library(foreign)
data=read.dta('C:/Users/NCC/Dropbox/PhD/Data/Tu/Academic stress/data0.dta',  convert.factors = TRUE, missing.type = FALSE, warn.missing.labels = TRUE)
Academic stress

Academic stress

##view data

names(data)
##   [1] "lop"         "msp"         "a1"          "a2"          "a3"         
##   [6] "a3x4"        "a4"          "a5"          "a5x5"        "a6"         
##  [11] "a6x5"        "a7"          "a14"         "a151"        "a152"       
##  [16] "a153"        "a154"        "a155"        "a16"         "a20"        
##  [21] "a21"         "a21x4"       "a22"         "a23x1"       "a23x2"      
##  [26] "dl1"         "dl2"         "dl3"         "dl4"         "dl5"        
##  [31] "mt1"         "mt2"         "mt3"         "mt4"         "mt5"        
##  [36] "mt6"         "mt7"         "mt8"         "dk1"         "dk2"        
##  [41] "dk3"         "dk4"         "dk5"         "dk6"         "dk7"        
##  [46] "clgv1"       "clgv2"       "clgv3"       "clgv4"       "clgv5"      
##  [51] "clgv6"       "clgv7"       "clgv8"       "clgv9"       "ctdt1"      
##  [56] "ctdt2"       "ctdt3"       "ctdt4"       "ctdt5"       "ctdt6"      
##  [61] "ctdt7"       "clql1"       "clql2"       "clql3"       "clql4"      
##  [66] "clql5"       "clql6"       "ctsv1"       "ctsv2"       "ctsv3"      
##  [71] "ctsv4"       "ctsv5"       "hdpt1"       "hdpt2"       "hdpt3"      
##  [76] "hdpt4"       "hdpt5"       "hdpt6"       "c1"          "c2"         
##  [81] "c3"          "c4"          "c5"          "c6"          "c7"         
##  [86] "c8"          "c9"          "c10"         "c11"         "c12"        
##  [91] "c13"         "c14"         "c15"         "c16"         "year"       
##  [96] "essa"        "dlht"        "mtht"        "dkht"        "clgv"       
## [101] "ctdt"        "ctql"        "ctsv"        "hdpt"        "presu"      
## [106] "worry"       "despondency" "seflexpect"  "workload"

0.1 define for catergorical variable

data$year=as.factor(data$year)

data$a2=as.factor(data$a2)
data$a3=as.factor(data$a3)
data$a4=as.factor(data$a4)
data$a5=as.factor(data$a5)
data$a6=as.factor(data$a6)
data$a7=as.factor(data$a7)
data$a151=as.factor(data$a151)
data$a153=as.factor(data$a153)
data$a155=as.factor(data$a155)
data$a16=as.factor(data$a16)
data$a20=as.factor(data$a20)
data$a21=as.factor(data$a21)
data$a23x1=as.factor(data$a23x1)
data$a23x2=as.factor(data$a23x2)
#dinh nghia cho nhom 16 thang do

data$c1=as.factor(data$c1)
data$c2=as.factor(data$c2)
data$c3=as.factor(data$c3)
data$c4=as.factor(data$c4)
data$c5=as.factor(data$c5)
data$c6=as.factor(data$c6)
data$c7=as.factor(data$c7)
data$c8=as.factor(data$c8)
data$c9=as.factor(data$c9)
data$c10=as.factor(data$c10)
data$c11=as.factor(data$c11)
data$c12=as.factor(data$c12)
data$c13=as.factor(data$c13)
data$c14=as.factor(data$c14)
data$c15=as.factor(data$c15)
data$c16=as.factor(data$c16)

##load packages of table

Tai 2 packages “table1” va “compareGroup” tu chuc nang cua Rstudio hoac R

#install.packages(table1)
#install.packages(compareGroups)
library(table1)
## 
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
## 
##     units, units<-
library(compareGroups)
## Loading required package: SNPassoc
## Loading required package: haplo.stats
## Loading required package: survival
## Loading required package: mvtnorm
## Loading required package: parallel
## Registered S3 method overwritten by 'SNPassoc':
##   method            from       
##   summary.haplo.glm haplo.stats
table1(year~a1+a2+a2+a3+a4+a5+a6+a7+a151+a152+a153+a154+a155+a16+a20+a21+a22+a23x1 + a23x2, data=data)
Overall
(N=878)
year
1 233 (26.5%)
2 297 (33.8%)
3 348 (39.6%)
a1
Mean (SD) 21.3 (1.93)
Median [Min, Max] 21.0 [18.0, 28.0]
a2
1 376 (42.8%)
2 502 (57.2%)
a3
1 769 (87.6%)
2 63 (7.2%)
3 44 (5.0%)
4 2 (0.2%)
a4
1 254 (28.9%)
2 1 (0.1%)
3 297 (33.8%)
5 326 (37.1%)
a5
1 97 (11.0%)
2 568 (64.7%)
3 194 (22.1%)
4 13 (1.5%)
5 6 (0.7%)
a6
1 84 (9.6%)
2 306 (34.9%)
3 334 (38.0%)
4 151 (17.2%)
5 3 (0.3%)
a7
1 48 (5.5%)
2 271 (30.9%)
3 427 (48.6%)
4 108 (12.3%)
5 22 (2.5%)
6 2 (0.2%)
a151
1 21 (2.4%)
2 857 (97.6%)
a152
Mean (SD) 9.65 (9.82)
Median [Min, Max] 5.00 [1.00, 40.0]
Missing 858 (97.7%)
a153
1 193 (22.0%)
2 685 (78.0%)
a154
Mean (SD) 1.10 (1.07)
Median [Min, Max] 1.00 [0.0500, 7.00]
Missing 689 (78.5%)
a155
0.5 2 (0.2%)
1 61 (6.9%)
1.5 1 (0.1%)
2 39 (4.4%)
3 32 (3.6%)
4 15 (1.7%)
5 26 (3.0%)
6 2 (0.2%)
7 4 (0.5%)
8 1 (0.1%)
10 1 (0.1%)
12 4 (0.5%)
33 1 (0.1%)
Missing 689 (78.5%)
a16
1 62 (7.1%)
2 220 (25.1%)
3 246 (28.0%)
4 196 (22.3%)
5 154 (17.5%)
a20
1 688 (78.4%)
2 190 (21.6%)
a21
1 117 (13.3%)
2 274 (31.2%)
3 435 (49.5%)
4 52 (5.9%)
a22
Mean (SD) 3.28 (0.662)
Median [Min, Max] 3.00 [1.00, 5.00]
a23x1
1 12 (1.4%)
2 49 (5.6%)
3 391 (44.5%)
4 390 (44.4%)
5 36 (4.1%)
a23x2
1 8 (0.9%)
2 115 (13.1%)
3 420 (47.8%)
4 302 (34.4%)
5 33 (3.8%)
t1=compareGroups(year~a2+a2+a3+a4+a5+a6+a7+a151+a152+a153+a154+a155+a16+a21+a22+a23x1 + a23x2, data=data)
## Warning in compareGroups.fit(X = X, y = y, include.label = include.label, :
## Variables 'a155' have been removed since some errors occurred
t1
## 
## 
## -------- Summary of results by groups of 'year'---------
## 
## 
##    var   N   p.value  method            selection
## 1  a2    878 0.246    categorical       ALL      
## 2  a2    878 0.246    categorical       ALL      
## 3  a3    878 0.009**  categorical       ALL      
## 4  a4    878 .        categorical       ALL      
## 5  a5    878 .        categorical       ALL      
## 6  a6    878 .        categorical       ALL      
## 7  a7    878 .        categorical       ALL      
## 8  a151  878 0.211    categorical       ALL      
## 9  a152   20 0.187    continuous normal ALL      
## 10 a153  878 0.051*   categorical       ALL      
## 11 a154  189 0.076*   continuous normal ALL      
## 12 a16   878 <0.001** categorical       ALL      
## 13 a21   878 0.162    categorical       ALL      
## 14 a22   878 0.119    continuous normal ALL      
## 15 a23x1 878 .        categorical       ALL      
## 16 a23x2 878 .        categorical       ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
createTable(t1)
## 
## --------Summary descriptives table by 'year'---------
## 
## ____________________________________________________ 
##             1           2           3      p.overall 
##           N=233       N=297       N=348              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## a2:                                          0.246   
##     1  110 (47.2%) 119 (40.1%) 147 (42.2%)           
##     2  123 (52.8%) 178 (59.9%) 201 (57.8%)           
## a2:                                          0.246   
##     1  110 (47.2%) 119 (40.1%) 147 (42.2%)           
##     2  123 (52.8%) 178 (59.9%) 201 (57.8%)           
## a3:                                          0.009   
##     1  195 (83.7%) 265 (89.2%) 309 (88.8%)           
##     2  28 (12.0%)  12 (4.04%)  23 (6.61%)            
##     3   9 (3.86%)  19 (6.40%)  16 (4.60%)            
##     4   1 (0.43%)   1 (0.34%)   0 (0.00%)            
## a4:                                            .     
##     1  179 (76.8%)  0 (0.00%)  75 (21.6%)            
##     2   1 (0.43%)   0 (0.00%)   0 (0.00%)            
##     3   0 (0.00%)  297 (100%)   0 (0.00%)            
##     5  53 (22.7%)   0 (0.00%)  273 (78.4%)           
## a5:                                            .     
##     1  28 (12.0%)  31 (10.4%)  38 (10.9%)            
##     2  132 (56.7%) 202 (68.0%) 234 (67.2%)           
##     3  65 (27.9%)  60 (20.2%)  69 (19.8%)            
##     4   8 (3.43%)   3 (1.01%)   2 (0.57%)            
##     5   0 (0.00%)   1 (0.34%)   5 (1.44%)            
## a6:                                            .     
##     1  23 (9.87%)  22 (7.41%)  39 (11.2%)            
##     2  87 (37.3%)  102 (34.3%) 117 (33.6%)           
##     3  85 (36.5%)  131 (44.1%) 118 (33.9%)           
##     4  38 (16.3%)  42 (14.1%)  71 (20.4%)            
##     5   0 (0.00%)   0 (0.00%)   3 (0.86%)            
## a7:                                            .     
##     1  11 (4.72%)  25 (8.42%)  12 (3.45%)            
##     2  63 (27.0%)  127 (42.8%) 81 (23.3%)            
##     3  117 (50.2%) 120 (40.4%) 190 (54.6%)           
##     4  34 (14.6%)  21 (7.07%)  53 (15.2%)            
##     5   8 (3.43%)   4 (1.35%)  10 (2.87%)            
##     6   0 (0.00%)   0 (0.00%)   2 (0.57%)            
## a151:                                        0.211   
##     1   5 (2.15%)   4 (1.35%)  12 (3.45%)            
##     2  228 (97.9%) 293 (98.7%) 336 (96.6%)           
## a152   16.5 (17.7) 3.75 (2.75) 9.33 (7.04)   0.187   
## a153:                                        0.051   
##     1  38 (16.3%)  71 (23.9%)  84 (24.1%)            
##     2  195 (83.7%) 226 (76.1%) 264 (75.9%)           
## a154   0.97 (0.32) 0.94 (0.43) 1.30 (1.54)   0.076   
## a16:                                        <0.001   
##     1  12 (5.15%)  31 (10.4%)  19 (5.46%)            
##     2  42 (18.0%)  87 (29.3%)  91 (26.1%)            
##     3  78 (33.5%)  88 (29.6%)  80 (23.0%)            
##     4  57 (24.5%)  59 (19.9%)  80 (23.0%)            
##     5  44 (18.9%)  32 (10.8%)  78 (22.4%)            
## a21:                                         0.162   
##     1  35 (15.0%)  40 (13.5%)  42 (12.1%)            
##     2  62 (26.6%)  103 (34.7%) 109 (31.3%)           
##     3  127 (54.5%) 132 (44.4%) 176 (50.6%)           
##     4   9 (3.86%)  22 (7.41%)  21 (6.03%)            
## a22    3.35 (0.68) 3.23 (0.68) 3.28 (0.63)   0.119   
## a23x1:                                         .     
##     1   2 (0.86%)   3 (1.01%)   7 (2.01%)            
##     2  16 (6.87%)  18 (6.06%)  15 (4.31%)            
##     3  104 (44.6%) 153 (51.5%) 134 (38.5%)           
##     4  104 (44.6%) 109 (36.7%) 177 (50.9%)           
##     5   7 (3.00%)  14 (4.71%)  15 (4.31%)            
## a23x2:                                         .     
##     1   4 (1.72%)   2 (0.67%)   2 (0.57%)            
##     2  30 (12.9%)  51 (17.2%)  34 (9.77%)            
##     3  101 (43.3%) 160 (53.9%) 159 (45.7%)           
##     4  90 (38.6%)  74 (24.9%)  138 (39.7%)           
##     5   8 (3.43%)  10 (3.37%)  15 (4.31%)            
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

0.2 table ve essa

t2=compareGroups(year~c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13+c14+c15+c16+essa+presu + worry + despondency + seflexpect + workload+a23x1 + a23x2, data=data)

t2
## 
## 
## -------- Summary of results by groups of 'year'---------
## 
## 
##    var         N   p.value  method            selection
## 1  c1          878 0.178    categorical       ALL      
## 2  c2          878 .        categorical       ALL      
## 3  c3          878 <0.001** categorical       ALL      
## 4  c4          878 .        categorical       ALL      
## 5  c5          878 0.378    categorical       ALL      
## 6  c6          878 .        categorical       ALL      
## 7  c7          878 .        categorical       ALL      
## 8  c8          878 0.002**  categorical       ALL      
## 9  c9          878 0.004**  categorical       ALL      
## 10 c10         878 0.391    categorical       ALL      
## 11 c11         878 0.004**  categorical       ALL      
## 12 c12         878 0.692    categorical       ALL      
## 13 c13         878 0.449    categorical       ALL      
## 14 c14         878 0.041**  categorical       ALL      
## 15 c15         878 .        categorical       ALL      
## 16 c16         878 <0.001** categorical       ALL      
## 17 essa        878 0.001**  continuous normal ALL      
## 18 presu       878 <0.001** continuous normal ALL      
## 19 worry       878 0.041**  continuous normal ALL      
## 20 despondency 878 0.109    continuous normal ALL      
## 21 seflexpect  878 0.161    continuous normal ALL      
## 22 workload    878 <0.001** continuous normal ALL      
## 23 a23x1       878 .        categorical       ALL      
## 24 a23x2       878 .        categorical       ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
createTable(t2)
## 
## --------Summary descriptives table by 'year'---------
## 
## _________________________________________________________ 
##                  1           2           3      p.overall 
##                N=233       N=297       N=348              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## c1:                                               0.178   
##     1        5 (2.15%)  10 (3.37%)  17 (4.89%)            
##     2       36 (15.5%)  43 (14.5%)  70 (20.1%)            
##     3       106 (45.5%) 152 (51.2%) 153 (44.0%)           
##     4       70 (30.0%)  69 (23.2%)  82 (23.6%)            
##     5       16 (6.87%)  23 (7.74%)  26 (7.47%)            
## c2:                                                 .     
##     1        0 (0.00%)   5 (1.68%)   7 (2.01%)            
##     2       24 (10.3%)  17 (5.72%)  38 (10.9%)            
##     3       115 (49.4%) 112 (37.7%) 162 (46.6%)           
##     4       85 (36.5%)  127 (42.8%) 111 (31.9%)           
##     5        9 (3.86%)  36 (12.1%)  30 (8.62%)            
## c3:                                              <0.001   
##     1        0 (0.00%)   7 (2.36%)  14 (4.02%)            
##     2       31 (13.3%)  24 (8.08%)  70 (20.1%)            
##     3       141 (60.5%) 168 (56.6%) 187 (53.7%)           
##     4       50 (21.5%)  75 (25.3%)  58 (16.7%)            
##     5       11 (4.72%)  23 (7.74%)  19 (5.46%)            
## c4:                                                 .     
##     1        0 (0.00%)   3 (1.01%)   3 (0.86%)            
##     2       17 (7.30%)  18 (6.06%)  32 (9.20%)            
##     3       93 (39.9%)  76 (25.6%)  117 (33.6%)           
##     4       106 (45.5%) 136 (45.8%) 142 (40.8%)           
##     5       17 (7.30%)  64 (21.5%)  54 (15.5%)            
## c5:                                               0.378   
##     1       14 (6.01%)  27 (9.09%)  36 (10.3%)            
##     2       46 (19.7%)  75 (25.3%)  83 (23.9%)            
##     3       127 (54.5%) 133 (44.8%) 168 (48.3%)           
##     4       40 (17.2%)  52 (17.5%)  52 (14.9%)            
##     5        6 (2.58%)  10 (3.37%)   9 (2.59%)            
## c6:                                                 .     
##     1        3 (1.29%)   5 (1.68%)  10 (2.87%)            
##     2       17 (7.30%)  22 (7.41%)  54 (15.5%)            
##     3       122 (52.4%) 117 (39.4%) 156 (44.8%)           
##     4       83 (35.6%)  112 (37.7%) 104 (29.9%)           
##     5        8 (3.43%)  41 (13.8%)  24 (6.90%)            
## c7:                                                 .     
##     1        1 (0.43%)   4 (1.35%)   7 (2.01%)            
##     2       16 (6.87%)  20 (6.73%)  42 (12.1%)            
##     3       122 (52.4%) 142 (47.8%) 163 (46.8%)           
##     4       82 (35.2%)  101 (34.0%) 114 (32.8%)           
##     5       12 (5.15%)  30 (10.1%)  22 (6.32%)            
## c8:                                               0.002   
##     1        0 (0.00%)   9 (3.03%)  13 (3.74%)            
##     2       27 (11.6%)  29 (9.76%)  43 (12.4%)            
##     3       78 (33.5%)  115 (38.7%) 148 (42.5%)           
##     4       107 (45.9%) 103 (34.7%) 108 (31.0%)           
##     5       21 (9.01%)  41 (13.8%)  36 (10.3%)            
## c9:                                               0.004   
##     1        4 (1.72%)  18 (6.06%)  18 (5.17%)            
##     2       35 (15.0%)  29 (9.76%)  64 (18.4%)            
##     3       87 (37.3%)  88 (29.6%)  114 (32.8%)           
##     4       89 (38.2%)  132 (44.4%) 117 (33.6%)           
##     5       18 (7.73%)  30 (10.1%)  35 (10.1%)            
## c10:                                              0.391   
##     1        6 (2.58%)  18 (6.06%)  25 (7.18%)            
##     2       37 (15.9%)  42 (14.1%)  62 (17.8%)            
##     3       108 (46.4%) 138 (46.5%) 147 (42.2%)           
##     4       70 (30.0%)  83 (27.9%)  93 (26.7%)            
##     5       12 (5.15%)  16 (5.39%)  21 (6.03%)            
## c11:                                              0.004   
##     1        4 (1.72%)  12 (4.04%)  19 (5.46%)            
##     2       29 (12.4%)  37 (12.5%)  60 (17.2%)            
##     3       121 (51.9%) 137 (46.1%) 175 (50.3%)           
##     4       74 (31.8%)  89 (30.0%)  80 (23.0%)            
##     5        5 (2.15%)  22 (7.41%)  14 (4.02%)            
## c12:                                              0.692   
##     1        5 (2.15%)  11 (3.70%)  14 (4.02%)            
##     2       35 (15.0%)  36 (12.1%)  52 (14.9%)            
##     3       98 (42.1%)  118 (39.7%) 142 (40.8%)           
##     4       78 (33.5%)  98 (33.0%)  108 (31.0%)           
##     5       17 (7.30%)  34 (11.4%)  32 (9.20%)            
## c13:                                              0.449   
##     1        4 (1.72%)   7 (2.36%)  15 (4.31%)            
##     2       24 (10.3%)  41 (13.8%)  52 (14.9%)            
##     3       98 (42.1%)  116 (39.1%) 140 (40.2%)           
##     4       87 (37.3%)  105 (35.4%) 115 (33.0%)           
##     5       20 (8.58%)  28 (9.43%)  26 (7.47%)            
## c14:                                              0.041   
##     1        1 (0.43%)  12 (4.04%)  17 (4.89%)            
##     2       25 (10.7%)  39 (13.1%)  42 (12.1%)            
##     3       113 (48.5%) 113 (38.0%) 140 (40.2%)           
##     4       73 (31.3%)  92 (31.0%)  113 (32.5%)           
##     5       21 (9.01%)  41 (13.8%)  36 (10.3%)            
## c15:                                                .     
##     1        0 (0.00%)   6 (2.02%)  12 (3.45%)            
##     2       15 (6.44%)  27 (9.09%)  35 (10.1%)            
##     3       77 (33.0%)  79 (26.6%)  106 (30.5%)           
##     4       121 (51.9%) 138 (46.5%) 150 (43.1%)           
##     5       20 (8.58%)  47 (15.8%)  45 (12.9%)            
## c16:                                             <0.001   
##     1        4 (1.72%)  21 (7.07%)  27 (7.76%)            
##     2       35 (15.0%)  57 (19.2%)  67 (19.3%)            
##     3       99 (42.5%)  96 (32.3%)  134 (38.5%)           
##     4       79 (33.9%)  82 (27.6%)  75 (21.6%)            
##     5       16 (6.87%)  41 (13.8%)  45 (12.9%)            
## essa        53.2 (7.21) 53.9 (8.33) 51.4 (9.74)   0.001   
## presu       13.0 (2.03) 13.4 (2.51) 12.6 (2.64)  <0.001   
## worry       10.1 (1.99) 10.0 (2.30) 9.64 (2.54)   0.041   
## despondency 9.94 (2.11) 9.90 (2.19) 9.59 (2.26)   0.109   
## seflexpect  10.3 (1.92) 10.2 (2.44) 9.96 (2.50)   0.161   
## workload    9.89 (1.68) 10.3 (1.98) 9.63 (2.10)  <0.001   
## a23x1:                                              .     
##     1        2 (0.86%)   3 (1.01%)   7 (2.01%)            
##     2       16 (6.87%)  18 (6.06%)  15 (4.31%)            
##     3       104 (44.6%) 153 (51.5%) 134 (38.5%)           
##     4       104 (44.6%) 109 (36.7%) 177 (50.9%)           
##     5        7 (3.00%)  14 (4.71%)  15 (4.31%)            
## a23x2:                                              .     
##     1        4 (1.72%)   2 (0.67%)   2 (0.57%)            
##     2       30 (12.9%)  51 (17.2%)  34 (9.77%)            
##     3       101 (43.3%) 160 (53.9%) 159 (45.7%)           
##     4       90 (38.6%)  74 (24.9%)  138 (39.7%)           
##     5        8 (3.43%)  10 (3.37%)  15 (4.31%)            
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

##table ve cac gia tri trung binh

t3=compareGroups(year~dlht+ mtht+ dkht+ clgv+ ctdt+ ctql+ ctsv+ hdpt+essa, data=data)

t3
## 
## 
## -------- Summary of results by groups of 'year'---------
## 
## 
##   var  N   p.value  method            selection
## 1 dlht 878 0.885    continuous normal ALL      
## 2 mtht 878 <0.001** continuous normal ALL      
## 3 dkht 878 <0.001** continuous normal ALL      
## 4 clgv 878 0.012**  continuous normal ALL      
## 5 ctdt 878 <0.001** continuous normal ALL      
## 6 ctql 878 0.066*   continuous normal ALL      
## 7 ctsv 878 0.907    continuous normal ALL      
## 8 hdpt 878 0.002**  continuous normal ALL      
## 9 essa 878 0.001**  continuous normal ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
createTable(t3)
## 
## --------Summary descriptives table by 'year'---------
## 
## __________________________________________________ 
##           1           2           3      p.overall 
##         N=233       N=297       N=348              
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## dlht 18.6 (3.14) 18.5 (3.01) 18.6 (3.09)   0.885   
## mtht 25.4 (4.55) 23.7 (4.27) 24.3 (4.93)  <0.001   
## dkht 22.9 (3.95) 20.8 (4.30) 21.8 (4.70)  <0.001   
## clgv 31.0 (4.32) 31.2 (4.80) 32.1 (5.27)   0.012   
## ctdt 23.4 (3.94) 21.9 (4.27) 23.0 (4.85)  <0.001   
## ctql 19.4 (3.22) 18.6 (3.75) 19.1 (4.26)   0.066   
## ctsv 16.9 (2.55) 17.0 (3.04) 17.0 (3.31)   0.907   
## hdpt 19.1 (3.52) 17.9 (3.84) 18.1 (4.26)   0.002   
## essa 53.2 (7.21) 53.9 (8.33) 51.4 (9.74)   0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

0.3 table giua CLCS va diem so essa

t4=compareGroups(a23x1~essa, data=data)

t4
## 
## 
## -------- Summary of results by groups of 'a23x1'---------
## 
## 
##   var  N   p.value  method            selection
## 1 essa 878 <0.001** continuous normal ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
createTable(t4)
## 
## --------Summary descriptives table by 'a23x1'---------
## 
## __________________________________________________________________________ 
##           1           2           3           4           5      p.overall 
##         N=12        N=49        N=391       N=390       N=36               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## essa 60.3 (16.0) 57.2 (9.50) 54.5 (7.46) 50.4 (8.62) 49.7 (9.75)  <0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

0.4 table giua health realted QOL va diem so essa

t5=compareGroups(a23x2~essa, data=data)

t5
## 
## 
## -------- Summary of results by groups of 'a23x2'---------
## 
## 
##   var  N   p.value  method            selection
## 1 essa 878 <0.001** continuous normal ALL      
## -----
## Signif. codes:  0 '**' 0.05 '*' 0.1 ' ' 1
createTable(t5)
## 
## --------Summary descriptives table by 'a23x2'---------
## 
## __________________________________________________________________________ 
##           1           2           3           4           5      p.overall 
##          N=8        N=115       N=420       N=302       N=33               
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ 
## essa 60.6 (10.4) 56.9 (7.92) 53.6 (8.12) 50.1 (8.55) 48.3 (10.2)  <0.001   
## ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

0.5 corelation matrix

data("data")
## Warning in data("data"): data set 'data' not found
my_data <- data[, c('essa','dlht', 'mtht', 'dkht', 'clgv', 'ctdt', 'ctql', 'ctsv', 'hdpt' )]
# print the first 6 rows
head(my_data, 4)
##   essa dlht mtht dkht clgv ctdt ctql ctsv hdpt
## 1   50   20   26   18   30   19   18   15   19
## 2   58   14   22   15   22   35   19   15   18
## 3   38   15   17   16   20   17   10   13   10
## 4   55   20   25   23   31   26   23   20   20
library("Hmisc")
## Loading required package: lattice
## Loading required package: Formula
## Loading required package: ggplot2
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:table1':
## 
##     label, label<-, units
## The following objects are masked from 'package:base':
## 
##     format.pval, units
res2 <- rcorr(as.matrix(my_data))
res2
##       essa  dlht  mtht dkht  clgv  ctdt ctql  ctsv hdpt
## essa  1.00 -0.10 -0.05 0.02 -0.02 -0.09 0.04 -0.02 0.02
## dlht -0.10  1.00  0.29 0.25  0.30  0.34 0.20  0.24 0.28
## mtht -0.05  0.29  1.00 0.58  0.48  0.53 0.48  0.44 0.44
## dkht  0.02  0.25  0.58 1.00  0.53  0.61 0.58  0.51 0.36
## clgv -0.02  0.30  0.48 0.53  1.00  0.59 0.60  0.55 0.37
## ctdt -0.09  0.34  0.53 0.61  0.59  1.00 0.58  0.49 0.40
## ctql  0.04  0.20  0.48 0.58  0.60  0.58 1.00  0.61 0.39
## ctsv -0.02  0.24  0.44 0.51  0.55  0.49 0.61  1.00 0.41
## hdpt  0.02  0.28  0.44 0.36  0.37  0.40 0.39  0.41 1.00
## 
## n= 878 
## 
## 
## P
##      essa   dlht   mtht   dkht   clgv   ctdt   ctql   ctsv   hdpt  
## essa        0.0028 0.1654 0.5164 0.4642 0.0082 0.2503 0.5669 0.5444
## dlht 0.0028        0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## mtht 0.1654 0.0000        0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## dkht 0.5164 0.0000 0.0000        0.0000 0.0000 0.0000 0.0000 0.0000
## clgv 0.4642 0.0000 0.0000 0.0000        0.0000 0.0000 0.0000 0.0000
## ctdt 0.0082 0.0000 0.0000 0.0000 0.0000        0.0000 0.0000 0.0000
## ctql 0.2503 0.0000 0.0000 0.0000 0.0000 0.0000        0.0000 0.0000
## ctsv 0.5669 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000        0.0000
## hdpt 0.5444 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
library('PerformanceAnalytics')
## Warning: package 'PerformanceAnalytics' was built under R version 4.0.2
## Loading required package: xts
## Warning: package 'xts' was built under R version 4.0.2
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
chart.Correlation(my_data, histogram=TRUE, pch=19)

LS0tDQp0aXRsZTogIk5DIDE6IEFjYWRlbWljIHN0cmVzcyINCmF1dGhvcjogIkJpbmggVGhhbmcgVHJhbiINCmRhdGU6ICJKdWx5LzAxLzIwMjAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0aGVtZTogam91cm5hbA0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgd29yZF9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KLS0tDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGZvcmVpZ24pDQpkYXRhPXJlYWQuZHRhKCdDOi9Vc2Vycy9OQ0MvRHJvcGJveC9QaEQvRGF0YS9UdS9BY2FkZW1pYyBzdHJlc3MvZGF0YTAuZHRhJywgIGNvbnZlcnQuZmFjdG9ycyA9IFRSVUUsIG1pc3NpbmcudHlwZSA9IEZBTFNFLCB3YXJuLm1pc3NpbmcubGFiZWxzID0gVFJVRSkNCg0KYGBgDQoNCg0KIVtBY2FkZW1pYyBzdHJlc3NdKGh0dHBzOi8vd3d3LmNlZGFycy1zaW5haS5vcmcvY29udGVudC9kYW0vY2VkYXJzLXNpbmFpL2Jsb2cvMjAxOS8wNy9jb21tb24tcGh5c2ljYWwtc3ltcHRvbXMtb2YtaGlkZGVuLXN0cmVzcy5qcGcpDQoNCmBgYHtyfQ0KDQoNCmBgYA0KDQoNCg0KDQojI3ZpZXcgZGF0YQ0KDQpgYGB7cn0NCm5hbWVzKGRhdGEpDQpgYGANCg0KDQojIyBkZWZpbmUgZm9yIGNhdGVyZ29yaWNhbCB2YXJpYWJsZQ0KDQoNCmBgYHtyfQ0KZGF0YSR5ZWFyPWFzLmZhY3RvcihkYXRhJHllYXIpDQoNCmRhdGEkYTI9YXMuZmFjdG9yKGRhdGEkYTIpDQpkYXRhJGEzPWFzLmZhY3RvcihkYXRhJGEzKQ0KZGF0YSRhND1hcy5mYWN0b3IoZGF0YSRhNCkNCmRhdGEkYTU9YXMuZmFjdG9yKGRhdGEkYTUpDQpkYXRhJGE2PWFzLmZhY3RvcihkYXRhJGE2KQ0KZGF0YSRhNz1hcy5mYWN0b3IoZGF0YSRhNykNCmRhdGEkYTE1MT1hcy5mYWN0b3IoZGF0YSRhMTUxKQ0KZGF0YSRhMTUzPWFzLmZhY3RvcihkYXRhJGExNTMpDQpkYXRhJGExNTU9YXMuZmFjdG9yKGRhdGEkYTE1NSkNCmRhdGEkYTE2PWFzLmZhY3RvcihkYXRhJGExNikNCmRhdGEkYTIwPWFzLmZhY3RvcihkYXRhJGEyMCkNCmRhdGEkYTIxPWFzLmZhY3RvcihkYXRhJGEyMSkNCmRhdGEkYTIzeDE9YXMuZmFjdG9yKGRhdGEkYTIzeDEpDQpkYXRhJGEyM3gyPWFzLmZhY3RvcihkYXRhJGEyM3gyKQ0KDQoNCg0KYGBgDQoNCg0KDQpgYGB7cn0NCg0KI2RpbmggbmdoaWEgY2hvIG5ob20gMTYgdGhhbmcgZG8NCg0KZGF0YSRjMT1hcy5mYWN0b3IoZGF0YSRjMSkNCmRhdGEkYzI9YXMuZmFjdG9yKGRhdGEkYzIpDQpkYXRhJGMzPWFzLmZhY3RvcihkYXRhJGMzKQ0KZGF0YSRjND1hcy5mYWN0b3IoZGF0YSRjNCkNCmRhdGEkYzU9YXMuZmFjdG9yKGRhdGEkYzUpDQpkYXRhJGM2PWFzLmZhY3RvcihkYXRhJGM2KQ0KZGF0YSRjNz1hcy5mYWN0b3IoZGF0YSRjNykNCmRhdGEkYzg9YXMuZmFjdG9yKGRhdGEkYzgpDQpkYXRhJGM5PWFzLmZhY3RvcihkYXRhJGM5KQ0KZGF0YSRjMTA9YXMuZmFjdG9yKGRhdGEkYzEwKQ0KZGF0YSRjMTE9YXMuZmFjdG9yKGRhdGEkYzExKQ0KZGF0YSRjMTI9YXMuZmFjdG9yKGRhdGEkYzEyKQ0KZGF0YSRjMTM9YXMuZmFjdG9yKGRhdGEkYzEzKQ0KZGF0YSRjMTQ9YXMuZmFjdG9yKGRhdGEkYzE0KQ0KZGF0YSRjMTU9YXMuZmFjdG9yKGRhdGEkYzE1KQ0KZGF0YSRjMTY9YXMuZmFjdG9yKGRhdGEkYzE2KQ0KDQpgYGANCg0KIyNsb2FkIHBhY2thZ2VzIG9mIHRhYmxlDQoNClRhaSAyIHBhY2thZ2VzICJ0YWJsZTEiIHZhICJjb21wYXJlR3JvdXAiIHR1IGNodWMgbmFuZyBjdWEgUnN0dWRpbyBob2FjIFINCg0KYGBge3J9DQojaW5zdGFsbC5wYWNrYWdlcyh0YWJsZTEpDQojaW5zdGFsbC5wYWNrYWdlcyhjb21wYXJlR3JvdXBzKQ0KYGBgDQoNCg0KYGBge3J9DQpsaWJyYXJ5KHRhYmxlMSkNCmxpYnJhcnkoY29tcGFyZUdyb3VwcykNCmBgYA0KDQoNCmBgYHtyfQ0KdGFibGUxKHllYXJ+YTErYTIrYTIrYTMrYTQrYTUrYTYrYTcrYTE1MSthMTUyK2ExNTMrYTE1NCthMTU1K2ExNithMjArYTIxK2EyMithMjN4MSArIGEyM3gyLCBkYXRhPWRhdGEpDQpgYGANCg0KDQoNCmBgYHtyfQ0KdDE9Y29tcGFyZUdyb3Vwcyh5ZWFyfmEyK2EyK2EzK2E0K2E1K2E2K2E3K2ExNTErYTE1MithMTUzK2ExNTQrYTE1NSthMTYrYTIxK2EyMithMjN4MSArIGEyM3gyLCBkYXRhPWRhdGEpDQoNCnQxDQoNCmNyZWF0ZVRhYmxlKHQxKQ0KYGBgDQoNCg0KDQoNCiMjIHRhYmxlIHZlIGVzc2ENCmBgYHtyfQ0KdDI9Y29tcGFyZUdyb3Vwcyh5ZWFyfmMxK2MyK2MzK2M0K2M1K2M2K2M3K2M4K2M5K2MxMCtjMTErYzEyK2MxMytjMTQrYzE1K2MxNitlc3NhK3ByZXN1ICsgd29ycnkgKyBkZXNwb25kZW5jeSArIHNlZmxleHBlY3QgKyB3b3JrbG9hZCthMjN4MSArIGEyM3gyLCBkYXRhPWRhdGEpDQoNCnQyDQoNCmNyZWF0ZVRhYmxlKHQyKQ0KYGBgDQoNCg0KDQojI3RhYmxlIHZlIGNhYyBnaWEgdHJpIHRydW5nIGJpbmgNCg0KYGBge3J9DQoNCnQzPWNvbXBhcmVHcm91cHMoeWVhcn5kbGh0KyBtdGh0KyBka2h0KyBjbGd2KyBjdGR0KyBjdHFsKyBjdHN2KyBoZHB0K2Vzc2EsIGRhdGE9ZGF0YSkNCg0KdDMNCg0KY3JlYXRlVGFibGUodDMpDQoNCmBgYA0KDQoNCg0KDQojIyB0YWJsZSBnaXVhIENMQ1MgdmEgZGllbSBzbyBlc3NhDQoNCg0KYGBge3J9DQoNCnQ0PWNvbXBhcmVHcm91cHMoYTIzeDF+ZXNzYSwgZGF0YT1kYXRhKQ0KDQp0NA0KDQpjcmVhdGVUYWJsZSh0NCkNCg0KYGBgDQoNCg0KDQoNCiMjIHRhYmxlIGdpdWEgaGVhbHRoIHJlYWx0ZWQgUU9MIHZhIGRpZW0gc28gZXNzYQ0KDQoNCmBgYHtyfQ0KDQp0NT1jb21wYXJlR3JvdXBzKGEyM3gyfmVzc2EsIGRhdGE9ZGF0YSkNCg0KdDUNCg0KY3JlYXRlVGFibGUodDUpDQoNCmBgYA0KDQoNCg0KDQoNCiMjIGNvcmVsYXRpb24gbWF0cml4DQoNCmBgYHtyfQ0KZGF0YSgiZGF0YSIpDQoNCm15X2RhdGEgPC0gZGF0YVssIGMoJ2Vzc2EnLCdkbGh0JywgJ210aHQnLCAnZGtodCcsICdjbGd2JywgJ2N0ZHQnLCAnY3RxbCcsICdjdHN2JywgJ2hkcHQnICldDQpgYGANCg0KDQpgYGB7cn0NCiMgcHJpbnQgdGhlIGZpcnN0IDYgcm93cw0KaGVhZChteV9kYXRhLCA0KQ0KYGBgDQoNCg0KYGBge3J9DQoNCmxpYnJhcnkoIkhtaXNjIikNCnJlczIgPC0gcmNvcnIoYXMubWF0cml4KG15X2RhdGEpKQ0KcmVzMg0KYGBgDQoNCg0KYGBge3J9DQpsaWJyYXJ5KCdQZXJmb3JtYW5jZUFuYWx5dGljcycpDQoNCmNoYXJ0LkNvcnJlbGF0aW9uKG15X2RhdGEsIGhpc3RvZ3JhbT1UUlVFLCBwY2g9MTkpDQoNCmBgYA0KDQoNCg0KDQoNCg0KDQo=