Some summaries of past hotspot activity to aid in planning 2015 surveys.

First, load water quality data.

## Loading wq database: \\psf\Home\Dropbox\MysticDB\MysticDB_20150224.accdb
## Fetching tables...done
## Merging tables...done
## Excluding field blanks, duplicates...done
## Excluding flagged results...done
## Loading precip file: \\psf\Home\Dropbox\MysticDB\Processed\Precip\LoganPrecip.xlsx
## Computing antecedent precip...done
## Computing DateHour column in wq dataframe...done
## Merging wq and precip...done

Narrow to Hotspot bacteria data.

# filter for hotspot data only 
hot <- tbl_df(wq2)  %>%
  filter(ProjectID == "HOTSPOT") %>%
  filter(CharacteristicID == "ECOLI" | CharacteristicID == "ENT") 
 # filter(LocationTypeID == 27)
three <- hot %>%
  filter(Datetime > "2012-01-01")

byTown3yr <- three %>%
  group_by(MunicipalityID) %>%
  summarize(q90 = quantile(ResultValue, 0.9, na.rm = TRUE), 
            q75 = quantile(ResultValue, 0.75, na.rm = TRUE),
            median = median(ResultValue, na.rm = TRUE), n = n()) %>%
  arrange(desc(n), desc(q90))

Total number of samples in last three years = 322

MunicipalityID q90 q75 median n
Medford 34300.0 5654.00 767.0 53
Malden 51720.0 9678.00 1549.0 41
Somerville 6039.4 2975.00 1450.0 28
Melrose 12694.8 3537.00 744.0 27
Belmont 4815.9 2595.00 460.5 24
Chelsea 310.0 196.25 41.5 24
Arlington 14390.0 4813.00 1379.0 21
Woburn 169.3 111.50 34.0 20
Winchester 50910.0 2152.25 443.5 16
Cambridge 79846.0 22417.50 9472.5 14
Everett 225465.0 45112.50 1280.0 12
Revere 572.3 100.25 15.0 12
Stoneham 19909.2 7691.75 2671.0 10
Lexington 34264.4 1773.50 29.5 8
NA 3640.0 1828.00 270.0 7
Boston 106.5 101.25 92.5 2
Winthrop 28.9 25.75 20.5 2
East Boston 784.0 784.00 784.0 1
five <- hot %>%
  filter(Datetime > "2010-01-01")

byTown5yr <- five %>%
  group_by(MunicipalityID) %>%
  summarize(q90 = quantile(ResultValue, 0.9, na.rm = TRUE), 
            q75 = quantile(ResultValue, 0.75, na.rm = TRUE),
            median = median(ResultValue, na.rm = TRUE), n = n()) %>%
  arrange(desc(n), desc(q90))

Total number of samples in last five years = 625

MunicipalityID q90 q75 median n
Chelsea 6867 2416 362 74
Malden 16366 3808 970 68
Medford 63490 7202 1160 64
Somerville 18876 4826 2069 59
Arlington 14138 2524 395 55
Belmont 7945 2456 526 51
Melrose 9129 3237 395 43
Revere 24060 833 120 37
Winchester 20486 2400 432 35
Woburn 372 196 64 35
Cambridge 35796 19945 3922 23
Stoneham 9775 5886 580.5 18
Everett 192475 33550 1280 14
Lexington 6932 312.5 34 11
Boston 41755 19863 5794 9
East Boston 30120 5040 1726 9
Winthrop 3992 1342 537 7
NA 3640 1828 270 7
Burlington 2120 1700 770 5
Wakefield 324 324 324 1
all <- hot 
  #filter(Datetime > "2012-01-01")

byTownAll <- all %>%
  group_by(MunicipalityID) %>%
  summarize(q90 = quantile(ResultValue, 0.9, na.rm = TRUE), 
            q75 = quantile(ResultValue, 0.75, na.rm = TRUE),
            median = median(ResultValue, na.rm = TRUE), n = n()) %>%
  arrange(desc(n), desc(q90))

Total number of samples in all years = 2089