Playing with dplyr.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data(mtcars)
filter(mtcars, mpg>20, cyl == 6)
##    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## 1 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## 2 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## 3 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1

arrange operator same as ‘sort’.

arrange(mtcars, cyl, desc(wt))
##     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## 1  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## 2  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## 3  21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
## 4  21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## 5  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## 6  32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## 7  26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## 8  27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## 9  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## 10 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## 11 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## 12 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## 13 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## 14 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## 15 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## 16 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## 17 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## 18 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## 19 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## 20 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## 21 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## 22 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## 23 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## 24 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## 25 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## 26 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## 27 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## 28 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## 29 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## 30 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## 31 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## 32 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4

select - to focus on some important columns only.

select(mtcars, mpg, hp)
##                      mpg  hp
## Mazda RX4           21.0 110
## Mazda RX4 Wag       21.0 110
## Datsun 710          22.8  93
## Hornet 4 Drive      21.4 110
## Hornet Sportabout   18.7 175
## Valiant             18.1 105
## Duster 360          14.3 245
## Merc 240D           24.4  62
## Merc 230            22.8  95
## Merc 280            19.2 123
## Merc 280C           17.8 123
## Merc 450SE          16.4 180
## Merc 450SL          17.3 180
## Merc 450SLC         15.2 180
## Cadillac Fleetwood  10.4 205
## Lincoln Continental 10.4 215
## Chrysler Imperial   14.7 230
## Fiat 128            32.4  66
## Honda Civic         30.4  52
## Toyota Corolla      33.9  65
## Toyota Corona       21.5  97
## Dodge Challenger    15.5 150
## AMC Javelin         15.2 150
## Camaro Z28          13.3 245
## Pontiac Firebird    19.2 175
## Fiat X1-9           27.3  66
## Porsche 914-2       26.0  91
## Lotus Europa        30.4 113
## Ford Pantera L      15.8 264
## Ferrari Dino        19.7 175
## Maserati Bora       15.0 335
## Volvo 142E          21.4 109

To get unique values of a certain column.

distinct(select(mtcars, gear))
##   gear
## 1    4
## 2    3
## 3    5

To make new column by operating some old ones.

mutate(mtcars, performance=hp/wt)
##     mpg cyl  disp  hp drat    wt  qsec vs am gear carb performance
## 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4    41.98473
## 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4    38.26087
## 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1    40.08621
## 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1    34.21462
## 5  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2    50.87209
## 6  18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1    30.34682
## 7  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4    68.62745
## 8  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2    19.43574
## 9  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2    30.15873
## 10 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4    35.75581
## 11 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4    35.75581
## 12 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3    44.22604
## 13 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3    48.25737
## 14 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3    47.61905
## 15 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4    39.04762
## 16 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4    39.63864
## 17 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4    43.03087
## 18 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1    30.00000
## 19 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2    32.19814
## 20 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1    35.42234
## 21 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1    39.35091
## 22 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2    42.61364
## 23 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2    43.66812
## 24 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4    63.80208
## 25 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2    45.51365
## 26 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1    34.10853
## 27 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2    42.52336
## 28 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2    74.68605
## 29 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4    83.28076
## 30 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6    63.17690
## 31 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8    93.83754
## 32 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2    39.20863

Calculating mean using dplyr. We can also use Psych, Pastecs, DoBy for more info..

summarise(mtcars, avg_mpg = mean(mpg, na.rm = T))
##    avg_mpg
## 1 20.09062

Using pipe operator.

mtcars %>% filter(cyl==6) %>% summarise(mean(hp))
##   mean(hp)
## 1 122.2857