Session set

pkg <- c("agricolae", "knitr", "easyanova", "MASS")
sapply(pkg, library, character.only=TRUE, logical.return=TRUE)
## agricolae     knitr easyanova      MASS 
##      TRUE      TRUE      TRUE      TRUE

Dataset

setwd("/home/epi/Dropbox/MyR/Análise otros/Gui")
list.files()
## [1] "gui_qca.csv"
# Dados planilha laboratorio
dat = read.csv("gui_qca.csv", dec=",", header=T, sep="\t", check.names=FALSE)  
dat
##   trt rep   hesp hesp_ch  dios  nobi tange    erio rutin
## 1 sad   1 4720.8    97.1  52.9 522.5 126.0 10820.3   0.7
## 2 sad   1 4684.3   199.6  54.7 640.2 111.3 10362.7   0.6
## 3  fm   2 4775.5    96.0  90.8 564.5  56.3  8651.2   1.1
## 4  fm   2 4209.9   119.4  97.7 434.2  84.2  7346.4   0.1
## 5  md   3 5505.4   137.8 122.9 602.4 135.0  9227.4   1.5
## 6  md   3 4337.6   107.6    NA 589.8  75.5  7465.0   0.7
for (i in 1:2) dat[,i] <- as.factor(dat[,i])
attach(dat)

Hesperidin

(mod_hesp<-ea1(dat[,c(1,3)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square F value    p>F
## treatments  2  183897.0    91948.52  0.3274 0.7437
## Residuals   3  842496.2   280832.08       -      -
## 
## $Means
##   treatment    mean standard.error tukey snk duncan t scott_knott
## 1        md 4921.50       374.7213     a   a      a a           a
## 2       sad 4702.55       374.7213     a   a      a a           a
## 3        fm 4492.70       374.7213     a   a      a a           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 md - sad   218.95   0.9128 0.7072    0.7072 0.7072
## 2  md - fm   428.80   0.7240 0.7240    0.4747 0.4776
## 3 sad - fm   209.85   0.9194 0.7186    0.7186 0.7186
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.9868
## p.value Bartlett test         0.1381
## coefficient of variation (%) 11.2600
## first value most discrepant   6.0000
## second value most discrepant  5.0000
## third value most discrepant   3.0000
par(mfrow=c(1,2))
boxplot(hesp~trt, main="hesperedin")

Hesperidin chalcona

(mod_hesp.ch<-ea1(dat[,c(1,4)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square F value    p>F
## treatments  2  1690.230     845.115  0.4238 0.6885
## Residuals   3  5982.925    1994.308       -      -
## 
## $Means
##   treatment   mean standard.error tukey snk duncan t scott_knott
## 1       sad 148.35        31.5777     a   a      a a           a
## 2        md 122.70        31.5777     a   a      a a           a
## 3        fm 107.70        31.5777     a   a      a a           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 sad - md    25.65   0.8424 0.6060    0.6060 0.6060
## 2 sad - fm    40.65   0.6717 0.6717    0.4270 0.4298
## 3  md - fm    15.00   0.9409 0.7591    0.7591 0.7591
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.9346
## p.value Bartlett test         0.4220
## coefficient of variation (%) 35.3700
## first value most discrepant   1.0000
## second value most discrepant  2.0000
## third value most discrepant   6.0000
boxplot(hesp_ch~trt, main="hesp_ch")

Diosmin

dat_dios = subset(dat, trt=="sad" | trt=="fm")
(mod_hesp.ch<-ea1(dat_dios[,c(1,5)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square  F value    p>F
## treatments  1  1636.203   1636.2025 128.7082 0.0077
## Residuals   2    25.425     12.7125        -      -
## 
## $Means
##   treatment  mean standard.error tukey snk duncan t scott_knott
## 1        fm 94.25         2.5212     a   a      a a           a
## 2       sad 53.80         2.5212     b   b      b b           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 fm - sad    40.45   0.0075 0.0075    0.0075 0.0077
## 
## $`Residual analysis`
##                              values
## p.value Shapiro-Wilk test    0.9992
## p.value Bartlett test        0.3284
## coefficient of variation (%) 4.8200
## first value most discrepant  3.0000
## second value most discrepant 4.0000
## third value most discrepant  1.0000
boxplot(dios~trt, main="dios")

Nobiletin

(mod_nobi<-ea1(dat[,c(1,6)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square F value    p>F
## treatments  2  10868.08    5434.042  1.0521 0.4506
## Residuals   3  15495.07    5165.023       -      -
## 
## $Means
##   treatment   mean standard.error tukey snk duncan t scott_knott
## 1        md 596.10        50.8184     a   a      a a           a
## 2       sad 581.35        50.8184     a   a      a a           a
## 3        fm 499.35        50.8184     a   a      a a           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 md - sad    14.75   0.9772 0.8505    0.8505 0.8505
## 2  md - fm    96.75   0.4660 0.4660    0.2693 0.2709
## 3 sad - fm    82.00   0.5571 0.3367    0.3367 0.3367
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.3597
## p.value Bartlett test         0.3098
## coefficient of variation (%) 12.8600
## first value most discrepant   3.0000
## second value most discrepant  4.0000
## third value most discrepant   2.0000
boxplot(nobi~trt, main="nobi")

Tangeritin

(mod_tange<-ea1(dat[,c(1,7)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square F value    p>F
## treatments  2  2498.080   1249.0400  1.6526 0.3282
## Residuals   3  2267.375    755.7917       -      -
## 
## $Means
##   treatment   mean standard.error tukey snk duncan t scott_knott
## 1       sad 118.65        19.4395     a   a      a a           a
## 2        md 105.25        19.4395     a   a      a a           a
## 3        fm  70.25        19.4395     a   a      a a           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 sad - md     13.4   0.8821 0.6594    0.6594 0.6594
## 2 sad - fm     48.4   0.3209 0.3209    0.1759 0.1765
## 3  md - fm     35.0   0.4971 0.2927    0.2927 0.2927
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.9899
## p.value Bartlett test         0.5442
## coefficient of variation (%) 28.0400
## first value most discrepant   5.0000
## second value most discrepant  6.0000
## third value most discrepant   3.0000
boxplot(tange~trt, main="tange")

Erio

(mod_erio<-ea1(dat[,c(1,8)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square F value   p>F
## treatments  2   7922768   3961384.0  4.7367 0.118
## Residuals   3   2508977    836325.8       -     -
## 
## $Means
##   treatment    mean standard.error tukey snk duncan t scott_knott
## 1       sad 10591.5       646.6551     a   a      a a           a
## 2        md  8346.2       646.6551     a   a      a a           a
## 3        fm  7998.8       646.6551     a   a      a a           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 sad - md   2245.3   0.1746 0.0913    0.0913 0.0913
## 2 sad - fm   2592.7   0.1281 0.1281    0.0663 0.0659
## 3  md - fm    347.4   0.9254 0.7293    0.7293 0.7293
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.7000
## p.value Bartlett test         0.6072
## coefficient of variation (%) 10.1900
## first value most discrepant   5.0000
## second value most discrepant  6.0000
## third value most discrepant   4.0000
boxplot(erio~trt, main="erio")

Rutin

(mod_rutin<-ea1(dat[,c(1,9)], design=1, plot=3))

## $`Analysis of variance`
##            df type I SS mean square F value    p>F
## treatments  2    0.3033      0.1517  0.5515 0.6252
## Residuals   3    0.8250      0.2750       -      -
## 
## $Means
##   treatment mean standard.error tukey snk duncan t scott_knott
## 1        md 1.10         0.3708     a   a      a a           a
## 2       sad 0.65         0.3708     a   a      a a           a
## 3        fm 0.60         0.3708     a   a      a a           a
## 
## $`Multiple comparison test`
##       pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 md - sad     0.45   0.6986 0.4539    0.4539 0.4539
## 2  md - fm     0.50   0.6495 0.6495    0.4080 0.4107
## 3 sad - fm     0.05   0.9950 0.9300    0.9300 0.9300
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.5873
## p.value Bartlett test         0.3238
## coefficient of variation (%) 66.9500
## first value most discrepant   3.0000
## second value most discrepant  4.0000
## third value most discrepant   5.0000
boxplot(rutin~trt, main="rutin")