Problem 10

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

library(ISLR)
attach(Weekly)

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

Volume and Year have a high correlation (0.84) but there seem to be no other relationships.

summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
pairs(Weekly)

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

Lag2 is the only statistically significant predictor with a p value of 0.0296.

glm.fit <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, 
               data = Weekly, family = binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

The overall accuracy of predictions was 56.1% based on the confusion matrix below. Most of the errors were in predicting a down week. The model basically predicted an up week most of the time which resulted in an error rate of 88.8% for actual down weeks.

glm.probs <- predict(glm.fit, type = "response")
glm.pred <- rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Direction)
##         Direction
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557
mean(glm.pred == Direction)
## [1] 0.5610652

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train <- (Year < 2009)
Weeklytest <- Weekly[!train, ]
glm.fit <- glm(Direction ~ Lag2, data = Weekly, family = binomial, subset =  train)
glm.probs <- predict(glm.fit, Weeklytest, type = "response")
glm.pred <- rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
Direction.test <- Direction[!train]
table(glm.pred, Direction.test)
##         Direction.test
## glm.pred Down Up
##     Down    9  5
##     Up     34 56
mean(glm.pred == Direction.test)
## [1] 0.625

(e) Repeat (d) using LDA.

library(MASS)
lda.fit <- lda(Direction ~ Lag2, data = Weekly, subset = train)
lda.pred <- predict(lda.fit, Weeklytest)
lda.class <- lda.pred$class
table(lda.class, Direction.test)
##          Direction.test
## lda.class Down Up
##      Down    9  5
##      Up     34 56
mean(lda.class == Direction.test)
## [1] 0.625

(f) Repeat (d) using QDA.

qda.fit <- qda(Direction ~ Lag2, data = Weekly, ssubset = train)
qda.class <- predict(qda.fit, Weeklytest)$class
table(qda.class, Direction.test)
##          Direction.test
## qda.class Down Up
##      Down    0  0
##      Up     43 61
mean(qda.class == Direction.test)
## [1] 0.5865385

(g) Repeat (d) using KNN with K = 1.

library(class)
train.X <- as.matrix(Lag2[train])
test.X <- as.matrix(Lag2[!train])
train.Direction <- Direction[train]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.Direction, k = 1)
table(knn.pred, Direction.test)
##         Direction.test
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn.pred == Direction.test)
## [1] 0.5

(h) Which of these methods appears to provide the best results on this data?

The logistic regression model and the LDA model both had the best and identical results with a 62.5% accuracy rate.

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

The logistic regression model and the LDA model from (d) still had the highest accuracy rate of 62.5%.

# Logistic Regression with interaction of Lag1 & Lag 2
glm.int <- glm(Direction ~ Lag1*Lag2, data = Weekly, family = binomial, 
               subset = train)
glm.probs <- predict(glm.int, Weeklytest, type = "response")
glm.pred <- rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
Direction.test <- Direction[!train]
table(glm.pred, Direction.test)
##         Direction.test
## glm.pred Down Up
##     Down    7  8
##     Up     36 53
mean(glm.pred == Direction.test)
## [1] 0.5769231
# LDA with interaction of Lag1 & Lag2
lda.int <- lda(Direction ~ Lag1*Lag2, data = Weekly, subset = train)
lda.pred <- predict(lda.int, Weeklytest)
lda.class <- lda.pred$class
table(lda.class, Direction.test)
##          Direction.test
## lda.class Down Up
##      Down    7  8
##      Up     36 53
mean(lda.class == Direction.test)
## [1] 0.5769231
# QDA with interaction of Lag1 & Lag2
qda.int <- qda(Direction ~ Lag1*Lag2, data = Weekly, ssubset = train)
qda.class <- predict(qda.int, Weeklytest)$class
table(qda.class, Direction.test)
##          Direction.test
## qda.class Down Up
##      Down   17 30
##      Up     26 31
mean(qda.class == Direction.test)
## [1] 0.4615385
# KNN with k = 2(no interaction)
knn.pred <- knn(train.X, test.X, train.Direction, k = 2)
table(knn.pred, Direction.test)
##         Direction.test
## knn.pred Down Up
##     Down   18 25
##     Up     25 36
mean(knn.pred == Direction.test)
## [1] 0.5192308
# KNN with k = 3(no interaction)
knn.pred <- knn(train.X, test.X, train.Direction, k = 3)
table(knn.pred, Direction.test)
##         Direction.test
## knn.pred Down Up
##     Down   16 20
##     Up     27 41
mean(knn.pred == Direction.test)
## [1] 0.5480769
# KNN with k = 4(no interaction)
knn.pred <- knn(train.X, test.X, train.Direction, k = 4)
table(knn.pred, Direction.test)
##         Direction.test
## knn.pred Down Up
##     Down   20 19
##     Up     23 42
mean(knn.pred == Direction.test)
## [1] 0.5961538
# KNN with k = 5(no interaction)
knn.pred <- knn(train.X, test.X, train.Direction, k = 5)
table(knn.pred, Direction.test)
##         Direction.test
## knn.pred Down Up
##     Down   15 22
##     Up     28 39
mean(knn.pred == Direction.test)
## [1] 0.5192308
# KNN with k = 6(no interaction)
knn.pred <- knn(train.X, test.X, train.Direction, k = 6)
table(knn.pred, Direction.test)
##         Direction.test
## knn.pred Down Up
##     Down   16 21
##     Up     27 40
mean(knn.pred == Direction.test)
## [1] 0.5384615

Problem 11

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

library(ISLR)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365
attach(Auto)

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] = 1
Auto1 <- data.frame(Auto, mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

Cylinders, displacement, horsepower, weight, and possibly origin would be useful in predicting mpg01. 4 of the predictors are highly correlated with each other: cylinders, displacement, horsepower and weight.

pairs(Auto1)

cor(Auto1[, -9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000

(c) Split the data into a training set and a test set.

train <- (year%%2 == 0) # even year
test <- !train
Auto1.train = Auto1[train, ]
Auto1.test = Auto1[test, ]
mpg01.test = mpg01[test]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

The test error rate of the model is 12.64%.

lda.Auto1 <- lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto1, 
                 subset = train)
lda.Auto1pred <- predict(lda.Auto1, Auto1.test)
mean(lda.Auto1pred$class != mpg01.test)
## [1] 0.1263736

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

The test error rate is 13.19%.

qda.Auto1 <- qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto1, 
                 subset = train)
qda.Auto1pred <- predict(qda.Auto1, Auto1.test)
mean(qda.Auto1pred$class != mpg01.test)
## [1] 0.1318681

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

The test error rate is 12.64%.

Auto1.log <- glm(mpg01 ~ cylinders + weight + displacement + horsepower, data = Auto1, 
                 subset = train)
Auto1.probs <- predict(Auto1.log, Auto1.test, type = "response")
Auto1.logpred <- rep(0, length(Auto1.probs))
Auto1.logpred[Auto1.probs > 0.5] = 1
mean(Auto1.logpred != mpg01.test)
## [1] 0.1263736

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

The following test error rates were obtained: 15.38% for k = 1, 15.38% for k = 2, 13.74% for k = 3, 15.93% for k = 4, 14.84% for k = 5 and 15.93% for k = 10. The test error rate was lowest or k = 3.

train.X <- cbind(cylinders, weight, displacement, horsepower)[train, ]
test.X <- cbind(cylinders, weight, displacement, horsepower)[test, ]
train.mpg01 <- mpg01[train]
set.seed(1)
knn.pred = knn(train.X, test.X, train.mpg01, k = 1)
mean(knn.pred != mpg01.test)
## [1] 0.1538462
knn.pred = knn(train.X, test.X, train.mpg01, k = 2)
mean(knn.pred != mpg01.test)
## [1] 0.1538462
knn.pred = knn(train.X, test.X, train.mpg01, k = 3)
mean(knn.pred != mpg01.test)
## [1] 0.1373626
knn.pred = knn(train.X, test.X, train.mpg01, k = 4)
mean(knn.pred != mpg01.test)
## [1] 0.1593407
knn.pred = knn(train.X, test.X, train.mpg01, k = 5)
mean(knn.pred != mpg01.test)
## [1] 0.1483516
knn.pred = knn(train.X, test.X, train.mpg01, k = 10)
mean(knn.pred != mpg01.test)
## [1] 0.1593407

Problem 13

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

The full logistic regression model was fitted to the training data, which resulted in an error rate of 18.18%. This was a better rate than the logistic regression model without chas and tax, which were not statistically significant in the full model. This model had an error rate of 18.58%. The LDA model had a 13.44% error rate. Out of the KNN models, the one with k = 10 had the lowest error rate of 11.46%.

attach(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
pairs(Boston)

cor(Boston)
##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
##                  rm         age         dis          rad         tax    ptratio
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431  0.2899456
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332 -0.3916785
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018  0.3832476
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652 -0.1215152
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320  0.1889327
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783 -0.3555015
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559  0.2615150
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158 -0.2324705
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819  0.4647412
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000  0.4608530
## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304  1.0000000
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801 -0.1773833
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341  0.3740443
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593 -0.5077867
##               black      lstat       medv
## crim    -0.38506394  0.4556215 -0.3883046
## zn       0.17552032 -0.4129946  0.3604453
## indus   -0.35697654  0.6037997 -0.4837252
## chas     0.04878848 -0.0539293  0.1752602
## nox     -0.38005064  0.5908789 -0.4273208
## rm       0.12806864 -0.6138083  0.6953599
## age     -0.27353398  0.6023385 -0.3769546
## dis      0.29151167 -0.4969958  0.2499287
## rad     -0.44441282  0.4886763 -0.3816262
## tax     -0.44180801  0.5439934 -0.4685359
## ptratio -0.17738330  0.3740443 -0.5077867
## black    1.00000000 -0.3660869  0.3334608
## lstat   -0.36608690  1.0000000 -0.7376627
## medv     0.33346082 -0.7376627  1.0000000
crime01 <- rep(0, length(crim))
crime01[crim > median(crim)] = 1
Boston <- data.frame(Boston, crime01)
names(Boston)
##  [1] "crim"    "zn"      "indus"   "chas"    "nox"     "rm"      "age"    
##  [8] "dis"     "rad"     "tax"     "ptratio" "black"   "lstat"   "medv"   
## [15] "crime01"
train <- 1:(dim(Boston)[1]/2)
test <- (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train <- Boston[train, ]
Boston.test <- Boston[test, ]
crime01.test <- crime01[test]

Full Logistic Regression Model

glm.fit <- glm(crime01 ~ . - crim - crime01, data = Boston, family = binomial, 
               subset = train)
summary(glm.fit)
## 
## Call:
## glm(formula = crime01 ~ . - crim - crime01, family = binomial, 
##     data = Boston, subset = train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.83229  -0.06593   0.00000   0.06181   2.61513  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -91.319906  19.490273  -4.685 2.79e-06 ***
## zn           -0.815573   0.193373  -4.218 2.47e-05 ***
## indus         0.354172   0.173862   2.037  0.04164 *  
## chas          0.167396   0.991922   0.169  0.86599    
## nox          93.706326  21.202008   4.420 9.88e-06 ***
## rm           -4.719108   1.788765  -2.638  0.00833 ** 
## age           0.048634   0.024199   2.010  0.04446 *  
## dis           4.301493   0.979996   4.389 1.14e-05 ***
## rad           3.039983   0.719592   4.225 2.39e-05 ***
## tax          -0.006546   0.007855  -0.833  0.40461    
## ptratio       1.430877   0.359572   3.979 6.91e-05 ***
## black        -0.017552   0.006734  -2.606  0.00915 ** 
## lstat         0.190439   0.086722   2.196  0.02809 *  
## medv          0.598533   0.185514   3.226  0.00125 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.367  on 252  degrees of freedom
## Residual deviance:  69.568  on 239  degrees of freedom
## AIC: 97.568
## 
## Number of Fisher Scoring iterations: 10
glm.probs <- predict(glm.fit, Boston.test, type = "response")
glm.pred <- rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
table(glm.pred, crime01.test)
##         crime01.test
## glm.pred   0   1
##        0  68  24
##        1  22 139
mean(glm.pred != crime01.test)
## [1] 0.1818182

Logistic Regression Model without chas and tax

glm.fit <- glm(crime01 ~ . - crim - crime01 - chas - tax, data = Boston, 
               family = binomial, subset = train)
glm.probs <- predict(glm.fit, Boston.test, type = "response")
glm.pred <- rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
table(glm.pred, crime01.test)
##         crime01.test
## glm.pred   0   1
##        0  67  24
##        1  23 139
mean(glm.pred != crime01.test)
## [1] 0.1857708

LDA

lda.fit <- lda(crime01 ~ . - crim - crime01, data = Boston, subset =  train)
lda.pred <- predict(lda.fit, Boston.test)
table(lda.pred$class, crime01.test)
##    crime01.test
##       0   1
##   0  80  24
##   1  10 139
mean(lda.pred$class != crime01.test)
## [1] 0.1343874

KNN, k = 1

train.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, 
                 ptratio, black, lstat, medv)[train, ]
test.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, 
                ptratio, black, lstat, medv)[test, ]
train.crime01 <- crime01[train]
set.seed(1)
knn.pred <- knn(train.X, test.X, train.crime01, k = 1)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  85 111
##        1   5  52
mean(knn.pred != crime01.test)
## [1] 0.458498

KNN, k = 2

knn.pred <- knn(train.X, test.X, train.crime01, k = 2)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred  0  1
##        0 86 79
##        1  4 84
mean(knn.pred != crime01.test)
## [1] 0.3280632

KNN, k = 3

knn.pred <- knn(train.X, test.X, train.crime01, k = 3)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  84  61
##        1   6 102
mean(knn.pred != crime01.test)
## [1] 0.2648221

KNN, k = 4

knn.pred <- knn(train.X, test.X, train.crime01, k = 4)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  84  48
##        1   6 115
mean(knn.pred != crime01.test)
## [1] 0.2134387

KNN, k = 5

knn.pred <- knn(train.X, test.X, train.crime01, k = 5)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  84  37
##        1   6 126
mean(knn.pred != crime01.test)
## [1] 0.1699605

KNN, k = 10

knn.pred <- knn(train.X, test.X, train.crime01, k = 10)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  83  22
##        1   7 141
mean(knn.pred != crime01.test)
## [1] 0.1146245

KNN, k = 15

knn.pred <- knn(train.X, test.X, train.crime01, k = 15)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  83  23
##        1   7 140
mean(knn.pred != crime01.test)
## [1] 0.1185771

KNN, k = 20

knn.pred <- knn(train.X, test.X, train.crime01, k = 20)
table(knn.pred, crime01.test)
##         crime01.test
## knn.pred   0   1
##        0  83  24
##        1   7 139
mean(knn.pred != crime01.test)
## [1] 0.1225296