0.00
|
165
|
0.00
|
166
|
0.00
|
167
|
1.00
|
168
|
0.00
|
169
|
0.00
|
170
|
0.00
|
171
|
0.00
|
172
|
0.00
|
173
|
0.00
|
174
|
1.00
|
175
|
0.00
|
176
|
0.00
|
177
|
0.00
|
178
|
0.00
|
179
|
0.00
|
180
|
0.00
|
181
|
0.00
|
182
|
0.00
|
183
|
0.00
|
184
|
0.00
|
185
|
0.00
|
186
|
0.00
|
187
|
0.00
|
188
|
0.00
|
189
|
0.00
|
190
|
0.00
|
191
|
0.00
|
192
|
0.00
|
193
|
0.00
|
194
|
0.00
|
195
|
0.00
|
196
|
0.00
|
197
|
0.00
|
198
|
0.00
|
199
|
0.00
|
200
|
0.00
|
201
|
0.00
|
202
|
0.00
|
203
|
1.00
|
204
|
0.00
|
205
|
0.00
|
206
|
3.00
|
207
|
0.00
|
208
|
0.00
|
209
|
0.00
|
210
|
0.00
|
211
|
0.00
|
212
|
0.00
|
213
|
0.00
|
214
|
0.00
|
215
|
0.00
|
216
|
0.00
|
217
|
0.00
|
218
|
0.00
|
print(xtable(t(ldply(netf,graph.motifs,size=4))),type="html")
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
.id
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
V1
|
|
|
|
|
|
|
|
|
|
|
V2
|
|
|
|
|
|
|
|
|
|
|
V3
|
|
|
|
|
|
|
|
|
|
|
V4
|
4
|
0
|
1
|
60
|
23
|
9
|
0
|
0
|
0
|
0
|
V5
|
|
|
|
|
|
|
|
|
|
|
V6
|
|
|
|
|
|
|
|
|
|
|
V7
|
|
|
|
|
|
|
|
|
|
|
V8
|
0
|
0
|
9
|
160
|
36
|
9
|
9
|
18
|
0
|
0
|
V9
|
0
|
0
|
16
|
95
|
50
|
6
|
2
|
8
|
3
|
0
|
V10
|
|
|
|
|
|
|
|
|
|
|
V11
|
|
|
|
|
|
|
|
|
|
|
V12
|
|
|
|
|
|
|
|
|
|
|
V13
|
0
|
0
|
21
|
416
|
43
|
5
|
2
|
18
|
13
|
0
|
V14
|
54
|
0
|
21
|
469
|
63
|
14
|
2
|
10
|
2
|
0
|
V15
|
0
|
0
|
5
|
107
|
45
|
14
|
2
|
2
|
0
|
0
|
V16
|
|
|
|
|
|
|
|
|
|
|
V17
|
0
|
0
|
33
|
75
|
25
|
11
|
4
|
2
|
1
|
0
|
V18
|
0
|
0
|
4
|
97
|
26
|
3
|
1
|
1
|
0
|
0
|
V19
|
0
|
0
|
5
|
93
|
49
|
9
|
2
|
6
|
0
|
0
|
V20
|
22
|
0
|
2
|
18
|
19
|
0
|
0
|
0
|
2
|
0
|
V21
|
0
|
0
|
1
|
11
|
10
|
4
|
0
|
0
|
1
|
0
|
V22
|
0
|
0
|
0
|
11
|
6
|
0
|
0
|
0
|
0
|
0
|
V23
|
|
|
|
|
|
|
|
|
|
|
V24
|
|
|
|
|
|
|
|
|
|
|
V25
|
0
|
0
|
14
|
138
|
24
|
2
|
12
|
36
|
8
|
1
|
V26
|
0
|
5
|
12
|
191
|
61
|
17
|
28
|
35
|
6
|
2
|
V27
|
0
|
7
|
13
|
28
|
13
|
10
|
9
|
0
|
0
|
0
|
V28
|
|
|
|
|
|
|
|
|
|
|
V29
|
|
|
|
|
|
|
|
|
|
|
V30
|
0
|
1
|
34
|
351
|
37
|
9
|
6
|
31
|
7
|
0
|
V31
|
0
|
0
|
7
|
54
|
26
|
18
|
0
|
3
|
0
|
0
|
V32
|
0
|
2
|
20
|
162
|
43
|
9
|
10
|
6
|
8
|
15
|
V33
|
0
|
0
|
10
|
50
|
40
|
17
|
0
|
2
|
0
|
0
|
V34
|
|
|
|
|
|
|
|
|
|
|
V35
|
|
|
|
|
|
|
|
|
|
|
V36
|
0
|
0
|
7
|
80
|
18
|
8
|
0
|
0
|
5
|
0
|
V37
|
0
|
0
|
24
|
33
|
21
|
8
|
0
|
5
|
4
|
0
|
V38
|
0
|
0
|
7
|
62
|
11
|
3
|
1
|
2
|
4
|
2
|
V39
|
0
|
0
|
7
|
46
|
30
|
7
|
5
|
6
|
4
|
0
|
V40
|
|
|
|
|
|
|
|
|
|
|
V41
|
0
|
4
|
31
|
227
|
45
|
17
|
11
|
35
|
15
|
0
|
V42
|
0
|
0
|
25
|
334
|
43
|
14
|
4
|
20
|
1
|
0
|
V43
|
0
|
0
|
25
|
112
|
15
|
12
|
6
|
3
|
3
|
0
|
V44
|
0
|
4
|
23
|
255
|
50
|
27
|
10
|
17
|
11
|
0
|
V45
|
0
|
0
|
9
|
38
|
17
|
7
|
8
|
3
|
1
|
4
|
V46
|
0
|
0
|
19
|
305
|
67
|
18
|
5
|
15
|
11
|
0
|
V47
|
0
|
31
|
33
|
65
|
10
|
19
|
13
|
10
|
9
|
14
|
V48
|
0
|
0
|
9
|
84
|
21
|
7
|
0
|
0
|
1
|
0
|
V49
|
0
|
0
|
6
|
120
|
29
|
11
|
5
|
7
|
0
|
2
|
V50
|
0
|
0
|
9
|
51
|
24
|
8
|
1
|
0
|
8
|
0
|
V51
|
0
|
0
|
5
|
29
|
11
|
16
|
6
|
3
|
0
|
4
|
V52
|
0
|
0
|
5
|
51
|
45
|
12
|
0
|
2
|
1
|
0
|
V53
|
0
|
0
|
8
|
50
|
21
|
0
|
0
|
2
|
0
|
0
|
V54
|
0
|
0
|
0
|
14
|
15
|
3
|
0
|
0
|
0
|
0
|
V55
|
0
|
0
|
2
|
36
|
30
|
2
|
0
|
0
|
0
|
0
|
V56
|
0
|
0
|
0
|
13
|
30
|
4
|
0
|
0
|
0
|
0
|
V57
|
0
|
0
|
2
|
37
|
25
|
15
|
1
|
5
|
1
|
0
|
V58
|
0
|
0
|
2
|
25
|
29
|
24
|
7
|
4
|
0
|
0
|
V59
|
0
|
0
|
3
|
24
|
19
|
0
|
0
|
0
|
1
|
0
|
V60
|
0
|
0
|
1
|
12
|
15
|
3
|
0
|
0
|
0
|
0
|
V61
|
0
|
0
|
3
|
25
|
12
|
8
|
0
|
0
|
0
|
0
|
V62
|
0
|
0
|
1
|
20
|
26
|
6
|
1
|
2
|
0
|
0
|
V63
|
|
|
|
|
|
|
|
|
|
|
V64
|
0
|
0
|
6
|
53
|
9
|
6
|
0
|
7
|
0
|
0
|
V65
|
0
|
2
|
5
|
27
|
31
|
9
|
1
|
0
|
2
|
0
|
V66
|
0
|
5
|
0
|
24
|
15
|
2
|
10
|
7
|
6
|
4
|
V67
|
0
|
0
|
10
|
28
|
7
|
4
|
0
|
0
|
0
|
0
|
V68
|
0
|
0
|
0
|
24
|
17
|
5
|
1
|
1
|
0
|
0
|
V69
|
0
|
0
|
7
|
24
|
22
|
6
|
1
|
0
|
0
|
0
|
V70
|
0
|
0
|
0
|
18
|
6
|
3
|
2
|
0
|
0
|
0
|
V71
|
0
|
0
|
0
|
17
|
4
|
4
|
0
|
1
|
0
|
0
|
V72
|
0
|
0
|
0
|
5
|
17
|
1
|
0
|
0
|
0
|
0
|
V73
|
0
|
0
|
2
|
20
|
12
|
4
|
0
|
4
|
0
|
0
|
V74
|
0
|
0
|
7
|
5
|
9
|
3
|
0
|
0
|
0
|
0
|
V75
|
0
|
0
|
5
|
8
|
13
|
6
|
0
|
1
|
0
|
2
|
V76
|
0
|
0
|
1
|
11
|
7
|
4
|
0
|
1
|
0
|
1
|
V77
|
75
|
0
|
5
|
81
|
7
|
3
|
1
|
7
|
0
|
0
|
V78
|
0
|
0
|
5
|
120
|
41
|
6
|
0
|
1
|
2
|
0
|
V79
|
0
|
0
|
0
|
14
|
8
|
2
|
0
|
1
|
0
|
0
|
V80
|
0
|
0
|
1
|
75
|
17
|
12
|
0
|
4
|
0
|
0
|
V81
|
0
|
0
|
0
|
27
|
12
|
1
|
1
|
0
|
0
|
0
|
V82
|
0
|
0
|
2
|
23
|
16
|
4
|
0
|
0
|
0
|
0
|
V83
|
0
|
0
|
4
|
10
|
2
|
1
|
0
|
0
|
0
|
0
|
V84
|
0
|
0
|
0
|
7
|
9
|
1
|
0
|
0
|
0
|
0
|
V85
|
0
|
0
|
0
|
9
|
3
|
1
|
0
|
0
|
0
|
0
|
V86
|
0
|
0
|
4
|
28
|
13
|
5
|
1
|
1
|
0
|
0
|
V87
|
0
|
0
|
0
|
5
|
1
|
2
|
0
|
0
|
0
|
0
|
V88
|
0
|
0
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
V89
|
0
|
0
|
0
|
7
|
4
|
3
|
0
|
0
|
0
|
1
|
V90
|
0
|
0
|
3
|
2
|
5
|
1
|
1
|
0
|
0
|
1
|
V91
|
0
|
0
|
0
|
5
|
7
|
3
|
1
|
1
|
0
|
0
|
V92
|
0
|
0
|
1
|
2
|
0
|
1
|
0
|
1
|
0
|
0
|
V93
|
0
|
3
|
19
|
160
|
16
|
1
|
9
|
14
|
4
|
8
|
V94
|
0
|
38
|
11
|
55
|
7
|
5
|
6
|
4
|
0
|
15
|
V95
|
0
|
101
|
5
|
6
|
0
|
4
|
2
|
0
|
0
|
0
|
V96
|
0
|
0
|
1
|
34
|
13
|
4
|
0
|
5
|
0
|
0
|
V97
|
0
|
1
|
14
|
122
|
18
|
3
|
1
|
1
|
4
|
0
|
V98
|
0
|
0
|
3
|
53
|
19
|
5
|
0
|
8
|
2
|
2
|
V99
|
0
|
1
|
36
|
241
|
64
|
15
|
13
|
32
|
7
|
0
|
V100
|
0
|
0
|
3
|
23
|
12
|
5
|
0
|
0
|
0
|
0
|
V101
|
0
|
18
|
26
|
72
|
15
|
17
|
16
|
10
|
6
|
18
|
V102
|
0
|
0
|
17
|
11
|
12
|
5
|
0
|
0
|
2
|
2
|
V103
|
0
|
0
|
2
|
65
|
18
|
2
|
0
|
8
|
2
|
0
|
V104
|
0
|
0
|
13
|
88
|
14
|
5
|
0
|
0
|
2
|
0
|
V105
|
0
|
0
|
12
|
62
|
27
|
5
|
0
|
6
|
4
|
10
|
V106
|
0
|
0
|
10
|
60
|
40
|
8
|
0
|
1
|
5
|
6
|
V107
|
0
|
0
|
7
|
12
|
9
|
9
|
0
|
0
|
2
|
0
|
V108
|
0
|
0
|
16
|
41
|
8
|
6
|
0
|
3
|
2
|
12
|
V109
|
0
|
14
|
10
|
6
|
4
|
3
|
3
|
1
|
1
|
10
|
V110
|
0
|
0
|
0
|
3
|
1
|
5
|
0
|
0
|
0
|
0
|
V111
|
0
|
0
|
3
|
47
|
33
|
1
|
0
|
0
|
0
|
0
|
V112
|
0
|
0
|
0
|
9
|
14
|
7
|
0
|
0
|
0
|
0
|
V113
|
0
|
0
|
2
|
10
|
6
|
0
|
0
|
0
|
0
|
0
|
V114
|
0
|
0
|
4
|
1
|
4
|
4
|
0
|
0
|
0
|
0
|
V115
|
0
|
0
|
2
|
2
|
11
|
0
|
0
|
0
|
0
|
0
|
V116
|
0
|
0
|
1
|
12
|
9
|
7
|
0
|
0
|
0
|
0
|
V117
|
0
|
0
|
0
|
6
|
12
|
4
|
0
|
0
|
0
|
0
|
V118
|
0
|
0
|
3
|
8
|
0
|
8
|
0
|
0
|
0
|
0
|
V119
|
0
|
0
|
0
|
4
|
5
|
5
|
0
|
0
|
0
|
0
|
V120
|
0
|
0
|
13
|
30
|
13
|
10
|
3
|
19
|
6
|
0
|
V121
|
|
|
|
|
|
|
|
|
|
|
V122
|
0
|
40
|
32
|
158
|
55
|
28
|
32
|
19
|
19
|
6
|
V123
|
0
|
0
|
6
|
17
|
14
|
14
|
2
|
3
|
2
|
2
|
V124
|
0
|
0
|
6
|
39
|
20
|
7
|
0
|
1
|
0
|
0
|
V125
|
0
|
0
|
2
|
45
|
21
|
7
|
10
|
11
|
7
|
2
|
V126
|
0
|
133
|
14
|
14
|
1
|
9
|
7
|
13
|
2
|
20
|
V127
|
0
|
0
|
9
|
30
|
30
|
7
|
0
|
2
|
4
|
0
|
V128
|
0
|
14
|
4
|
5
|
7
|
17
|
6
|
7
|
3
|
6
|
V129
|
0
|
0
|
2
|
7
|
3
|
0
|
0
|
0
|
0
|
0
|
V130
|
0
|
0
|
1
|
6
|
8
|
9
|
0
|
0
|
0
|
0
|
V131
|
0
|
0
|
1
|
26
|
9
|
0
|
0
|
0
|
0
|
0
|
V132
|
0
|
0
|
3
|
11
|
11
|
2
|
0
|
1
|
0
|
0
|
V133
|
0
|
0
|
0
|
1
|
2
|
2
|
0
|
2
|
0
|
0
|
V134
|
0
|
0
|
0
|
8
|
4
|
10
|
0
|
0
|
0
|
0
|
V135
|
0
|
0
|
5
|
3
|
8
|
4
|
0
|
0
|
0
|
0
|
V136
|
0
|
0
|
0
|
13
|
21
|
1
|
1
|
0
|
1
|
0
|
V137
|
0
|
0
|
2
|
8
|
12
|
4
|
0
|
4
|
0
|
0
|
V138
|
0
|
2
|
0
|
2
|
5
|
0
|
0
|
0
|
0
|
0
|
V139
|
0
|
8
|
4
|
43
|
33
|
5
|
5
|
0
|
3
|
0
|
V140
|
0
|
17
|
6
|
27
|
14
|
11
|
7
|
2
|
8
|
8
|
V141
|
0
|
0
|
0
|
41
|
14
|
5
|
1
|
5
|
0
|
3
|
V142
|
0
|
36
|
2
|
12
|
16
|
3
|
2
|
1
|
1
|
0
|
V143
|
0
|
156
|
3
|
3
|
1
|
2
|
3
|
8
|
1
|
13
|
V144
|
0
|
0
|
1
|
7
|
7
|
3
|
0
|
0
|
0
|
0
|
V145
|
0
|
0
|
0
|
11
|
5
|
4
|
0
|
1
|
0
|
0
|
V146
|
0
|
0
|
0
|
6
|
17
|
0
|
0
|
0
|
0
|
0
|
V147
|
0
|
2
|
7
|
8
|
8
|
1
|
1
|
1
|
2
|
0
|
V148
|
0
|
0
|
3
|
2
|
2
|
4
|
0
|
0
|
0
|
0
|
V149
|
0
|
0
|
1
|
12
|
8
|
3
|
0
|
0
|
0
|
0
|
V150
|
0
|
0
|
1
|
12
|
12
|
1
|
0
|
0
|
0
|
0
|
V151
|
0
|
0
|
1
|
3
|
11
|
0
|
0
|
0
|
0
|
0
|
V152
|
0
|
0
|
2
|
30
|
8
|
4
|
0
|
0
|
0
|
0
|
V153
|
0
|
0
|
3
|
10
|
1
|
2
|
1
|
2
|
0
|
0
|
V154
|
0
|
0
|
0
|
7
|
1
|
1
|
0
|
0
|
0
|
0
|
V155
|
0
|
2
|
0
|
5
|
3
|
1
|
0
|
0
|
0
|
0
|
V156
|
0
|
0
|
2
|
3
|
1
|
4
|
0
|
2
|
0
|
0
|
V157
|
0
|
0
|
0
|
5
|
6
|
4
|
0
|
0
|
0
|
0
|
V158
|
0
|
0
|
1
|
9
|
7
|
0
|
1
|
1
|
0
|
0
|
V159
|
0
|
0
|
2
|
4
|
13
|
3
|
0
|
0
|
0
|
0
|
V160
|
0
|
4
|
2
|
4
|
3
|
6
|
1
|
0
|
0
|
3
|
V161
|
0
|
0
|
0
|
6
|
5
|
8
|
0
|
0
|
0
|
0
|
V162
|
0
|
0
|
1
|
1
|
18
|
0
|
0
|
0
|
0
|
0
|
V163
|
0
|
0
|
0
|
7
|
11
|
7
|
1
|
1
|
0
|
0
|
V164
|
0
|
0
|
0
|
6
|
5
|
5
|
0
|
0
|
0
|
0
|
V165
|
0
|
0
|
0
|
22
|
7
|
4
|
1
|
0
|
0
|
0
|
V166
|
0
|
1
|
0
|
3
|
12
|
0
|
2
|
1
|
0
|
0
|
V167
|
0
|
0
|
4
|
3
|
2
|
8
|
0
|
2
|
0
|
0
|
V168
|
0
|
10
|
0
|
2
|
4
|
0
|
3
|
0
|
0
|
0
|
V169
|
0
|
0
|
0
|
1
|
5
|
4
|
0
|
0
|
0
|
0
|
V170
|
0
|
0
|
1
|
9
|
14
|
4
|
0
|
0
|
0
|
0
|
V171
|
0
|
0
|
1
|
5
|
6
|
3
|
0
|
0
|
0
|
0
|
V172
|
0
|
0
|
0
|
3
|
1
|
0
|
0
|
0
|
0
|
0
|
V173
|
0
|
0
|
1
|
3
|
8
|
5
|
0
|
0
|
0
|
0
|
V174
|
0
|
0
|
5
|
2
|
7
|
7
|
0
|
0
|
1
|
0
|
V175
|
0
|
0
|
0
|
6
|
8
|
2
|
0
|
0
|
0
|
1
|
V176
|
0
|
0
|
0
|
1
|
4
|
1
|
0
|
0
|
0
|
0
|
V177
|
0
|
0
|
2
|
10
|
3
|
0
|
0
|
0
|
0
|
1
|
V178
|
0
|
0
|
1
|
11
|
3
|
0
|
0
|
0
|
0
|
0
|
V179
|
0
|
0
|
2
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
V180
|
0
|
0
|
1
|
2
|
6
|
4
|
0
|
0
|
0
|
0
|
V181
|
0
|
0
|
0
|
6
|
5
|
3
|
0
|
0
|
0
|
0
|
V182
|
0
|
0
|
1
|
6
|
9
|
1
|
4
|
0
|
0
|
0
|
V183
|
0
|
0
|
0
|
7
|
9
|
0
|
0
|
1
|
0
|
0
|
V184
|
0
|
0
|
0
|
3
|
9
|
1
|
0
|
1
|
0
|
0
|
V185
|
0
|
0
|
3
|
8
|
2
|
0
|
0
|
0
|
0
|
0
|
V186
|
0
|
0
|
0
|
6
|
5
|
5
|
0
|
0
|
0
|
0
|
V187
|
0
|
0
|
0
|
3
|
2
|
3
|
0
|
1
|
1
|
0
|
V188
|
0
|
0
|
0
|
3
|
8
|
3
|
1
|
0
|
0
|
1
|
V189
|
0
|
0
|
0
|
0
|
0
|
5
|
0
|
0
|
0
|
0
|
V190
|
0
|
0
|
3
|
12
|
10
|
1
|
0
|
0
|
0
|
0
|
V191
|
0
|
0
|
2
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
V192
|
0
|
0
|
0
|
1
|
5
|
4
|
0
|
0
|
0
|
0
|
V193
|
0
|
0
|
1
|
7
|
4
|
5
|
0
|
1
|
0
|
0
|
V194
|
0
|
0
|
1
|
2
|
3
|
3
|
0
|
0
|
0
|
0
|
V195
|
0
|
0
|
1
|
1
|
11
|
0
|
0
|
0
|
0
|
1
|
V196
|
0
|
0
|
0
|
5
|
1
|
2
|
0
|
0
|
0
|
0
|
V197
|
0
|
0
|
0
|
1
|
2
|
3
|
0
|
0
|
0
|
0
|
V198
|
0
|
0
|
0
|
5
|
4
|
0
|
0
|
1
|
0
|
1
|
V199
|
0
|
0
|
0
|
1
|
1
|
1
|
2
|
1
|
0
|
0
|
V200
|
0
|
0
|
4
|
3
|
6
|
9
|
1
|
2
|
0
|
2
|
V201
|
0
|
0
|
0
|
3
|
6
|
0
|
1
|
0
|
0
|
0
|
V202
|
0
|
0
|
1
|
3
|
6
|
3
|
0
|
0
|
0
|
0
|
V203
|
0
|
10
|
1
|
6
|
2
|
5
|
0
|
7
|
0
|
0
|
V204
|
0
|
4
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
2
|
V205
|
0
|
14
|
0
|
2
|
1
|
4
|
0
|
1
|
0
|
0
|
V206
|
0
|
36
|
0
|
0
|
0
|
3
|
0
|
0
|
0
|
1
|
V207
|
0
|
0
|
0
|
2
|
5
|
6
|
0
|
0
|
0
|
0
|
V208
|
0
|
0
|
0
|
1
|
4
|
0
|
0
|
0
|
0
|
0
|
V209
|
0
|
0
|
0
|
2
|
2
|
0
|
0
|
0
|
0
|
0
|
V210
|
0
|
0
|
0
|
3
|
8
|
3
|
0
|
0
|
1
|
0
|
V211
|
0
|
0
|
0
|
0
|
2
|
1
|
0
|
0
|
0
|
0
|
V212
|
0
|
0
|
0
|
1
|
6
|
5
|
0
|
0
|
0
|
0
|
V213
|
0
|
0
|
0
|
0
|
5
|
3
|
0
|
0
|
0
|
1
|
V214
|
0
|
0
|
0
|
1
|
1
|
2
|
0
|
1
|
0
|
0
|
V215
|
0
|
0
|
0
|
0
|
1
|
3
|
0
|
2
|
0
|
0
|
V216
|
0
|
0
|
0
|
1
|
2
|
0
|
0
|
1
|
0
|
0
|
V217
|
0
|
10
|
1
|
2
|
2
|
0
|
3
|
1
|
2
|
0
|
V218
|
0
|
14
|
0
|
0
|
0
|
2
|
0
|
1
|
0
|
0
|
print(xtable(as.data.frame(graph.motifs(tnetf,size=4))),type="html")
|
graph.motifs(tnetf, size = 4)
|
1
|
|
2
|
|
3
|
|
4
|
129.00
|
5
|
|
6
|
|
7
|
|
8
|
402.00
|
9
|
278.00
|
10
|
|
11
|
|
12
|
|
13
|
837.00
|
14
|
736.00
|
15
|
186.00
|
16
|
|
17
|
213.00
|
18
|
156.00
|
19
|
182.00
|
20
|
62.00
|
21
|
26.00
|
22
|
18.00
|
23
|
|
24
|
|
25
|
417.00
|
26
|
553.00
|
27
|
231.00
|
28
|
|
29
|
|
30
|
859.00
|
31
|
129.00
|
32
|
341.00
|
33
|
130.00
|
34
|
|
35
|
|
36
|
161.00
|
37
|
116.00
|
38
|
141.00
|
39
|
113.00
|
40
|
|
41
|
695.00
|
42
|
758.00
|
43
|
175.00
|
44
|
688.00
|
45
|
87.00
|
46
|
561.00
|
47
|
291.00
|
48
|
121.00
|
49
|
187.00
|
50
|
93.00
|
51
|
83.00
|
52
|
129.00
|
53
|
81.00
|
54
|
33.00
|
55
|
73.00
|
56
|
47.00
|
57
|
96.00
|
58
|
116.00
|
59
|
46.00
|
60
|
32.00
|
61
|
48.00
|
62
|
56.00
|
63
|
|
64
|
107.00
|
65
|
122.00
|
66
|
132.00
|
67
|
54.00
|
68
|
48.00
|
69
|
60.00
|
70
|
29.00
|
71
|
26.00
|
72
|
23.00
|
73
|
42.00
|
74
|
25.00
|
75
|
35.00
|
76
|
25.00
|
77
|
135.00
|
78
|
173.00
|
79
|
25.00
|
80
|
110.00
|
81
|
41.00
|
82
|
45.00
|
83
|
17.00
|
84
|
17.00
|
85
|
13.00
|
86
|
52.00
|
87
|
8.00
|
88
|
2.00
|
89
|
15.00
|
90
|
13.00
|
91
|
17.00
|
92
|
5.00
|
93
|
251.00
|
94
|
151.00
|
95
|
131.00
|
96
|
69.00
|
97
|
168.00
|
98
|
97.00
|
99
|
579.00
|
100
|
53.00
|
101
|
262.00
|
102
|
53.00
|
103
|
96.00
|
104
|
121.00
|
105
|
118.00
|
106
|
125.00
|
107
|
42.00
|
108
|
76.00
|
109
|
63.00
|
110
|
9.00
|
111
|
87.00
|
112
|
30.00
|
113
|
19.00
|
114
|
13.00
|
115
|
16.00
|
116
|
29.00
|
117
|
22.00
|
118
|
19.00
|
119
|
14.00
|
120
|
98.00
|
121
|
|
122
|
474.00
|
123
|
61.00
|
124
|
76.00
|
125
|
107.00
|
126
|
242.00
|
127
|
87.00
|
128
|
73.00
|
129
|
12.00
|
130
|
24.00
|
131
|
36.00
|
132
|
28.00
|
133
|
7.00
|
134
|
23.00
|
135
|
20.00
|
136
|
37.00
|
137
|
30.00
|
138
|
9.00
|
139
|
101.00
|
140
|
98.00
|
141
|
72.00
|
142
|
76.00
|
143
|
202.00
|
144
|
18.00
|
145
|
23.00
|
146
|
23.00
|
147
|
31.00
|
148
|
11.00
|
149
|
25.00
|
150
|
26.00
|
151
|
15.00
|
152
|
44.00
|
153
|
19.00
|
154
|
9.00
|
155
|
11.00
|
156
|
12.00
|
157
|
15.00
|
158
|
19.00
|
159
|
22.00
|
160
|
24.00
|
161
|
19.00
|
162
|
20.00
|
163
|
27.00
|
164
|
16.00
|
165
|
34.00
|
166
|
19.00
|
167
|
19.00
|
168
|
19.00
|
169
|
10.00
|
170
|
28.00
|
171
|
15.00
|
172
|
4.00
|
173
|
17.00
|
174
|
21.00
|
175
|
17.00
|
176
|
6.00
|
177
|
15.00
|
178
|
15.00
|
179
|
2.00
|
180
|
13.00
|
181
|
14.00
|
182
|
21.00
|
183
|
17.00
|
184
|
14.00
|
185
|
13.00
|
186
|
16.00
|
187
|
10.00
|
188
|
16.00
|
189
|
5.00
|
190
|
26.00
|
191
|
4.00
|
192
|
10.00
|
193
|
18.00
|
194
|
10.00
|
195
|
14.00
|
196
|
8.00
|
197
|
6.00
|
198
|
11.00
|
199
|
6.00
|
200
|
25.00
|
201
|
10.00
|
202
|
13.00
|
203
|
33.00
|
204
|
6.00
|
205
|
22.00
|
206
|
41.00
|
207
|
13.00
|
208
|
5.00
|
209
|
4.00
|
210
|
15.00
|
211
|
3.00
|
212
|
12.00
|
213
|
9.00
|
214
|
5.00
|
215
|
6.00
|
216
|
4.00
|
217
|
21.00
|
218
|
17.00
|
#
cat(paste("<br>Full Structural Network of hospitals:","<br>",sep=""))
Full Structural Network of hospitals:
cfgplt(tnets)

cat(paste("<br>Full Fucntional Network of hospitals:","<br>",sep=""))
Full Fucntional Network of hospitals:
cfgplt(tnetf)

cat("<hr>")
for (i in 1:numh){
cat(paste("<br>Structural Network hospital:",(i-1),"<br>",sep=""))
cfgplt(nets[[i]])
cat(paste("<br>Functional Network hospital:",(i-1),"<br>",sep=""))
cfgplt(netf[[i]])
}
Structural Network hospital:0

Functional Network hospital:0

Structural Network hospital:1

Functional Network hospital:1

Structural Network hospital:2

Functional Network hospital:2

Structural Network hospital:3

Functional Network hospital:3

Structural Network hospital:4

Functional Network hospital:4

Structural Network hospital:5

Functional Network hospital:5

Structural Network hospital:6

Functional Network hospital:6

Structural Network hospital:7

Functional Network hospital:7

Structural Network hospital:8

Functional Network hospital:8

Structural Network hospital:9

Functional Network hospital:9

#
Let us have a similat behaviour for a random network
#
rnet=function(net) {
g=erdos.renyi.game(vcount(net),ecount(net),type="gnm",directed=TRUE)
return(g)
}
rnets=lapply(nets,rnet)
trnets=rnet(tnets)
rnetf=lapply(netf,rnet)
trnetf=rnet(tnetf)
#
strt=data.frame(health_st=c(graph.motifs.no(tnets,size=3),
unlist(lapply(nets,graph.motifs.no,size=3))),
random_st=c(graph.motifs.no(trnets,size=3),
unlist(lapply(rnets,graph.motifs.no,size=3))),
health_fn=c(graph.motifs.no(tnetf,size=3),
unlist(lapply(netf,graph.motifs.no,size=3))),
random_fn=c(graph.motifs.no(trnetf,size=3),
unlist(lapply(rnetf,graph.motifs.no,size=3)))
)
rownames(strt)=c("Full Net",paste("Hosp. ",seq(1,length(rnets)),sep=""))
print(xtable(strt),type="html")
|
health_st
|
random_st
|
health_fn
|
random_fn
|
Full Net
|
922
|
1376
|
3146
|
10099
|
Hosp. 1
|
8
|
7
|
71
|
51
|
Hosp. 2
|
113
|
129
|
203
|
631
|
Hosp. 3
|
63
|
72
|
244
|
403
|
Hosp. 4
|
145
|
162
|
1075
|
1758
|
Hosp. 5
|
89
|
184
|
583
|
722
|
Hosp. 6
|
66
|
100
|
286
|
356
|
Hosp. 7
|
71
|
64
|
108
|
252
|
Hosp. 8
|
99
|
105
|
168
|
435
|
Hosp. 9
|
85
|
88
|
91
|
295
|
Hosp. 10
|
63
|
69
|
82
|
186
|
Key Parameter Identification
#
radio=function(net){
dg0=degree(net)
hdg=which.max(dg0)[1]
dg1=(1:length(dg0))[-hdg]
return(mean(unlist(lapply(lapply(dg1,function(x,net){
return(shortest.paths(net,hdg,x))},net=net), function(x) {
if (is.infinite(x)) {
return(NULL)
} else {
return(x)
}
})))
)
}
diametro=function(net) {
nv =length(V(net))
sec=data.frame(o=1,d=2:nv)
for (i in 2:nv) {
if ( i < nv) {
dd=data.frame(o=i,d=((i+1):nv))
sec=rbind(sec,dd)
}
}
sp=foreach(pos=1:nrow(sec)) %dopar%
shortest.paths(net,sec[pos,1],sec[pos,2])
return(mean(unlist(lapply(sp,function(x) {
if (is.infinite(x)){
return(NULL)}
else{
return(x)}
}))))
}
#
nets_pl = ldply(nets,average.path.length)
netf_pl = ldply(netf,average.path.length)
tnets_pl= average.path.length(tnets)
tnetf_pl= average.path.length(tnetf)
nets_cc = ldply(nets,transitivity)
netf_cc = ldply(netf,transitivity)
tnets_cc= transitivity(tnets)
tnetf_cc= transitivity(tnetf)
nets_d = ldply(nets,diametro)
netf_d = ldply(netf,diametro)
tnets_d = diametro(tnets)
tnetf_d = diametro(tnetf)
nets_r = ldply(nets,radio)
netf_r = ldply(netf,radio)
tnets_r = radio(tnets)
tnetf_r = radio(tnetf)
nnds = ldply(nets,function(x){return(length(V(x)))})
nndf = ldply(netf,function(x){return(length(V(x)))})
tnnds = length(V(tnets))
tnndf = length(V(tnetf))
rnets_pl= ldply(rnets,average.path.length)
rnetf_pl= ldply(rnetf,average.path.length)
trnets_pl= average.path.length(trnets)
trnetf_pl= average.path.length(trnetf)
rnets_cc= ldply(rnets,transitivity)
rnetf_cc= ldply(rnetf,transitivity)
trnets_cc= transitivity(trnets)
trnetf_cc= transitivity(trnetf)
rnets_d = ldply(rnets,diametro)
rnetf_d = ldply(rnetf,diametro)
trnets_d= diametro(trnets)
trnetf_d= diametro(trnetf)
rnets_r = ldply(rnets,radio)
rnetf_r = ldply(rnetf,radio)
trnets_r= radio(trnets)
trnetf_r= radio(trnetf)
#
ndt = data.frame(pls=c(tnets_pl,nets_pl[,2]),
plf=c(tnetf_pl,netf_pl[,2]),
ccs=c(tnets_cc,nets_cc[,2]),
ccf=c(tnetf_cc,netf_cc[,2]),
ds=c(tnets_d,nets_d[,2]),
df=c(tnetf_d,netf_d[,2]),
rs=c(tnets_r,nets_r[,2]),
rf=c(tnetf_r,netf_r[,2]),
rpls=c(trnets_pl,rnets_pl[,2]),
rplf=c(trnetf_pl,rnetf_pl[,2]),
rccs=c(trnets_cc,rnets_cc[,2]),
rccf=c(trnetf_cc,rnetf_cc[,2]),
rds=c(trnets_d,rnets_d[,2]),
rdf=c(trnetf_d,rnetf_d[,2]),
rrs=c(trnets_r,rnets_r[,2]),
rrf=c(trnetf_r,rnetf_r[,2]),
NS=c(tnnds,nnds[,2]),
NF=c(tnndf,nndf[,2]))
rownames(ndt) = c("Full Net",paste("Hosp.",(as.numeric(namh)+1),sep=" "))
print(xtable(ndt),type="html")
|
pls
|
plf
|
ccs
|
ccf
|
ds
|
df
|
rs
|
rf
|
rpls
|
rplf
|
rccs
|
rccf
|
rds
|
rdf
|
rrs
|
rrf
|
NS
|
NF
|
Full Net
|
2.77
|
4.00
|
0.32
|
0.48
|
4.89
|
4.18
|
3.61
|
3.00
|
6.47
|
3.13
|
0.02
|
0.06
|
3.73
|
2.39
|
3.04
|
2.11
|
171
|
172
|
Hosp. 1
|
1.40
|
1.00
|
0.64
|
0.00
|
1.30
|
2.53
|
1.00
|
1.87
|
1.69
|
2.74
|
0.55
|
0.20
|
1.40
|
2.26
|
1.25
|
1.71
|
5
|
16
|
Hosp. 2
|
2.22
|
2.21
|
0.35
|
0.48
|
2.44
|
2.13
|
1.62
|
1.45
|
2.52
|
1.90
|
0.15
|
0.45
|
2.48
|
1.53
|
1.67
|
1.45
|
22
|
21
|
Hosp. 3
|
2.07
|
2.09
|
0.30
|
0.47
|
2.62
|
1.71
|
1.58
|
1.47
|
3.71
|
1.87
|
0.12
|
0.44
|
2.57
|
1.51
|
1.94
|
1.29
|
20
|
18
|
Hosp. 4
|
2.06
|
2.27
|
0.31
|
0.45
|
3.01
|
1.79
|
1.76
|
1.45
|
3.40
|
1.95
|
0.12
|
0.41
|
3.06
|
1.60
|
2.12
|
1.45
|
34
|
32
|
Hosp. 5
|
2.68
|
1.73
|
0.32
|
0.60
|
2.48
|
1.43
|
1.70
|
1.22
|
3.02
|
1.60
|
0.22
|
0.67
|
2.05
|
1.33
|
1.50
|
1.17
|
21
|
19
|
Hosp. 6
|
2.53
|
1.70
|
0.32
|
0.66
|
2.36
|
1.48
|
1.69
|
1.07
|
2.63
|
1.65
|
0.21
|
0.65
|
2.18
|
1.41
|
1.69
|
1.27
|
17
|
16
|
Hosp. 7
|
2.95
|
2.40
|
0.28
|
0.49
|
2.26
|
2.02
|
1.56
|
1.38
|
3.27
|
2.06
|
0.17
|
0.36
|
2.39
|
1.62
|
2.06
|
1.44
|
17
|
17
|
Hosp. 8
|
3.25
|
2.86
|
0.33
|
0.48
|
2.64
|
2.30
|
2.00
|
1.73
|
2.69
|
2.26
|
0.08
|
0.35
|
2.54
|
1.77
|
2.05
|
1.45
|
23
|
23
|
Hosp. 9
|
3.07
|
2.81
|
0.35
|
0.47
|
2.31
|
2.24
|
1.59
|
1.59
|
3.26
|
2.15
|
0.12
|
0.36
|
2.20
|
1.63
|
1.53
|
1.35
|
18
|
18
|
Hosp. 10
|
2.31
|
1.99
|
0.33
|
0.52
|
1.99
|
1.80
|
1.38
|
1.38
|
2.36
|
1.85
|
0.31
|
0.52
|
1.88
|
1.48
|
1.33
|
1.15
|
14
|
14
|
Communities per network
Let’s define communities in a network by just looking for dense subgraphs. The selected criterion will be to maximize the modularity.
#
complt=function(net,plt=FALSE) {
layout = layout.lgl
wc=optimal.community(net)
if ( plt) {
g=net
V(g)$color=membership(wc)
plot.igraph(g,layout=layout)
}
return(list(md=modularity(wc),nc=max(membership(wc))))
}
submotifs=function(net,plt=TRUE){
wc=optimal.community(net)
res=matrix(NA,nrow=max(membership(wc)),ncol=5)
for ( i in 1:max(membership(wc))) {
net3=induced.subgraph(net,(1:length(V(net)))[membership(wc)==i])
if (plt) {
plot(net3)
}
n4 = graph.motifs.no(net3,size=4)
res[i,1]=length(V(net3))
res[i,2]=length(E(net3))
res[i,3]=graph.motifs.no(net3,size=3)
res[i,4]=graph.motifs.no(net3,size=4)
}
res[,5]=modularity(wc)
dres=as.data.frame(res)
colnames(dres)=c("Nodes","Edges","3-Motif","4-Motif","Modularity")
return(dres)
}
#
#
cat("NET-S communities")
NET-S communities
lnts=lapply(nets,complt,plt=FALSE)
#
cat("NET-F communities")
NET-F communities
lntf=lapply(netf,complt,plt=FALSE)
#
cat("NET-S communities")
NET-S communities
for ( i in 1:length(nets)){
cat(paste(" -> NET-S Hosp:",i,sep=""))
print(xtable(submotifs(nets[[i]],plt=FALSE)),type="html")
}
-> NET-S Hosp:1
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
3.00
|
3.00
|
1.00
|
0.00
|
0.12
|
2
|
2.00
|
1.00
|
0.00
|
0.00
|
0.12
|
-> NET-S Hosp:2
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
10.00
|
18.00
|
22.00
|
0.51
|
2
|
4.00
|
5.00
|
4.00
|
1.00
|
0.51
|
3
|
6.00
|
9.00
|
14.00
|
13.00
|
0.51
|
4
|
5.00
|
6.00
|
7.00
|
4.00
|
0.51
|
-> NET-S Hosp:3
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
8.00
|
13.00
|
15.00
|
0.54
|
2
|
4.00
|
4.00
|
3.00
|
1.00
|
0.54
|
3
|
3.00
|
3.00
|
1.00
|
0.00
|
0.54
|
4
|
6.00
|
9.00
|
13.00
|
12.00
|
0.54
|
-> NET-S Hosp:4
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
11.00
|
17.00
|
33.00
|
65.00
|
0.64
|
2
|
8.00
|
10.00
|
15.00
|
20.00
|
0.64
|
3
|
4.00
|
5.00
|
3.00
|
1.00
|
0.64
|
4
|
6.00
|
9.00
|
13.00
|
12.00
|
0.64
|
5
|
5.00
|
9.00
|
9.00
|
5.00
|
0.64
|
-> NET-S Hosp:5
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
9.00
|
17.00
|
21.00
|
0.51
|
2
|
5.00
|
9.00
|
8.00
|
5.00
|
0.51
|
3
|
5.00
|
14.00
|
8.00
|
5.00
|
0.51
|
4
|
4.00
|
8.00
|
3.00
|
1.00
|
0.51
|
-> NET-S Hosp:6
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
13.00
|
15.00
|
20.00
|
0.42
|
2
|
4.00
|
5.00
|
3.00
|
1.00
|
0.42
|
3
|
6.00
|
12.00
|
11.00
|
10.00
|
0.42
|
-> NET-S Hosp:7
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
5.00
|
7.00
|
8.00
|
5.00
|
0.45
|
2
|
5.00
|
6.00
|
7.00
|
5.00
|
0.45
|
3
|
7.00
|
8.00
|
16.00
|
20.00
|
0.45
|
-> NET-S Hosp:8
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
6.00
|
7.00
|
8.00
|
7.00
|
0.49
|
2
|
6.00
|
8.00
|
10.00
|
9.00
|
0.49
|
3
|
5.00
|
6.00
|
7.00
|
4.00
|
0.49
|
4
|
6.00
|
7.00
|
11.00
|
10.00
|
0.49
|
-> NET-S Hosp:9
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
4.00
|
5.00
|
4.00
|
1.00
|
0.43
|
2
|
4.00
|
5.00
|
4.00
|
1.00
|
0.43
|
3
|
4.00
|
5.00
|
4.00
|
1.00
|
0.43
|
4
|
6.00
|
7.00
|
11.00
|
10.00
|
0.43
|
-> NET-S Hosp:10
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
5.00
|
7.00
|
8.00
|
5.00
|
0.37
|
2
|
3.00
|
3.00
|
1.00
|
0.00
|
0.37
|
3
|
6.00
|
7.00
|
11.00
|
10.00
|
0.37
|
# cat(paste(" -> NET-S Full Size:",sep=""))
# print(xtable(submotifs(tnets,plt=FALSE)),type="html")
cat("NET-F communities")
NET-F communities
for ( i in 1:length(nets)){
cat(paste(" -> NET-F Hosp:",i,sep=""))
print(xtable(submotifs(nets[[i]],plt=FALSE)),type="html")
}
-> NET-F Hosp:1
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
3.00
|
3.00
|
1.00
|
0.00
|
0.12
|
2
|
2.00
|
1.00
|
0.00
|
0.00
|
0.12
|
-> NET-F Hosp:2
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
10.00
|
18.00
|
22.00
|
0.51
|
2
|
4.00
|
5.00
|
4.00
|
1.00
|
0.51
|
3
|
6.00
|
9.00
|
14.00
|
13.00
|
0.51
|
4
|
5.00
|
6.00
|
7.00
|
4.00
|
0.51
|
-> NET-F Hosp:3
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
8.00
|
13.00
|
15.00
|
0.54
|
2
|
4.00
|
4.00
|
3.00
|
1.00
|
0.54
|
3
|
3.00
|
3.00
|
1.00
|
0.00
|
0.54
|
4
|
6.00
|
9.00
|
13.00
|
12.00
|
0.54
|
-> NET-F Hosp:4
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
11.00
|
17.00
|
33.00
|
65.00
|
0.64
|
2
|
8.00
|
10.00
|
15.00
|
20.00
|
0.64
|
3
|
4.00
|
5.00
|
3.00
|
1.00
|
0.64
|
4
|
6.00
|
9.00
|
13.00
|
12.00
|
0.64
|
5
|
5.00
|
9.00
|
9.00
|
5.00
|
0.64
|
-> NET-F Hosp:5
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
9.00
|
17.00
|
21.00
|
0.51
|
2
|
5.00
|
9.00
|
8.00
|
5.00
|
0.51
|
3
|
5.00
|
14.00
|
8.00
|
5.00
|
0.51
|
4
|
4.00
|
8.00
|
3.00
|
1.00
|
0.51
|
-> NET-F Hosp:6
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
7.00
|
13.00
|
15.00
|
20.00
|
0.42
|
2
|
4.00
|
5.00
|
3.00
|
1.00
|
0.42
|
3
|
6.00
|
12.00
|
11.00
|
10.00
|
0.42
|
-> NET-F Hosp:7
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
5.00
|
7.00
|
8.00
|
5.00
|
0.45
|
2
|
5.00
|
6.00
|
7.00
|
5.00
|
0.45
|
3
|
7.00
|
8.00
|
16.00
|
20.00
|
0.45
|
-> NET-F Hosp:8
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
6.00
|
7.00
|
8.00
|
7.00
|
0.49
|
2
|
6.00
|
8.00
|
10.00
|
9.00
|
0.49
|
3
|
5.00
|
6.00
|
7.00
|
4.00
|
0.49
|
4
|
6.00
|
7.00
|
11.00
|
10.00
|
0.49
|
-> NET-F Hosp:9
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
4.00
|
5.00
|
4.00
|
1.00
|
0.43
|
2
|
4.00
|
5.00
|
4.00
|
1.00
|
0.43
|
3
|
4.00
|
5.00
|
4.00
|
1.00
|
0.43
|
4
|
6.00
|
7.00
|
11.00
|
10.00
|
0.43
|
-> NET-F Hosp:10
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Modularity
|
1
|
5.00
|
7.00
|
8.00
|
5.00
|
0.37
|
2
|
3.00
|
3.00
|
1.00
|
0.00
|
0.37
|
3
|
6.00
|
7.00
|
11.00
|
10.00
|
0.37
|
# cat(paste(" -> NET-F Full Size:",sep=""))
# print(xtable(submotifs(tnetf,plt=FALSE)),type="html")
#
Equivalent hierarchical networks
Let’s determine the size of a ‘tree type’ network
#
creatree=function(x){
return(graph.tree(x[2],x[1],mode="in"))
}
sacamotifs=function(net){
res=rep(0,4)
res[1]=length(V(net))
res[2]=length(E(net))
res[3]=graph.motifs.no(net,size=3)
res[4]=graph.motifs.no(net,size=4)
return(res)
}
# To calculate the averaged number of connections entering into a node
vecinos=function(net) {
return( round( 0.5 + mean(degree(net,mode="in"))))
}
tns=merge(ldply(nets,vecinos),ldply(nets,function(x){return(length(V(x)))}),by=".id")
colnames(tns)=c("ID","NH","NN")
tns=rbind(c(vecinos(tnets),length(V(tnets))),tns[,-1])
rownames(tns)=c("Full Size",paste("Hosp. ",seq(1:length(nets)),sep=""))
tnf=merge(ldply(netf,vecinos),ldply(netf,function(x){return(length(V(x)))}),by=".id")
colnames(tnf)=c("ID","NH","NN")
tnf=rbind(c(vecinos(tnetf),length(V(tnetf))),tnf[,-1])
rownames(tnf)=c("Full Size",paste("Hosp. ",seq(1:length(netf)),sep=""))
cat("NET-S communities")
NET-S communities
print(xtable(tns),type="html")
|
NH
|
NN
|
Full Size
|
3.00
|
171.00
|
Hosp. 1
|
2.00
|
5.00
|
Hosp. 2
|
2.00
|
22.00
|
Hosp. 3
|
2.00
|
20.00
|
Hosp. 4
|
2.00
|
34.00
|
Hosp. 5
|
3.00
|
21.00
|
Hosp. 6
|
3.00
|
17.00
|
Hosp. 7
|
2.00
|
17.00
|
Hosp. 8
|
2.00
|
23.00
|
Hosp. 9
|
2.00
|
18.00
|
Hosp. 10
|
2.00
|
14.00
|
cat("NET-F communities")
NET-F communities
print(xtable(tnf),type="html")
|
NH
|
NN
|
Full Size
|
6.00
|
172.00
|
Hosp. 1
|
2.00
|
16.00
|
Hosp. 2
|
6.00
|
21.00
|
Hosp. 3
|
6.00
|
18.00
|
Hosp. 4
|
8.00
|
32.00
|
Hosp. 5
|
8.00
|
19.00
|
Hosp. 6
|
7.00
|
16.00
|
Hosp. 7
|
4.00
|
17.00
|
Hosp. 8
|
4.00
|
23.00
|
Hosp. 9
|
4.00
|
18.00
|
Hosp. 10
|
5.00
|
14.00
|
#
netts=apply(tns,1,creatree)
nettf=apply(tnf,1,creatree)
#
netts_pl = ldply(netts,average.path.length)
nettf_pl = ldply(nettf,average.path.length)
netts_cc = ldply(netts,transitivity)
nettf_cc = ldply(nettf,transitivity)
netts_d = ldply(netts,diametro)
nettf_d = ldply(nettf,diametro)
netts_r = ldply(netts,radio)
nettf_r = ldply(nettf,radio)
nndts = tns[,2]
nndtf = tnf[,2]
#
ndtt = data.frame(pls=netts_pl[,2],
plf=nettf_pl[,2],
ccs=netts_cc[,2],
ccf=nettf_cc[,2],
ds=netts_d[,2],
df=nettf_d[,2],
rs=netts_r[,2],
rf=nettf_r[,2],
NS=nndts,
NF=nndtf)
rownames(ndtt) = c("Full Net",paste("Hosp.",(as.numeric(namh)+1),sep=" "))
print(xtable(ndtt),type="html")
|
pls
|
plf
|
ccs
|
ccf
|
ds
|
df
|
rs
|
rf
|
NS
|
NF
|
Full Net
|
2.59
|
1.91
|
0.00
|
0.00
|
6.78
|
4.92
|
3.92
|
3.22
|
171.00
|
172.00
|
Hosp. 1
|
1.33
|
1.89
|
0.00
|
0.00
|
1.80
|
3.67
|
1.25
|
2.53
|
5.00
|
16.00
|
Hosp. 2
|
2.13
|
1.41
|
0.00
|
0.00
|
4.22
|
2.81
|
2.67
|
2.05
|
22.00
|
21.00
|
Hosp. 3
|
2.07
|
1.39
|
0.00
|
0.00
|
4.06
|
2.64
|
2.63
|
1.88
|
20.00
|
18.00
|
Hosp. 4
|
2.36
|
1.43
|
0.00
|
0.00
|
5.20
|
2.97
|
3.36
|
2.19
|
34.00
|
32.00
|
Hosp. 5
|
1.73
|
1.36
|
0.00
|
0.00
|
3.40
|
2.49
|
2.10
|
1.61
|
21.00
|
19.00
|
Hosp. 6
|
1.64
|
1.35
|
0.00
|
0.00
|
3.19
|
2.39
|
2.12
|
1.53
|
17.00
|
16.00
|
Hosp. 7
|
1.95
|
1.43
|
0.00
|
0.00
|
3.78
|
2.85
|
2.56
|
2.19
|
17.00
|
17.00
|
Hosp. 8
|
2.15
|
1.52
|
0.00
|
0.00
|
4.27
|
3.23
|
2.68
|
2.32
|
23.00
|
23.00
|
Hosp. 9
|
2.00
|
1.43
|
0.00
|
0.00
|
3.88
|
2.93
|
2.59
|
2.24
|
18.00
|
18.00
|
Hosp. 10
|
1.81
|
1.38
|
0.00
|
0.00
|
3.42
|
2.54
|
2.38
|
1.77
|
14.00
|
14.00
|
pnetts = ldply(netts,sacamotifs)
pnettf = ldply(netts,sacamotifs)
pnets =rbind(c(1,sacamotifs(tnets)),ldply(nets,sacamotifs))[,-1]
rownames(pnets) = c("Full Net",paste("Hosp.",(as.numeric(namh)+1),sep=" "))
colnames(pnets)=c("Nodes","Edges","3-Motif","4-Motif")
pnetf =rbind(c(1,sacamotifs(tnetf)),ldply(netf,sacamotifs))[,-1]
rownames(pnetf) = c("Full Net",paste("Hosp.",(as.numeric(namh)+1),sep=" "))
colnames(pnetf)=c("Nodes","Edges","3-Motif","4-Motif")
cat("NET-S communities. SW network + Tree network")
NET-S communities. SW network + Tree network
print(xtable(pnets),type="html")
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Full Net
|
171.00
|
346.00
|
922.00
|
3834.00
|
Hosp. 1
|
5.00
|
7.00
|
8.00
|
5.00
|
Hosp. 2
|
22.00
|
39.00
|
113.00
|
364.00
|
Hosp. 3
|
20.00
|
29.00
|
63.00
|
175.00
|
Hosp. 4
|
34.00
|
58.00
|
145.00
|
499.00
|
Hosp. 5
|
21.00
|
52.00
|
89.00
|
265.00
|
Hosp. 6
|
17.00
|
39.00
|
66.00
|
178.00
|
Hosp. 7
|
17.00
|
27.00
|
71.00
|
190.00
|
Hosp. 8
|
23.00
|
38.00
|
99.00
|
281.00
|
Hosp. 9
|
18.00
|
33.00
|
85.00
|
231.00
|
Hosp. 10
|
14.00
|
24.00
|
63.00
|
154.00
|
print(xtable(pnetts),type="html")
|
.id
|
V1
|
V2
|
V3
|
V4
|
1
|
Full Size
|
171.00
|
170.00
|
336.00
|
714.00
|
2
|
Hosp. 1
|
5.00
|
4.00
|
4.00
|
3.00
|
3
|
Hosp. 2
|
22.00
|
21.00
|
29.00
|
43.00
|
4
|
Hosp. 3
|
20.00
|
19.00
|
26.00
|
38.00
|
5
|
Hosp. 4
|
34.00
|
33.00
|
47.00
|
73.00
|
6
|
Hosp. 5
|
21.00
|
20.00
|
36.00
|
64.00
|
7
|
Hosp. 6
|
17.00
|
16.00
|
28.00
|
47.00
|
8
|
Hosp. 7
|
17.00
|
16.00
|
22.00
|
31.00
|
9
|
Hosp. 8
|
23.00
|
22.00
|
31.00
|
46.00
|
10
|
Hosp. 9
|
18.00
|
17.00
|
23.00
|
33.00
|
11
|
Hosp. 10
|
14.00
|
13.00
|
17.00
|
23.00
|
cat("NET-F communities. SW network + Tree network")
NET-F communities. SW network + Tree network
print(xtable(pnetf),type="html")
|
Nodes
|
Edges
|
3-Motif
|
4-Motif
|
Full Net
|
172.00
|
975.00
|
3146.00
|
18220.00
|
Hosp. 1
|
16.00
|
23.00
|
71.00
|
155.00
|
Hosp. 2
|
21.00
|
114.00
|
203.00
|
750.00
|
Hosp. 3
|
18.00
|
90.00
|
244.00
|
961.00
|
Hosp. 4
|
32.00
|
226.00
|
1075.00
|
7523.00
|
Hosp. 5
|
19.00
|
144.00
|
583.00
|
2739.00
|
Hosp. 6
|
16.00
|
98.00
|
286.00
|
1021.00
|
Hosp. 7
|
17.00
|
64.00
|
108.00
|
345.00
|
Hosp. 8
|
23.00
|
89.00
|
168.00
|
581.00
|
Hosp. 9
|
18.00
|
68.00
|
91.00
|
248.00
|
Hosp. 10
|
14.00
|
59.00
|
82.00
|
210.00
|
print(xtable(pnettf),type="html")
|
.id
|
V1
|
V2
|
V3
|
V4
|
1
|
Full Size
|
171.00
|
170.00
|
336.00
|
714.00
|
2
|
Hosp. 1
|
5.00
|
4.00
|
4.00
|
3.00
|
3
|
Hosp. 2
|
22.00
|
21.00
|
29.00
|
43.00
|
4
|
Hosp. 3
|
20.00
|
19.00
|
26.00
|
38.00
|
5
|
Hosp. 4
|
34.00
|
33.00
|
47.00
|
73.00
|
6
|
Hosp. 5
|
21.00
|
20.00
|
36.00
|
64.00
|
7
|
Hosp. 6
|
17.00
|
16.00
|
28.00
|
47.00
|
8
|
Hosp. 7
|
17.00
|
16.00
|
22.00
|
31.00
|
9
|
Hosp. 8
|
23.00
|
22.00
|
31.00
|
46.00
|
10
|
Hosp. 9
|
18.00
|
17.00
|
23.00
|
33.00
|
11
|
Hosp. 10
|
14.00
|
13.00
|
17.00
|
23.00
|
#
We plot now in a visible way the nets:
#
#
par(mai=c(0,0,1,0))
net=tnets
V(net)$size<-degree(net)/100
plot(net, #the graph to be plotted
layout=layout.fruchterman.reingold,
vertex.label.dist=0.1, #puts the name labels slightly off the dots
vertex.frame.color='blue', #the color of the border of the dots
vertex.label.color='black', #the color of the name labels
vertex.label.font=2, #the font of the name labels
vertex.label=V(net)$name,
vertex.label.cex=0.6, #specifies the size of the font of the labels. can also be made to vary
edge.arrow.size=0.3, layout=layout.lgl
)

#
par(mai=c(0,0,1,0))
net=tnetf
V(net)$size<-degree(net)/100
plot(net, #the graph to be plotted
layout=layout.fruchterman.reingold,
vertex.label.dist=0.1, #puts the name labels slightly off the dots
vertex.frame.color='blue', #the color of the border of the dots
vertex.label.color='black', #the color of the name labels
vertex.label.font=2, #the font of the name labels
vertex.label=V(net)$name,
vertex.label.cex=0.6, #specifies the size of the font of the labels. can also be made to vary
edge.arrow.size=0.3, layout=layout.graphopt
)

#
#
Z-Score values
Now it is time for calculating the z-score of the netwoeks
#
rewiringnet=function(net,iter=1000){
nts = net
zval=graph.motifs(net,size=3)
tmp =matrix(NA,nrow=iter,ncol=length(zval))
for ( i in 1:iter) {
tmp[i,] = graph.motifs(rewire(net,mode="simple"),size=3)
}
mu =apply(tmp,2,mean)
std =apply(tmp,2,sd)
return((zval-mu)/std)
}
#
znets=rbind(c(1,rewiringnet(tnets)),ldply(nets,rewiringnet))[,-1]
rownames(znets) = c("Full Net",paste("Hosp.",(as.numeric(namh)+1),sep=" "))
znetf=rbind(c(1,rewiringnet(tnetf)),ldply(netf,rewiringnet))[,-1]
rownames(znetf) = c("Full Net",paste("Hosp.",(as.numeric(namh)+1),sep=" "))
print(xtable(znets),type="html")
|
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
V11
|
V12
|
V13
|
V14
|
V15
|
V16
|
Full Net
|
|
|
-10.21
|
|
-7.84
|
-1.92
|
-11.33
|
14.65
|
-0.89
|
-2.04
|
10.01
|
-1.47
|
0.59
|
3.72
|
3.07
|
11.79
|
Hosp. 1
|
|
|
|
|
0.72
|
|
-0.72
|
0.72
|
-0.72
|
|
|
|
|
|
|
|
Hosp. 2
|
|
|
-0.79
|
|
1.05
|
-1.58
|
-2.13
|
5.74
|
-0.59
|
-1.61
|
-0.53
|
-1.05
|
-0.69
|
-0.49
|
-0.22
|
|
Hosp. 3
|
|
|
-3.08
|
|
0.30
|
-0.99
|
-0.87
|
4.31
|
|
-1.03
|
-0.29
|
-0.70
|
-0.16
|
-0.38
|
|
|
Hosp. 4
|
|
|
-1.46
|
|
-1.19
|
-1.01
|
-6.50
|
6.50
|
-0.40
|
-0.16
|
-0.28
|
-1.16
|
1.76
|
8.76
|
-0.08
|
|
Hosp. 5
|
|
|
-3.10
|
|
-4.46
|
-1.61
|
-4.51
|
-1.25
|
-1.24
|
-1.22
|
10.10
|
-2.03
|
-1.99
|
0.77
|
1.04
|
17.53
|
Hosp. 6
|
|
|
-2.68
|
|
-3.53
|
-0.61
|
-2.96
|
-1.63
|
-1.35
|
-0.78
|
4.91
|
-1.66
|
-1.25
|
0.71
|
0.48
|
3.25
|
Hosp. 7
|
|
|
0.30
|
|
1.90
|
-1.74
|
-0.59
|
4.07
|
-0.48
|
-1.71
|
-0.54
|
-1.14
|
-0.76
|
-0.35
|
-0.23
|
|
Hosp. 8
|
|
|
-0.92
|
|
1.01
|
-1.39
|
-2.35
|
6.54
|
-0.47
|
-1.36
|
-0.41
|
-1.30
|
-0.65
|
-0.34
|
-0.21
|
|
Hosp. 9
|
|
|
-0.90
|
|
1.26
|
-1.56
|
-2.19
|
5.34
|
-0.46
|
-1.54
|
-0.44
|
-1.20
|
-0.64
|
-0.42
|
-0.20
|
|
Hosp. 10
|
|
|
0.18
|
|
2.08
|
-1.84
|
-0.62
|
4.20
|
-0.59
|
-1.77
|
-0.61
|
-1.03
|
-0.79
|
-0.48
|
-0.29
|
-0.03
|
print(xtable(znetf),type="html")
|
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
V11
|
V12
|
V13
|
V14
|
V15
|
V16
|
Full Net
|
|
|
-9.74
|
|
-9.89
|
-6.21
|
-9.80
|
0.15
|
4.30
|
-6.04
|
6.44
|
-0.64
|
2.90
|
3.22
|
5.63
|
8.42
|
Hosp. 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hosp. 2
|
|
|
-4.01
|
|
-5.06
|
-7.56
|
-3.82
|
-2.22
|
-2.74
|
-7.64
|
7.89
|
-2.39
|
-4.08
|
-3.02
|
-3.22
|
7.83
|
Hosp. 3
|
|
|
-3.28
|
|
-2.88
|
1.16
|
-2.92
|
-1.57
|
-0.07
|
0.19
|
3.27
|
-2.13
|
0.16
|
1.59
|
1.16
|
2.90
|
Hosp. 4
|
|
|
-3.61
|
|
-3.54
|
0.39
|
-4.68
|
-2.06
|
3.30
|
1.64
|
0.47
|
-2.33
|
0.22
|
1.20
|
3.62
|
4.71
|
Hosp. 5
|
|
|
-0.25
|
|
-1.64
|
0.54
|
-1.45
|
-1.38
|
-1.29
|
2.09
|
-1.21
|
-1.22
|
0.27
|
-1.06
|
1.88
|
0.94
|
Hosp. 6
|
|
|
-1.22
|
|
-2.57
|
-0.30
|
-2.32
|
-1.59
|
-0.67
|
-0.63
|
1.19
|
-0.31
|
-1.42
|
1.15
|
-0.27
|
3.55
|
Hosp. 7
|
|
|
-3.58
|
|
-3.75
|
0.18
|
-3.77
|
-1.83
|
-0.62
|
0.15
|
1.21
|
-2.22
|
-3.10
|
-1.13
|
4.55
|
11.67
|
Hosp. 8
|
|
|
-4.29
|
|
-4.15
|
-0.95
|
-4.21
|
-2.31
|
2.17
|
-0.77
|
2.46
|
-2.36
|
-1.56
|
1.20
|
5.82
|
17.24
|
Hosp. 9
|
|
|
-4.28
|
|
-4.48
|
0.37
|
-4.10
|
-1.63
|
-1.12
|
0.44
|
1.51
|
-2.31
|
-0.16
|
1.43
|
7.67
|
20.95
|
Hosp. 10
|
|
|
-3.76
|
|
-4.12
|
-1.12
|
-4.06
|
-1.38
|
0.10
|
0.52
|
4.47
|
-1.76
|
-2.20
|
-0.27
|
0.78
|
5.37
|
#