library(foreign)
library(ggmap)
library(ggplot2)
# change this to connect to your version
dat <- read.dbf("C:/Users/shoukhan/Documents/Harrisburg University/Anly-512-Data-Visualization/Summer Course/pennsylv.dbf")
The dataset contains a number of variables about each hospital, many of them are clear and straight forward.
names(dat)
## [1] "acc_trauma" "air_amb" "als" "arc_street" "arc_zone"
## [6] "bas_ls" "bassinets" "bb_id" "bc_beds" "bc_sus_bed"
## [11] "beds_sus" "birthing_r" "bone_marro" "burn_car" "burn_care"
## [16] "card_beds" "card_surge" "card_sus_b" "cardiac" "cardiac_ca"
## [21] "cardio_reh" "chemo" "city" "clin_lab" "clin_psych"
## [26] "county" "countyname" "ct_scan" "cty_key" "cystoscopi"
## [31] "deliv_rms" "dental" "detox_alc_" "diag_radio" "diag_xray"
## [36] "doh_hosp" "doh_phone" "emer_dept" "endoscopie" "fac_id"
## [41] "facility" "flu_old" "fred_con_1" "fred_conta" "fred_email"
## [46] "fred_fax" "fred_hosp" "fred_pager" "fred_phone" "gamma_knif"
## [51] "gen_outpat" "gene_counc" "heart_tran" "helipad" "hemodial_c"
## [56] "hemodial_m" "hosp_id" "hospice" "hyper_cham" "icu"
## [61] "icu_beds" "icu_sus_be" "inpat_flu_" "inpat_pneu" "kidney_tra"
## [66] "labor_rms" "lic_beds" "lic_dent" "lic_dos" "lic_mds"
## [71] "lic_pod" "linear_acc" "lithotrips" "liver_tran" "loc_method"
## [76] "ltc" "mcd" "mcd_key" "mcd_name" "medical"
## [81] "mob_ccu" "mob_icu" "mri" "ms1" "neo2_beds"
## [86] "neo2_sus_b" "neo3_beds" "neo3_sus_b" "neuro_surg" "neurology"
## [91] "obs_gyn" "occ_ther" "optometry" "organ_bank" "ped_trauma"
## [96] "pediatric" "pet" "pharmacy" "phys_med" "phys_ther"
## [101] "podiatry" "providerid" "psych" "psych_inpa" "reg_trauma"
## [106] "resp_ther" "so_flu_65u" "social_wor" "speech_pat" "street"
## [111] "surgical" "surgical_s" "thera_radi" "typ_org" "typ_serv"
## [116] "ultrasound" "x" "y" "zip"
#create a subset
chemo <- subset(dat, chemo == "Y")
#remove missing values
chemo <- chemo[!(is.na(chemo$chemo)), ]
#plot
qmplot(x, y, data = chemo, zoom = 7,source = 'google', maptype = 'roadmap',
colour= I('blue'), mapcolor = "color", main = "Hospitals in Pennsylvania with chemo facility", xlab = "Longitude", ylab = "Latitude")
#create a subset
emergency <- subset(dat, emer_dept == "Y" & county=="Philadelphia")
#remove missing values
emergency <- emergency[!(is.na(emergency$emer_dept)) & !(is.na(emergency$county)), ]
#plot
qmplot(x, y, data = emergency, zoom = 12, source = "google", maptype = "toner", colour= I('red'), size=I(3), mapcolor ="color", main = "Hospital in Pennsylvania with emergency service in greater Philadelpia area", xlab = "Longitude", ylab = "Latitude")
#create a subset
rehab <- subset(dat, detox_alc_ == "Y")
#remove missing values
rehab <- rehab[!(is.na(rehab$detox_alc_)), ]
#plot
qmplot(x, y, data = rehab, zoom = 7,source = 'google', maptype = 'hybrid',
colour= I('yellow'), mapcolor = "color", main = "Hospitals in Pennslyvania with rehab service - Alcohol ", xlab = "Longitude", ylab = "Latitude")
dat1 <- dat[!(is.na(dat$typ_serv)), ]
qmplot(x, y, data = dat1, size = I(4), colour=typ_serv, main = "Hospital distribution in Pennslyvania with different services", xlab = "Longitude", ylab = "Latitude", source = "google", maptype = "terrain", zoom = 7, legend = "none")
#create a subset
burnCases <- subset(dat, burn_care == "Y")
#remove missing values
burnCases <- burnCases[!(is.na(burnCases$burn_care)), ]
#plot
qmplot(x, y, data = burnCases, zoom = 7,source = 'google', maptype = 'terrain',
colour= I('red'), mapcolor = "color", main = "Hospital in Pennsylvania with burn care services ", xlab = "Longitude", ylab = "Latitude")