Populations are nested within regions and skinks are the replicates, with repeated nested within these replicates
library(car)
library(plyr)
library(multcomp)
library(nlme)
library(reshape)
library(MASS)
library(Hmisc)
library(Rmisc)
library(ggplot2)
library(gridExtra)
library(lme4)
setwd("//ad.monash.edu/home/User081/mmichel/Desktop/Urban paper")
activity<-read.csv("NonDirected.csv", header=T, strip.white=T)
head(activity)
## Repeat Region Population VIE Trans LogTrans SqrtTrans
## 1 A N NP 1 RR.. 47 1.6720979 6.855655
## 2 A N NP 1 OO.. 20 1.3010300 4.472136
## 3 A N NP 1 YY.. 24 1.3802112 4.898979
## 4 A N NP 1 ..RR 9 0.9542425 3.000000
## 5 A N NP 1 ..OO 111 2.0453230 10.535654
## 6 A N NP 1 ..YY 60 1.7781513 7.745967
str(activity)
## 'data.frame': 118 obs. of 7 variables:
## $ Repeat : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
## $ Region : Factor w/ 2 levels "N","U": 1 1 1 1 1 1 1 1 1 1 ...
## $ Population: Factor w/ 4 levels "NP 1","NP 2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ VIE : Factor w/ 59 levels "..OO","..OR",..: 42 27 56 4 1 8 39 34 53 46 ...
## $ Trans : int 47 20 24 9 111 60 56 92 134 47 ...
## $ LogTrans : num 1.672 1.301 1.38 0.954 2.045 ...
## $ SqrtTrans : num 6.86 4.47 4.9 3 10.54 ...
activity.ag<-ddply(activity, ~Region+Population, numcolwise(mean))
activity.ag
## Region Population Trans LogTrans SqrtTrans
## 1 N NP 1 67.41176 1.674703 7.640612
## 2 N NP 2 70.10714 1.741573 7.921416
## 3 U UP 1 62.85294 1.669405 7.439638
## 4 U UP 2 100.95455 1.911891 9.598595
#Means for each population, obviously something funny is happening with UP 2 across both trials
ggplot(activity.ag, aes(y=Trans, x=Region))+geom_boxplot()
#Shows that the urban populations are highly varied, whereas the non urban are both consistent
activity.null<-lme(Trans~1, random=~1|Region/Population/VIE/Repeat, data=activity, method='ML')
activity.lme<-lme(Trans~Region, random=~1|Region/Population/VIE/Repeat, data=activity, method='ML')
anova(activity.null, activity.lme)
## Model df AIC BIC logLik Test L.Ratio
## activity.null 1 6 1242.883 1259.507 -615.4417
## activity.lme 2 7 1244.216 1263.611 -615.1080 1 vs 2 0.6674704
## p-value
## activity.null
## activity.lme 0.4139
AIC(activity.lme)
## [1] 1244.216
AIC(activity.null)
## [1] 1242.883
#region has no impact
attach(activity)
activity.ag2<-ddply(activity, ~Population+VIE, numcolwise(mean))
activity.ag2
## Population VIE Trans LogTrans SqrtTrans
## 1 NP 1 ..OO 123.5 2.0894309 11.098779
## 2 NP 1 ..OR 64.0 1.6758015 7.463328
## 3 NP 1 ..OY 39.0 1.5611079 6.140055
## 4 NP 1 ..RR 36.0 1.3767915 5.468627
## 5 NP 1 ..RY 96.0 1.9493626 9.617546
## 6 NP 1 ..YO 17.5 0.7720340 2.958040
## 7 NP 1 ..YR 49.5 1.6690289 6.934301
## 8 NP 1 ..YY 67.5 1.8266063 8.203110
## 9 NP 1 O..O 48.5 1.4493626 6.190416
## 10 NP 1 OO.. 61.0 1.6548151 7.285820
## 11 NP 1 OY.. 94.0 1.9730295 9.694811
## 12 NP 1 R.Y. 34.0 1.2491553 5.086661
## 13 NP 1 RO.. 94.5 1.9360198 9.507939
## 14 NP 1 RR.. 69.5 1.8179428 8.223659
## 15 NP 1 RY.. 74.5 1.8403490 8.477580
## 16 NP 1 YO.. 147.5 2.1669653 12.132207
## 17 NP 1 YY.. 29.5 1.4621396 5.407530
## 18 NP 2 .O.O 33.0 1.4929377 5.661833
## 19 NP 2 .O.R 47.0 1.6237411 6.672615
## 20 NP 2 .OO. 30.0 1.4237863 5.316625
## 21 NP 2 .R.O 95.0 1.9440617 9.563334
## 22 NP 2 .R.R 125.0 2.0933228 11.157324
## 23 NP 2 .RR. 110.5 1.9628623 10.057439
## 24 NP 2 .Y.Y 45.5 1.5836587 6.474588
## 25 NP 2 O..R 28.5 1.4466034 5.313392
## 26 NP 2 O.O. 67.0 1.7241986 7.745662
## 27 NP 2 OOOO 68.5 1.8257359 8.229451
## 28 NP 2 R..R 60.5 1.7722820 7.736103
## 29 NP 2 RRRR 108.0 2.0297438 10.370360
## 30 NP 2 Y..Y 87.5 1.5871753 7.942049
## 31 NP 2 Y.Y. 75.5 1.8719116 8.659043
## 32 UP 1 .OR. 152.0 2.1807034 12.320744
## 33 UP 1 .OY. 77.0 1.8861609 8.773299
## 34 UP 1 .R.Y 51.5 1.6963485 7.113336
## 35 UP 1 .RO. 66.5 1.8183442 8.133816
## 36 UP 1 .Y.R 31.5 1.4542425 5.475422
## 37 UP 1 .YY. 68.0 1.8317562 8.242641
## 38 UP 1 O..Y 80.0 1.8747135 8.801704
## 39 UP 1 OORR 39.5 1.5491488 6.120125
## 40 UP 1 OOYY 24.5 1.3883506 4.947426
## 41 UP 1 OROR 54.0 1.6751240 7.117887
## 42 UP 1 ORRO 17.5 1.2108020 4.107802
## 43 UP 1 R.O. 64.0 1.8048506 7.993885
## 44 UP 1 ROOR 54.5 1.7332855 7.369226
## 45 UP 1 RROO 17.5 1.2204545 4.129967
## 46 UP 1 Y..O 115.0 2.0583205 10.709160
## 47 UP 1 YYOO 38.0 0.9404068 4.358899
## 48 UP 1 YYYY 117.5 2.0568714 10.758514
## 49 UP 2 .YO. 97.0 1.9867717 9.848858
## 50 UP 2 OOOY 80.0 1.8441654 8.655918
## 51 UP 2 OYYO 120.0 2.0631631 10.854830
## 52 UP 2 RORO 40.5 1.6058272 6.358006
## 53 UP 2 RRRY 80.0 1.8598313 8.729704
## 54 UP 2 RYRY 160.5 2.2039333 12.657631
## 55 UP 2 Y..R 81.5 1.8422431 8.690263
## 56 UP 2 Y.O. 192.0 2.2828236 13.852598
## 57 UP 2 YOOY 15.0 1.1721961 3.864328
## 58 UP 2 YRYR 115.5 2.0618932 10.742834
## 59 UP 2 YYYR 128.5 2.1079509 11.329576
g0<-ggplot(activity.ag2, aes(y=Trans, x=Population))+geom_boxplot()
g0
g1<-ggplot(activity, aes(y=Trans, x=Repeat, color=Population))+scale_color_discrete(guide=FALSE)+geom_boxplot()+theme_classic()
g1
tapply(Trans, list(Population, Repeat), mean)
## A B
## NP 1 51.00000 83.82353
## NP 2 82.78571 57.42857
## UP 1 59.88235 65.82353
## UP 2 98.81818 103.09091
#Interesting that National park looked more variable between trials
model<-glmer(Trans~Population+(1|Region/Population/VIE/Repeat), family=poisson)
summary(model)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population + (1 | Region/Population/VIE/Repeat)
##
## AIC BIC logLik deviance df.resid
## 1259.6 1281.8 -621.8 1243.6 110
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.04306 -0.13941 0.04127 0.08181 0.18023
##
## Random effects:
## Groups Name Variance Std.Dev.
## Repeat:(VIE:(Population:Region)) (Intercept) 5.029e-01 0.7091473
## VIE:(Population:Region) (Intercept) 1.370e-01 0.3701208
## Population:Region (Intercept) 0.000e+00 0.0000000
## Region (Intercept) 1.124e-10 0.0000106
## Number of obs: 118, groups:
## Repeat:(VIE:(Population:Region)), 118; VIE:(Population:Region), 59; Population:Region, 4; Region, 2
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.91528 0.15415 25.399 <2e-16 ***
## PopulationNP 2 0.10556 0.22863 0.462 0.6443
## PopulationUP 1 -0.02848 0.21768 -0.131 0.8959
## PopulationUP 2 0.49418 0.24450 2.021 0.0433 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1
## PopulatnNP2 -0.674
## PopulatnUP1 -0.707 0.477
## PopulatnUP2 -0.630 0.425 0.446
#Population:Region is the fixed effect (seen under random effects)
#Most variance is seen between repeats within skinks
#Second most variance between skinks...i.e. there is more within-individual variance than between individual variance. However when we look at means, its seems that this variance exists mainly in the national park populations, but not the urban populations
model.null<-glmer(Trans~1+(1|Region/Population/VIE/Repeat), family=poisson)
summary(model.null)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ 1 + (1 | Region/Population/VIE/Repeat)
##
## AIC BIC logLik deviance df.resid
## 1258.8 1272.6 -624.4 1248.8 113
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.05110 -0.11735 0.03779 0.09120 0.18184
##
## Random effects:
## Groups Name Variance Std.Dev.
## Repeat:(VIE:(Population:Region)) (Intercept) 0.5025 0.70886
## VIE:(Population:Region) (Intercept) 0.1725 0.41539
## Population:Region (Intercept) 0.0023 0.04796
## Region (Intercept) 0.0000 0.00000
## Number of obs: 118, groups:
## Repeat:(VIE:(Population:Region)), 118; VIE:(Population:Region), 59; Population:Region, 4; Region, 2
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.02619 0.09277 43.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Value for population as a random effect is very small, so should be considred a fixed effect, as well as region.
model3<-glmer(Trans~Population*Repeat + (1|VIE), data=activity, family=poisson)
summary(model3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population * Repeat + (1 | VIE)
## Data: activity
##
## AIC BIC logLik deviance df.resid
## 2027.7 2052.6 -1004.8 2009.7 109
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -9.2470 -1.5157 -0.1769 1.5146 11.2239
##
## Random effects:
## Groups Name Variance Std.Dev.
## VIE (Intercept) 0.3115 0.5581
## Number of obs: 118, groups: VIE, 59
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.80208 0.14000 27.157 < 2e-16 ***
## PopulationNP 2 0.51012 0.20694 2.465 0.01370 *
## PopulationUP 1 0.12478 0.19768 0.631 0.52788
## PopulationUP 2 0.63112 0.22148 2.850 0.00438 **
## RepeatB 0.49689 0.04300 11.556 < 2e-16 ***
## PopulationNP 2:RepeatB -0.86260 0.06283 -13.728 < 2e-16 ***
## PopulationUP 1:RepeatB -0.40229 0.06097 -6.598 4.17e-11 ***
## PopulationUP 2:RepeatB -0.45456 0.06038 -7.528 5.16e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1 PplUP2 RepetB PNP2:R PUP1:R
## PopulatnNP2 -0.676
## PopulatnUP1 -0.708 0.479
## PopulatnUP2 -0.632 0.428 0.448
## RepeatB -0.191 0.129 0.135 0.121
## PpltnNP2:RB 0.131 -0.155 -0.093 -0.083 -0.684
## PpltnUP1:RB 0.135 -0.091 -0.177 -0.085 -0.705 0.483
## PpltnUP2:RB 0.136 -0.092 -0.096 -0.155 -0.712 0.487 0.502
AIC(model3)
## [1] 2027.666
plot(model3)
#Probably need to split analysis by trial
RepeatA <- subset(activity, Repeat=="A")
RepeatA
## Repeat Region Population VIE Trans LogTrans SqrtTrans
## 1 A N NP 1 RR.. 47 1.6720979 6.855655
## 2 A N NP 1 OO.. 20 1.3010300 4.472136
## 3 A N NP 1 YY.. 24 1.3802112 4.898979
## 4 A N NP 1 ..RR 9 0.9542425 3.000000
## 5 A N NP 1 ..OO 111 2.0453230 10.535654
## 6 A N NP 1 ..YY 60 1.7781513 7.745967
## 7 A N NP 1 RO.. 56 1.7481880 7.483315
## 8 A N NP 1 OY.. 92 1.9637878 9.591663
## 9 A N NP 1 YO.. 134 2.1271048 11.575837
## 10 A N NP 1 RY.. 47 1.6720979 6.855655
## 11 A N NP 1 ..RY 60 1.7781513 7.745967
## 12 A N NP 1 ..OR 107 2.0293838 10.344080
## 13 A N NP 1 ..YO 0 0.0000000 0.000000
## 14 A N NP 1 ..OY 53 1.7242759 7.280110
## 15 A N NP 1 ..YR 33 1.5185139 5.744563
## 16 A N NP 1 O..O 9 0.9542425 3.000000
## 17 A N NP 1 R.Y. 5 0.6989700 2.236068
## 18 A N NP 2 Y.Y. 88 1.9444827 9.380832
## 19 A N NP 2 O.O. 108 2.0334238 10.392305
## 20 A N NP 2 .R.R 141 2.1492191 11.874342
## 21 A N NP 2 .O.O 44 1.6434527 6.633250
## 22 A N NP 2 Y..Y 9 0.9542425 3.000000
## 23 A N NP 2 RRRR 122 2.0863598 11.045361
## 24 A N NP 2 OOOO 83 1.9190781 9.110434
## 25 A N NP 2 .O.R 68 1.8325089 8.246211
## 26 A N NP 2 R..R 73 1.8633229 8.544004
## 27 A N NP 2 .Y.Y 70 1.8450980 8.366600
## 28 A N NP 2 .OO. 16 1.2041200 4.000000
## 29 A N NP 2 .RR. 172 2.2355284 13.114877
## 30 A N NP 2 O..R 34 1.5314789 5.830952
## 31 A N NP 2 .R.O 131 2.1172713 11.445523
## 32 A U UP 1 O..Y 52 1.7160033 7.211103
## 33 A U UP 1 Y..O 103 2.0128372 10.148892
## 34 A U UP 1 R.O. 69 1.8388491 8.306624
## 35 A U UP 1 .R.Y 38 1.5797836 6.164414
## 36 A U UP 1 .OY. 80 1.9030900 8.944272
## 37 A U UP 1 YYYY 89 1.9493900 9.433981
## 38 A U UP 1 OORR 22 1.3424227 4.690416
## 39 A U UP 1 .RO. 76 1.8808136 8.717798
## 40 A U UP 1 ROOR 48 1.6812412 6.928203
## 41 A U UP 1 .Y.R 45 1.6532125 6.708204
## 42 A U UP 1 RROO 23 1.3617278 4.795832
## 43 A U UP 1 OROR 28 1.4471580 5.291503
## 44 A U UP 1 .YY. 72 1.8573325 8.485281
## 45 A U UP 1 .OR. 163 2.2121876 12.767145
## 46 A U UP 1 OOYY 23 1.3617278 4.795832
## 47 A U UP 1 YYOO 76 1.8808136 8.717798
## 48 A U UP 1 ORRO 11 1.0413927 3.316625
## 49 A U UP 2 .YO. 97 1.9867717 9.848858
## 50 A U UP 2 OOOY 41 1.6127839 6.403124
## 51 A U UP 2 RYRY 147 2.1673173 12.124356
## 52 A U UP 2 YYYR 120 2.0791812 10.954451
## 53 A U UP 2 OYYO 152 2.1818436 12.328828
## 54 A U UP 2 YOOY 17 1.2304489 4.123106
## 55 A U UP 2 RORO 37 1.5682017 6.082763
## 56 A U UP 2 YRYR 122 2.0863598 11.045361
## 57 A U UP 2 Y..R 39 1.5910646 6.244998
## 58 A U UP 2 Y.O. 201 2.3031961 14.177447
## 59 A U UP 2 RRRY 114 2.0569049 10.677078
RepeatB <- subset(activity, Repeat=="B")
#Here I just created subsets of the data so that I could focus on each trial seperately
glmer.model<-glmer(Trans~Population + (1|VIE), data=RepeatA, family=poisson)
plot(glmer.model)
summary(glmer.model)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population + (1 | VIE)
## Data: RepeatA
##
## AIC BIC logLik deviance df.resid
## 626.8 637.2 -308.4 616.8 54
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.83446 -0.15072 0.04455 0.08392 0.17243
##
## Random effects:
## Groups Name Variance Std.Dev.
## VIE (Intercept) 0.6863 0.8284
## Number of obs: 59, groups: VIE, 59
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.5232 0.2082 16.920 < 2e-16 ***
## PopulationNP 2 0.6633 0.3062 2.166 0.03028 *
## PopulationUP 1 0.3715 0.2917 1.274 0.20284
## PopulationUP 2 0.8507 0.3273 2.599 0.00936 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1
## PopulatnNP2 -0.679
## PopulatnUP1 -0.713 0.484
## PopulatnUP2 -0.635 0.432 0.453
#Large signficance with repeat A
summary(glht(glmer.model, linfct=mcp(Population='Tukey')))
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = Trans ~ Population + (1 | VIE), data = RepeatA,
## family = poisson)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## NP 2 - NP 1 == 0 0.6633 0.3062 2.166 0.1324
## UP 1 - NP 1 == 0 0.3715 0.2917 1.274 0.5790
## UP 2 - NP 1 == 0 0.8507 0.3273 2.599 0.0459 *
## UP 1 - NP 2 == 0 -0.2918 0.3038 -0.961 0.7713
## UP 2 - NP 2 == 0 0.1874 0.3382 0.554 0.9453
## UP 2 - UP 1 == 0 0.4792 0.3251 1.474 0.4523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
library(phia)
testInteractions(glmer.model)
## Chisq Test:
## P-value adjustment method: holm
## Value Df Chisq Pr(>Chisq)
## NP 1-NP 2 0.51516 1 4.6935 0.15138
## NP 1-UP 1 0.68973 1 1.6218 0.60852
## NP 1-UP 2 0.42712 1 6.7537 0.05613 .
## NP 2-UP 1 1.33887 1 0.9226 0.67357
## NP 2-UP 2 0.82911 1 0.3071 0.67357
## UP 1-UP 2 0.61926 1 2.1732 0.56172
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
glmer.model2<-glmer(Trans~Population + (1|VIE), data=RepeatB, family=poisson)
summary(glmer.model2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population + (1 | VIE)
## Data: RepeatB
##
## AIC BIC logLik deviance df.resid
## 629.7 640.1 -309.9 619.7 54
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.14429 -0.19594 0.03942 0.08433 0.18925
##
## Random effects:
## Groups Name Variance Std.Dev.
## VIE (Intercept) 0.5142 0.7171
## Number of obs: 59, groups: VIE, 59
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.2834 0.1766 24.250 <2e-16 ***
## PopulationNP 2 -0.4308 0.2639 -1.632 0.103
## PopulationUP 1 -0.3933 0.2516 -1.563 0.118
## PopulationUP 2 0.1682 0.2816 0.597 0.550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1
## PopulatnNP2 -0.669
## PopulatnUP1 -0.701 0.470
## PopulatnUP2 -0.627 0.420 0.440
lme.model<-lme(Trans~Population, random=~1|VIE, data=RepeatA, correlation=corAR1(form=~VIE), method='REML')
summary(lme.model)
## Linear mixed-effects model fit by REML
## Data: RepeatA
## AIC BIC logLik
## 600.3822 614.4335 -293.1911
##
## Random effects:
## Formula: ~1 | VIE
## (Intercept) Residual
## StdDev: 42.46657 15.92496
##
## Correlation Structure: AR(1)
## Formula: ~VIE | VIE
## Parameter estimate(s):
## Phi
## 0
## Fixed effects: Trans ~ Population
## Value Std.Error DF t-value p-value
## (Intercept) 51.00000 11.00004 55 4.636348 0.0000
## PopulationNP 2 31.78571 16.36858 55 1.941874 0.0573
## PopulationUP 1 8.88235 15.55640 55 0.570977 0.5703
## PopulationUP 2 47.81818 17.54999 55 2.724685 0.0086
## Correlation:
## (Intr) PplNP2 PplUP1
## PopulationNP 2 -0.672
## PopulationUP 1 -0.707 0.475
## PopulationUP 2 -0.627 0.421 0.443
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -0.63341894 -0.28553532 -0.01407598 0.18733617 0.79831487
##
## Number of Observations: 59
## Number of Groups: 59
lme.model2<-lme(Trans~Population, random=~1|VIE, data=RepeatB, correlation=corAR1(form=~VIE), method='REML')
summary(lme.model2)
## Linear mixed-effects model fit by REML
## Data: RepeatB
## AIC BIC logLik
## 598.3508 612.4021 -292.1754
##
## Random effects:
## Formula: ~1 | VIE
## (Intercept) Residual
## StdDev: 41.68951 15.63356
##
## Correlation Structure: AR(1)
## Formula: ~VIE | VIE
## Parameter estimate(s):
## Phi
## 0
## Fixed effects: Trans ~ Population
## Value Std.Error DF t-value p-value
## (Intercept) 83.82353 10.79876 55 7.762332 0.0000
## PopulationNP 2 -26.39496 16.06906 55 -1.642595 0.1062
## PopulationUP 1 -18.00000 15.27175 55 -1.178647 0.2436
## PopulationUP 2 19.26738 17.22885 55 1.118320 0.2683
## Correlation:
## (Intr) PplNP2 PplUP1
## PopulationNP 2 -0.672
## PopulationUP 1 -0.707 0.475
## PopulationUP 2 -0.627 0.421 0.443
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -0.71046486 -0.25967762 -0.03803878 0.15411609 0.85620387
##
## Number of Observations: 59
## Number of Groups: 59
#When looking at each trial seperately, UP2 differs from the other parks but only in Trial 1. In trial 2 there is no significant difference...not againest NP 1 anyway
glmer.model3<-glmer(Trans~Population+(1|VIE/Repeat), data=activity, family=poisson)
summary(glmer.model3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population + (1 | VIE/Repeat)
## Data: activity
##
## AIC BIC logLik deviance df.resid
## 1255.6 1272.2 -621.8 1243.6 112
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.04305 -0.13941 0.04127 0.08181 0.18022
##
## Random effects:
## Groups Name Variance Std.Dev.
## Repeat:VIE (Intercept) 0.5029 0.7092
## VIE (Intercept) 0.1370 0.3701
## Number of obs: 118, groups: Repeat:VIE, 118; VIE, 59
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.91530 0.15415 25.399 <2e-16 ***
## PopulationNP 2 0.10553 0.22863 0.462 0.6444
## PopulationUP 1 -0.02851 0.21768 -0.131 0.8958
## PopulationUP 2 0.49415 0.24450 2.021 0.0433 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1
## PopulatnNP2 -0.674
## PopulatnUP1 -0.707 0.477
## PopulatnUP2 -0.630 0.425 0.446
anova(glmer.model3)
## Analysis of Variance Table
## Df Sum Sq Mean Sq F value
## Population 3 5.4164 1.8055 1.8055
#Model withouth Repeat as a factor
glmer.model4<-glmer(Trans~Population*Repeat+(1|VIE/Repeat), data=activity, family=poisson)
summary(glmer.model4)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population * Repeat + (1 | VIE/Repeat)
## Data: activity
##
## AIC BIC logLik deviance df.resid
## 1252.0 1279.7 -616.0 1232.0 108
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.15646 -0.13529 0.04344 0.08250 0.26810
##
## Random effects:
## Groups Name Variance Std.Dev.
## Repeat:VIE (Intercept) 0.4054 0.6367
## VIE (Intercept) 0.1853 0.4305
## Number of obs: 118, groups: Repeat:VIE, 118; VIE, 59
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.5386 0.1936 18.281 < 2e-16 ***
## PopulationNP 2 0.6558 0.2846 2.304 0.02121 *
## PopulationUP 1 0.3572 0.2713 1.317 0.18794
## PopulationUP 2 0.8350 0.3043 2.744 0.00607 **
## RepeatB 0.7435 0.2265 3.282 0.00103 **
## PopulationNP 2:RepeatB -1.0862 0.3352 -3.241 0.00119 **
## PopulationUP 1:RepeatB -0.7531 0.3200 -2.354 0.01859 *
## PopulationUP 2:RepeatB -0.6705 0.3576 -1.875 0.06080 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1 PplUP2 RepetB PNP2:R PUP1:R
## PopulatnNP2 -0.679
## PopulatnUP1 -0.713 0.484
## PopulatnUP2 -0.636 0.432 0.453
## RepeatB -0.605 0.411 0.432 0.385
## PpltnNP2:RB 0.409 -0.596 -0.291 -0.260 -0.676
## PpltnUP1:RB 0.430 -0.292 -0.597 -0.273 -0.709 0.479
## PpltnUP2:RB 0.384 -0.260 -0.273 -0.596 -0.633 0.428 0.449
#This is the final model, with Repeat as a factor...as you can see Repeat:VIE shows the largest variance, whereas difference between skinks is less. This suggests that are repeatability isnt very good.
anova(glmer.model4)
## Analysis of Variance Table
## Df Sum Sq Mean Sq F value
## Population 3 5.3226 1.7742 1.7742
## Repeat 1 1.3617 1.3617 1.3617
## Population:Repeat 3 11.4223 3.8074 3.8074
anova(glmer.model3, glmer.model4)
## Data: activity
## Models:
## glmer.model3: Trans ~ Population + (1 | VIE/Repeat)
## glmer.model4: Trans ~ Population * Repeat + (1 | VIE/Repeat)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## glmer.model3 6 1255.6 1272.2 -621.81 1243.6
## glmer.model4 10 1252.0 1279.7 -616.00 1232.0 11.624 4 0.02037 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Compare the two models, glmer.model4 clearly the stronger one. Essentially alot variation is explained by repeat
library(phia)
testInteractions(glmer.model4)
## Chisq Test:
## P-value adjustment method: holm
## Value Df Chisq Pr(>Chisq)
## NP 1-NP 2 : A-B 0.33748 1 10.5014 0.007157 **
## NP 1-UP 1 : A-B 0.47091 1 5.5393 0.092972 .
## NP 1-UP 2 : A-B 0.51144 1 3.5154 0.243201
## NP 2-UP 1 : A-B 1.39538 1 0.9906 0.787487
## NP 2-UP 2 : A-B 1.51547 1 1.2555 0.787487
## UP 1-UP 2 : A-B 1.08607 1 0.0535 0.817143
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glht(glmer.model4, linfct=mcp(Population='Tukey')))
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = Trans ~ Population * Repeat + (1 | VIE/Repeat),
## data = activity, family = poisson)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## NP 2 - NP 1 == 0 0.6558 0.2846 2.304 0.0969 .
## UP 1 - NP 1 == 0 0.3572 0.2713 1.317 0.5514
## UP 2 - NP 1 == 0 0.8350 0.3043 2.744 0.0308 *
## UP 1 - NP 2 == 0 -0.2986 0.2825 -1.057 0.7150
## UP 2 - NP 2 == 0 0.1792 0.3143 0.570 0.9408
## UP 2 - UP 1 == 0 0.4779 0.3022 1.581 0.3886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
summary(glht(glmer.model4, linfct=mcp(Repeat='Tukey')))
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = Trans ~ Population * Repeat + (1 | VIE/Repeat),
## data = activity, family = poisson)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## B - A == 0 0.7435 0.2265 3.282 0.00103 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
plot(glmer.model4)
glmer.model5<-glmer(Trans~Population*Repeat+(1|VIE), data=activity, family=poisson)
summary(glmer.model5)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula: Trans ~ Population * Repeat + (1 | VIE)
## Data: activity
##
## AIC BIC logLik deviance df.resid
## 2027.7 2052.6 -1004.8 2009.7 109
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -9.2470 -1.5157 -0.1769 1.5146 11.2239
##
## Random effects:
## Groups Name Variance Std.Dev.
## VIE (Intercept) 0.3115 0.5581
## Number of obs: 118, groups: VIE, 59
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.80208 0.14000 27.157 < 2e-16 ***
## PopulationNP 2 0.51012 0.20694 2.465 0.01370 *
## PopulationUP 1 0.12478 0.19768 0.631 0.52788
## PopulationUP 2 0.63112 0.22148 2.850 0.00438 **
## RepeatB 0.49689 0.04300 11.556 < 2e-16 ***
## PopulationNP 2:RepeatB -0.86260 0.06283 -13.728 < 2e-16 ***
## PopulationUP 1:RepeatB -0.40229 0.06097 -6.598 4.17e-11 ***
## PopulationUP 2:RepeatB -0.45456 0.06038 -7.528 5.16e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) PplNP2 PplUP1 PplUP2 RepetB PNP2:R PUP1:R
## PopulatnNP2 -0.676
## PopulatnUP1 -0.708 0.479
## PopulatnUP2 -0.632 0.428 0.448
## RepeatB -0.191 0.129 0.135 0.121
## PpltnNP2:RB 0.131 -0.155 -0.093 -0.083 -0.684
## PpltnUP1:RB 0.135 -0.091 -0.177 -0.085 -0.705 0.483
## PpltnUP2:RB 0.136 -0.092 -0.096 -0.155 -0.712 0.487 0.502
testInteractions(glmer.model5)
## Chisq Test:
## P-value adjustment method: holm
## Value Df Chisq Pr(>Chisq)
## NP 1-NP 2 : A-B 0.42206 1 188.460 < 2.2e-16 ***
## NP 1-UP 1 : A-B 0.66879 1 43.532 1.251e-10 ***
## NP 1-UP 2 : A-B 0.63473 1 56.667 2.581e-13 ***
## NP 2-UP 1 : A-B 1.58456 1 53.391 1.094e-12 ***
## NP 2-UP 2 : A-B 1.50387 1 42.724 1.260e-10 ***
## UP 1-UP 2 : A-B 0.94908 1 0.745 0.3881
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glht(glmer.model5, linfct=mcp(Population='Tukey')))
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = Trans ~ Population * Repeat + (1 | VIE), data = activity,
## family = poisson)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## NP 2 - NP 1 == 0 0.5101 0.2069 2.465 0.0653 .
## UP 1 - NP 1 == 0 0.1248 0.1977 0.631 0.9218
## UP 2 - NP 1 == 0 0.6311 0.2215 2.850 0.0226 *
## UP 1 - NP 2 == 0 -0.3853 0.2066 -1.865 0.2427
## UP 2 - NP 2 == 0 0.1210 0.2295 0.527 0.9524
## UP 2 - UP 1 == 0 0.5063 0.2212 2.289 0.1001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
anova(glmer.model4, glmer.model5)
## Data: activity
## Models:
## glmer.model5: Trans ~ Population * Repeat + (1 | VIE)
## glmer.model4: Trans ~ Population * Repeat + (1 | VIE/Repeat)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## glmer.model5 9 2027.7 2052.6 -1004.8 2009.7
## glmer.model4 10 1252.0 1279.7 -616.0 1232.0 777.67 1 < 2.2e-16
##
## glmer.model5
## glmer.model4 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Again, glmer.model4 clearly the stronger one.
tapply(Trans, list(Population, Repeat), mean)
## A B
## NP 1 51.00000 83.82353
## NP 2 82.78571 57.42857
## UP 1 59.88235 65.82353
## UP 2 98.81818 103.09091
tapply(Trans, list(Population, Repeat), var)
## A B
## NP 1 1611.750 1734.279
## NP 2 2318.489 1685.648
## UP 1 1434.985 1934.404
## UP 2 3424.764 2842.091
#this provides us with means and variances, as you can see the NP's differ alot between trials
activity.lme3<-lme(Trans~Population*Repeat, random=~1|VIE/Repeat, correlation=corAR1(form=~1|VIE/Repeat), method='REML', data=activity)
newdata<-expand.grid(Population=levels(activity$Population), Repeat=levels(activity$Repeat))
coefs<-fixef(activity.lme3)
Xmat<-model.matrix(~Population*Repeat, data=newdata)
fit<-as.vector(Xmat %*% coefs)
newdata$fit<-fit
head(newdata)
## Population Repeat fit
## 1 NP 1 A 51.00000
## 2 NP 2 A 82.78571
## 3 UP 1 A 59.88235
## 4 UP 2 A 98.81818
## 5 NP 1 B 83.82353
## 6 NP 2 B 57.42857
se<-sqrt(diag(Xmat %*% vcov(activity.lme3) %*% t(Xmat)))
newdata$lower<-fit-2*se
newdata$upper<-fit+2*se
head(newdata)
## Population Repeat fit lower upper
## 1 NP 1 A 51.00000 29.20028 72.79972
## 2 NP 2 A 82.78571 58.76359 106.80784
## 3 UP 1 A 59.88235 38.08263 81.68208
## 4 UP 2 A 98.81818 71.71757 125.91879
## 5 NP 1 B 83.82353 62.02381 105.62325
## 6 NP 2 B 57.42857 33.40645 81.45070
newdata$Population<-factor(newdata$Population, levels=c("NP 1", "NP 2", "UP 1", "UP 2"), labels=c("Lane Cove (NP 1)", "Kurin-gai(NP 2)", "Newtown (UP 1)", "Padstow (UP 2)"))
head(newdata)
## Population Repeat fit lower upper
## 1 Lane Cove (NP 1) A 51.00000 29.20028 72.79972
## 2 Kurin-gai(NP 2) A 82.78571 58.76359 106.80784
## 3 Newtown (UP 1) A 59.88235 38.08263 81.68208
## 4 Padstow (UP 2) A 98.81818 71.71757 125.91879
## 5 Lane Cove (NP 1) B 83.82353 62.02381 105.62325
## 6 Kurin-gai(NP 2) B 57.42857 33.40645 81.45070
nondirectactivity<-ggplot(newdata, aes(y=fit, x=Population, fill=Repeat))+
geom_bar(position=position_dodge(.9), stat="identity", color="black")+
geom_errorbar(aes(ymin = lower, ymax = upper), width=.2, position=position_dodge(0.9))+
coord_cartesian(ylim=c(0,150))+
scale_fill_manual(values=c("#404040", "#C0C0C0"))+
theme_classic()+
scale_y_continuous("Number of Transitions")+
scale_x_discrete("")+
theme(text = element_text(size = 10),axis.title.y = element_text(vjust=2, size=rel(2)), axis.title.x = element_text(vjust=-1, size=rel(2)), axis.text= element_text(size = 14), legend.position=("none"))
nondirectactivity